D. W. Richter and K. M. Spyer, Studying rhythmogenesis of breathing: Comparison of in vivo and in vitro models, Trends Neurosci, vol.24, pp.464-472, 2001.

J. L. Feldman, D. Negro, and C. A. , Looking for inspiration: New perspectives on respiratory rhythm, Nat Rev Neurosci, vol.7, pp.232-242, 2006.

J. L. Feldman, G. S. Mitchell, and E. E. Nattie, Breathing: rhythmicity, plasticity, chemosensitivity, Annu Rev Neurosci, vol.26, pp.239-266, 2003.

R. W. Putnam, J. A. Filosa, and N. A. Ritucci, Cellular mechanisms involved in CO(2) and acid signaling in chemosensitive neurons, Am J Physiol Cell Physiol, vol.287, pp.1493-1526, 2004.

C. Jiang, A. Rojas, R. Wang, and X. Wang, CO2 central chemosensitivity: Why are there so many sensing molecules?, Respir Physiol Neurobiol, vol.145, pp.115-126, 2005.

C. A. Severson, W. Wang, V. A. Pieribone, C. I. Dohle, and G. B. Richerson, Midbrain serotonergic neurons are central pH chemoreceptors, Nat Neurosci, vol.6, pp.1139-1140, 2003.

P. G. Guyenet, R. L. Stornetta, and D. A. Bayliss, Retrotrapezoid nucleus and central chemoreception, J Physiol, vol.586, pp.2043-2048, 2008.

M. Vizek, C. K. Pickett, and J. V. Weil, Biphasic ventilatory response of adult cats to sustained hypoxia has central origin, J Appl Physiol, vol.63, pp.1658-1664, 1987.

N. Voituron, A. Frugière, J. Champagnat, and L. Bodineau, Hypoxia-sensing properties of the newborn rat ventral medullary surface in vitro, J Physiol, vol.577, pp.55-68, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00117313

S. Lahiri, R. E. Forster, and . Ii, /H(+) sensing: Peripheral and central chemoreception, Int J Biochem Cell Biol, vol.2, pp.1413-1435, 2003.

P. A. Robbins, Is ventilatory acclimatization to hypoxia a phenomenon that arises through mechanisms that have an intrinsic role in the regulation of ventilation at sea level?, Adv Exp Med Biol, vol.502, pp.339-348, 2001.

E. Nattie and A. Li, Central chemoreception is a complex system function that involves multiple brain stem sites, J Appl Physiol, vol.106, pp.1464-1466, 2009.

V. Dubreuil, A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons, Proc Natl Acad Sci, vol.105, pp.1067-1072, 2008.

F. Lesage and M. Lazdunski, Molecular and functional properties of two-poredomain potassium channels, Am J Physiol Renal Physiol, vol.279, pp.793-801, 2000.

A. Mathie, Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors, J Physiol, vol.578, pp.377-385, 2007.

A. J. Patel and E. Honoré, Properties and modulation of mammalian 2P domain K+ channels, Trends Neurosci, vol.24, pp.339-346, 2001.

D. Kim, E. J. Cavanaugh, I. Kim, and J. L. Carroll, Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells, J Physiol, vol.587, pp.2963-2975, 2009.

K. J. Buckler, B. A. Williams, and E. Honore, An oxygen-, acid-and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells, J Physiol, vol.525, pp.135-142, 2000.

E. K. Weir, J. López-barneo, K. J. Buckler, and S. L. Archer, Acute oxygen-sensing mechanisms, N Engl J Med, vol.353, pp.2042-2055, 2005.

J. E. Sirois, Q. Lei, E. M. Talley, C. Lynch, . Iii et al., The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics, J Neurosci, vol.20, pp.6347-6354, 2000.

D. K. Mulkey, TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity, J Neurosci, vol.27, pp.14049-14058, 2007.

R. Reyes, Cloning and expression of a novel pH-sensitive two pore domain K + channel from human kidney, J Biol Chem, vol.273, pp.30863-30869, 1998.

R. Warth, Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport, Proc Natl Acad Sci, vol.101, pp.8215-8220, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00094493

M. I. Niemeyer, L. P. Cid, L. F. Barros, and F. V. Sepúlveda, Modulation of the two-pore domain acid-sensitive K + channel TASK-2 (KCNK5) by changes in cell volume, J Biol Chem, vol.276, pp.43166-43174, 2001.

H. Barriere, Role of TASK2 potassium channels regarding volume regulation in primary cultures of mouse proximal tubules, J Gen Physiol, vol.122, pp.177-190, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00091315

S. L'hoste, Role of TASK2 in the control of apoptotic volume decrease in proximal kidney cells, J Biol Chem, vol.282, pp.36692-36703, 2007.

