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The problem of estimating the parameters of a stationary Gaussian process whose autocorrelation function
belongs to the Matérn class, appears in many contexts (e.g. [1, 2]).

Def. of a Matérn process on R, with "differentiability" parameter v :

Matérn processes on R can be easily formulated in terms of the Fourier transform
of their autocorrelation function, namely the spectral density over (—oo, +00):
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In this paper the constant C, = F\iﬁ%(i)) is chosen so that f_oo 9y ¢(w)dw = 1. Thus

b is the variance of Z(t) and 0 is the so-called “inverse-range parameter” (in fact,
it is /2 /0 which can be interpreted as an effective range or “correlation length”
independently of v, cf Stein (1999, Section 2.10); we will often drop the term
“inverse”.

The parameter ¢ = b 6" is generally called the "microergodic coefficient".

ASSUmME that n observations of one realization Z (-) of a Matérn process on R are given.

Also, we simply assume here that the constant mean of the process is zero and the noise is a Gaussian white
noise and its level is known, says 1.
( more precisely, the “noisy” measurement of Z(¢) for ¢ in the set {6,26, ---,(n—1)§,nd = 1} are

yi=Z(@i/n)+e€, i=1,---,n where €; are i.i.d. N(0,1) )

This work compares two estimation methods (of » and 6) for the Matérn subclass
which has its "differentiability" parameter v fixed to an half-integer, often-used values are 1/2, 3/2 or 5/2
(e.g. [3], [1D.

Indeed with such v ‘s, the observed series then coincide with particular ARMA series observed with noise.

Maximum llkethOd (ML) estimation, via a state-space reformulation, is then classical
(computing the criterion or its gradient is classicaly obtained via Kalman smoothing):

the well-established R-package dml [5] is used. Known analytical constrains on the ARMA coefficients (as it
is the case here; see the Mathematica Demos [6] and [7] for two examples) can be dealt with by dml.



Heuristics for CGEM-EV estimating equation (not restricted to ARMA series):
Let

—-01t) v=1/2
J _ EBG+0x©)]) _ {eXp( .
P10 (= g ) (1+0f)exp(-07)) v =3/2

Let Ry denote the candidate correlation matrix of Z = {Z(0), Z(9), ---, Z((n — 1) 6), Z(1)}, with @ as inverse-
 Tange, that is, the 7 X n matrix whose element in the i™ row and j® column is [Rq];; = p(|i — jl 6, 6).

NB: It is important to notice that R(f)) becomes ill-conditioned for large » and 6 decreasing ( in the mathematica Demo[7] for v = 3 /2, the lower-
bound f = 1.5 is used for n=s192)

( Zhang and Zimmerman (2007) recently proposed to use the classical weigthed
least square method (not statistically fully efficient but much less costly than
maximum likelihood (ML)) to estimate the range parameters, next, to plug-in these
parameters (the 6 here) in the likelihood which is then maximized with respect
to b (the solution, say by (), being either the explicit (1.2) in the no-nugget
case, or obtained iteratively by Fisher scoring otherwise). The idea underlying
this method is that, at least for the infill asymptotic context (i.e. § = 1/n and n
large), even if 6 is fixed at a wrong value 6, the product BML(GI)G%’" still remains
an efficient estimator of ¢y := by#2” (see Du et al. (2009), Wang and Loh (2011)
for recent results of this type). As is now classical (Stein (1999)), ¢, will be called
the microergodic parameter of the Matern model (1.1). Zhang (2004) showed that
a good estimation of ¢y is more important than a joint estimation of by and 6, to
obtain a good prediction of Z(-) for dense sampling designs.

The method we propose here, firstly reverses the roles of variance and range,
in that it is based on a very simple estimate for the variance, namely the empirical
variance in the no-nugget case, and its corrected version for biais otherwise, which
is simply defined by

by :=n"'yTy — 1.
Secondly we propose to replace the maximization of the likelihood w.r.t. 6 by the
simple following estimating equation in 6, in the with-nugget case: solve, with b
fixed at bpy

yTAb’9 (In - Ab,a) y = tI‘Ab,o where Ab’g = bRy (In -+ bRa)—l . (13)

In the no-nugget case, this equation in @ is simply replaced by z” Ry 'z = nbgy.
One may call “Gaussian Gibbs energy” (GE in short) of the underlying dis-

] cretely sampled process the quantity (1/n)z” Ry 'z and it is easily seen that
(b/n) (yTAvo (In — Abp) y + tr(I, — App)) is the conditional Gibbs energy mean
(CGEM) obtained by taking the expectation of (1/n)z” Ry~'z, conditional on y,
for the candidate parameters b, 6. So equation (1.3) in 6 will be called the CGEM-
EV estimating equation (GEV in the no-nugget case) and we will denote by Oggy
this new range parameter estimate.



Computation of the quadratic term and the trace-term of (1.3) are direct by-products of a Kalman
smoothing.

To solve (1.3) a simple fixed-point algorithm [6, 7, 8, 9] is used here. It proves to be reliable (with fast
convergence).

A rather “extensive’” Monte-carlo assessment of CGEM-EV has been made, for the
cases v =1/2 and v =3/2

Design for the following histograms (1000 replicates for each setting):

ov=3/2
O time-series length n = 800, 5000, 20000

O signal-to-noise ratios by (= “2) chosenamong: 20, 1002, 10002, 10000
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histograms of loglo(é) (1000 time-series replicates), time-series length n=5000
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histograms of ¢/co (1000 time-series replicates) where co = by 62Yand &= b ézv, time-series length n=800
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histograms of ¢/co (1000 replicates), time-series length #n=5000
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histograms of ¢/cop (1000 replicates) only for CGEM-EV,

time-series length » = 20000
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... CONCLUSIONS

o forv=3/2(and v = 1/2, notpresented here) the statistical efficiency
is quite good, and

CGEM - EV is, in average, about 10 time faster than ML

o for v non halfinteger and n large,

0 ML estimation requires O (n2) computation (see Itsa package),

O finding the root of CGEM — EV can be an O(nlog(n)) computation
when iterative linear solvers exit (see [8] for v =1)
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