Well-posedness of the Prandtl equation in Sobolev space without monotonicity
Chao-Jiang Xu, Xu Zhang

To cite this version:
Chao-Jiang Xu, Xu Zhang. Well-posedness of the Prandtl equation in Sobolev space without monotonicity. 2015. hal-01228967v2

HAL Id: hal-01228967
https://hal.archives-ouvertes.fr/hal-01228967v2
Submitted on 31 Dec 2015 (v2), last revised 7 May 2016 (v6)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
WELL-POSEDNESS OF THE PRANDTL EQUATION IN SOBOLEV SPACE WITHOUT MONOTONICITY

CHAO-JIANG XU AND XU ZHANG

Abstract. We study the well-posedness theory for the Prandtl boundary layer equation on the half plane with initial data in Sobolev spaces. We consider a class of initial data which admit the non-degenerate critical points, so it is not monotonic. For this kind of initial data, we prove the local-in-time existence, uniqueness and stability of solutions for the nonlinear Prandtl equation in weighted Sobolev space. We use the energy method to prove the existence of solution by a parabolic regularizing approximation. The nonlinear cancelation properties of the Prandtl equations and non-degeneracy of the critical points are the main ingredients to establish a new energy estimate. Our result improves the classical local well-posedness results for the initial data that are monotone, analytic or Gevery class, and it will also help us to understand the ill-posedness and instability results for the Prandtl equation.

Contents

1. Introduction 2
2. Outline of our approach and preliminary 6
2.1. Difficulties and our approach 6
2.2. Analysis of shear flow 7
2.3. Compatibility conditions and reduction of boundary data 11
3. The approximate solutions 14
3.1. Nonlinear regularized Prandtl equation 14
3.2. Uniform estimate with loss of x-derivative 19
3.3. Smallness of approximate solutions 24
4. Formal transformations 26
4.1. The cut-off functions and a priori assumptions 26
4.2. The formal transformation of equations 27
5. Uniform estimate for the monotone part 31
6. Uniform estimate for the convex part 38
7. Existence of the solution 44
8. Uniqueness and stability 51
8.1. Estimate with a loss of x-derivative 52
8.2. Estimate on the loss term 53
Appendix A. Some inequalities 54
Appendix B. Some example of initial data 56
Appendix C. The proof of Proposition 3.6 57

Date: Dec. 31, 2015.

2010 Mathematics Subject Classification. 35M13, 35Q35, 76D10, 76D03, 76N20.

Key words and phrases. Prandtl boundary layer equation, energy method, well-posedness theory, monotonic condition, non degenerate critical points, Sobolev space.
1. INTRODUCTION

In this work, we study the initial-boundary value problem for the Prandtl boundary layer equation in two dimensions, which reads

\[
\begin{align*}
\partial_t u + u \partial_x u + v \partial_y u + \partial_x p &= \partial_y^2 u, \quad t > 0, \ (x, y) \in \mathbb{R}_+^2, \\
\partial_x u + \partial_y v &= 0, \\
u |_{y=0} = v |_{y=0} &= 0, \quad \lim_{y \to +\infty} u = U(t, x), \\
u |_{t=0} &= u_0(x, y),
\end{align*}
\]

where \(\mathbb{R}_+^2 = \{(x, y) \in \mathbb{R}^2; y > 0\} \), \(u(t, x, y) \) represents the tangential velocity, \(v(t, x, y) \) normal velocity. \(p(t, x) \) and \(U(t, x) \) are the values on the boundary of the Euler’s pressure and Euler’s tangential velocity and determined by the Bernoulli’s law:

\[
\partial_t U(t, x) + U(t, x) \partial_x U(t, x) + \partial_x p = 0.
\]