K. J. Mitchell, Functional analysis of secreted and transmembrane proteins critical to mouse development, Nat Genet, vol.28, pp.241-249, 2001.

H. Onimaru, K. Ikeda, and K. Kawakami, CO 2 -sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat, J Neurosci, vol.28, pp.12845-12850, 2008.

A. C. Takakura, Selective lesion of retrotrapezoid Phox2b-expressing neurons raises the apnoeic threshold in rats, J Physiol, vol.586, pp.2975-2991, 2008.

J. Amiel, Polyalanine expansion and frameshift mutations of the pairedlike homeobox gene PHOX2B in congenital central hypoventilation syndrome, Nat Genet, vol.33, pp.459-461, 2003.

J. R. Rodman, A. K. Curran, K. S. Henderson, J. A. Dempsey, and C. A. Smith, Carotid body denervation in dogs: Eupnea and the ventilatory response to hyperoxic hypercapnia, J Appl Physiol, vol.91, pp.328-335, 2001.

F. L. Powell, W. K. Milsom, and G. S. Mitchell, Time domains of the hypoxic ventilatory response, Respir Physiol, vol.112, pp.123-134, 1998.

A. D. Medhurst, Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery, Brain Res Mol Brain Res, vol.86, pp.101-114, 2001.

E. M. Talley, G. Solorzano, Q. Lei, D. Kim, and D. A. Bayliss, Cns distribution of members of the two-pore-domain (KCNK) potassium channel family, J Neurosci, vol.21, pp.7491-7505, 2001.

R. A. Mitchell, H. H. Loeschcke, W. H. Massion, and J. W. Severinghaus, Respiratory responses mediated through superficial chemosensitive areas on the medulla, J Appl Physiol, vol.18, pp.523-533, 1963.

J. P. Mortola and C. Saiki, Ventilatory response to hypoxia in rats: Gender differences, Respir Physiol, vol.106, pp.21-34, 1996.

L. Bodineau, F. Cayetanot, and A. Frugière, Fos study of ponto-medullary areas involved in the in vitro hypoxic respiratory depression, Neuroreport, vol.12, pp.3913-3916, 2001.

G. Hilaire, J. C. Viemari, P. Coulon, M. Simonneau, and M. Bévengut, Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents, Respir Physiol Neurobiol, vol.143, pp.187-197, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00287611

Y. Okada, A. Kawai, K. Mückenhoff, and P. Scheid, Role of the pons in hypoxic respiratory depression in the neonatal rat, Respir Physiol, vol.111, pp.55-63, 1998.

N. Voituron, A. Frugière, F. Gros, J. M. Macron, and L. Bodineau, Diencephalic and mesencephalic influences on ponto-medullary respiratory control in normoxic and hypoxic conditions: An in vitro study on central nervous system preparations from newborn rat, Neuroscience, vol.132, pp.843-854, 2005.

A. Kawai, H. Onimaru, and I. Homma, Mechanisms of CO2/H+ chemoreception by respiratory rhythm generator neurons in the medulla from newborn rats in vitro, J Physiol, vol.572, pp.525-537, 2006.

F. León-velarde and J. P. Richalet, Respiratory control in residents at high altitude: Physiology and pathophysiology, High Alt Med Biol, vol.7, pp.125-137, 2006.

D. K. Mulkey, Respiratory control by ventral surface chemoreceptor neurons in rats, Nat Neurosci, vol.7, pp.1360-1369, 2004.

M. C. Weston, R. L. Stornetta, and P. G. Guyenet, Glutamatergic neuronal projections from the marginal layer of the rostral ventral medulla to the respiratory centers in rats, J Comp Neurol, vol.473, pp.73-85, 2004.

S. L. Mironov and K. Langohr, Modulation of synaptic and channel activities in the respiratory network of the mice by NO/cGMP signalling pathways, Brain Res, vol.1130, pp.73-82, 2007.

Y. M. Lee, NOX4 as an oxygen sensor to regulate TASK-1 activity, Cell Signal, vol.18, pp.499-507, 2006.

D. L. Rosin, D. A. Chang, and P. G. Guyenet, Afferent and efferent connections of the rat retrotrapezoid nucleus, J Comp Neurol, vol.499, pp.64-89, 2006.

G. Hilaire, C. Bou, and R. Monteau, Rostral ventrolateral medulla and respiratory rhythmogenesis in mice, Neurosci Lett, vol.224, pp.13-16, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00290872