The Prandtl boundary layer equation was firstly derived formally by Ludwing Prandtl in 1904 ([22]). From the mathematical point of view, the well-posedness and justification of the Prandtl boundary layer theory don’t have satisfactory theory yet, and remain open for general cases. During the past century, lots of mathematicians have investigated this problem. The Russian school has contributed a lot to the boundary layer theory and their works were collected in [21]. Up to now, the existence theory for the Prandtl boundary layer equation has been achieved only when the initial data belong to some special functional spaces: 1) the analytic space \([18, 24, 25, 29]\); 2) Sobolev spaces or Hölder spaces under monotonicity assumption \([1, 16, 20, 21, 26]\); 3) recently \([7]\) in Gevrey class with non-degenerate critical point. See also \([14]\) where the initial data is monotone on a number of intervals and analytic on the complement. On the other hand, without the monotonicity assumption, E and Engquist in \([5]\) constructed finite time blowup solutions to the Prandtl equation. After this work, there are many un-stability or strong ill-posedness results. In particular, Gérard-Varet and Dormy \([6]\) constructed a highly persuasive profile to reveal that the linearized Prandtl equation around the shear flow with a non-degenerate critical point is ill-posed in the sense of Hadamard in Sobolev spaces. In \([8]\) the authors proved the strong ill-posedness for linearized Prandtl equation around a shear flow, meaning the non-existence of distribution solution. \([11]\) extends the above ill-posedness results to nonlinear Prandtl equations. See also \([4, 10, 23]\) for the relative works.

In this work, we consider the uniform outflow \(U(t, x) = 1 \) which implies \(p_x = 0 \). In other words the following problem for the Prandtl equation is considered:

\[
\begin{align*}
\partial_t u + u \partial_x u + v \partial_y u &= \partial_y^2 u, \quad t > 0, \ (x, y) \in \mathbb{R}_+^2, \\
\partial_x u + \partial_y v &= 0, \\
u |_{y=0} = v |_{y=0} &= 0, \quad \lim_{y \to +\infty} u = 1, \\
u |_{t=0} &= u_0(x, y),
\end{align*}
\]
The aim of this work is to prove the local well-posedness in Sobolev spaces of the system (1.1) around a non-monotonic shear profile. More precisely, we assume that
\[u_0(x,y) = u_0^+(y) + \tilde{u}_0(x,y), \]
where the shear profile \(u_0^+ \) satisfies the following conditions: for some even integer \(m \geq 6 \), and \(k > 1 \), \(u_0^+ \in C^{m+4}([0,\infty]) \), \(\lim_{y \to \pm \infty} u_0^+(y) = 1 \) with the compatibility condition up to order \(m \), \(\partial_y u_0^+(0) = 0 \), \(0 \leq 2p \leq m + 4 \), and that there exists \(0 < a < +\infty, c_1, c_2 > 0 \) such that
\[
\begin{align*}
(\partial_y u_0^+)(a) &= 0, \ (\partial_y^2 u_0^+)(a) \neq 0, \text{ and } (\partial_y u_0^+)(y) \neq 0, \forall y \in \mathbb{R}_+ \setminus \{a\}; \\
c_1 \langle y \rangle^{-k} \leq |(\partial_y u_0^+)(y)| \leq c_2 \langle y \rangle^{-k}, \forall y \geq a + 1, \\
\|(\partial_y^p)u_0^+(y)\| \leq c_2 \langle y \rangle^{-k-p+1}, \forall y \geq 0, 1 \leq p \leq m + 4,
\end{align*}
\]
where \(\langle y \rangle = (1 + |y|^2)^{1/2} \). Therefore, \(u_0^+ \) has a non-degenerate critical point at \(a \in \mathbb{R}_+ \) and, in particular, it is not monotonic on \(\mathbb{R}_+ \).

We will use the weighted Sobolev spaces introduced in [20] with the following norm, for \(\lambda \in \mathbb{R}, m \in \mathbb{N} \),
\[
\|f\|_{H^m_\lambda(\mathbb{R}_+^2)} = \sum_{|\alpha| + \alpha_2 \leq m} \int_{\mathbb{R}_+^2} \langle y \rangle^{2\lambda+2\alpha_2}|\partial_\alpha^\alpha \partial_\gamma^\gamma f|^2 dx dy.
\]
We use also the notation \(\|f\|_{L^2_\lambda(\mathbb{R}_+^2)} = \|f\|_{H^0_\lambda(\mathbb{R}_+^2)} \) and \(H^m \) stands for the usual Sobolev space.

Let \(u^*(t,y) \) be the solution of the heat equation (2.1) with initial data \(u_0^+(y) \), then \((u^*,0) \) is a shear flow of the system (1.1). We will construct the solution of the Prandtl equation (1.1) as a perturbation of this shear flow. For the initial-boundary values problem (1.1), the existence of the smooth solution requires the high order compatibility conditions for the initial data \(u_0 \), see Proposition 2.3 below for the precise statement.

The main result of this paper is stated as following:

Theorem 1.1. Let \(m \geq 6 \) be an even integer, \(k > 1 \), \(0 \leq \ell < \frac{1}{2}, k + \ell > \frac{3}{2} \). Assume that \(u_0^+ \) satisfies (1.2), the initial data \((u_0 - u_0^+) \in H^{m+3}_{2k+\ell-1}(\mathbb{R}_+^2) \) and \((u_0 - u_0^+) \) satisfies the compatibility condition up to order \(m + 2 \). Then there exists \(T > 0 \) such that if
\[
\|(u_0 - u_0^+)\|_{H^{m+1}_{2k+\ell-1}(\mathbb{R}_+^2)} \leq \delta_0,
\]
for some \(\delta_0 > 0 \) small enough, the initial-boundary value problem (1.1) admits a unique solution \((u,v) \) with
\[
(u - u^*) \in L^\infty([0,T]; H^{m}_{2k+\ell-1}(\mathbb{R}_+^2)), \partial_y(u - u^*) \in L^\infty([0,T]; H^{m-1}_{k+\ell-1}(\mathbb{R}_+^2)),
\]
and
\[
v \in L^\infty([0,T]; H^{m-2}_{k+\ell-2}(\mathbb{R}_+^2)), \partial_y v \in L^\infty([0,T]; H^{m-1}_{k+\ell-1}(\mathbb{R}_+^2)).
\]
Moreover, we have the stability with respect to the initial data in the following sense: given any two initial data
\[
u_0^1 = u_0^+ + \tilde{u}_0^1, \quad u_0^2 = u_0^+ + \tilde{u}_0^2,
\]
if \(u_0^+ \) satisfies (1.2) and \(\tilde{u}_0^1, \tilde{u}_0^2 \) satisfies (1.4), then the solutions \(u^1 \) and \(u^2 \) of (1.1) with initial data \(u_0^1 \) and \(u_0^2 \) respectively satisfy,
\[
\|u^1 - u^2\|_{L^\infty([0,T]; H^{m-2}_{2k+\ell-1}(\mathbb{R}_+^2))} \leq C \|(u_0^1 - u_0^2)\|_{H^{m}_{2k+\ell-1}(\mathbb{R}_+^2)}.
\]
Remark 1.2.

(1) It is not difficult to see from the proof of Theorem 1.1 that the above main results hold also for the problem defined on the torus \mathbb{T} for the x-variable.

(2) Comparing the order of regularity and the decay rate of initial data (1.4) with those of the solution (1.5), we observe that there are a loss of the regularity and also a loss of the decay rate. While the loss of the regularity seems natural for a degenerate parabolic type equation, the loss of decay rate of order k (which is the decay rate of shear flow) is also a special phenomenon for the Prandtl equation.

(3) Under the assumption of Theorem 1.1, there are many initial data u_0 with a curve of non-degenerate critical points: for some smooth curve $a(x) > 0$ with $|a(x) - a| << 1, x \in \mathbb{R}$,

$$\left(\partial_y u_0\right)(x, a(x)) = 0, \quad \text{and} \quad \left(\partial^2_y u_0\right)(x, a(x)) > 0, \quad \forall x \in \mathbb{R}.$$

See some precise examples in Appendix B.

(4) It is well-known that to obtain the smooth solution of the initial-boundary value problem, the assumption on the high order compatibility condition is necessary. We will make it precise in Proposition 2.3 and Remark 3.3. See [2] and [3] for the Prandtl equation under the incompatibility condition.

Now, we give some comments on the differences and compatibility between our results and the ill-posedness works. In [6, 8] and [11], the authors showed that the linear and nonlinear Prandtl equations around the shear profile with non-degenerate critical point are ill-posed in the sense of Hadamard in the Sobolev space. The results of our Theorem 1.1 observe contrary phenomenons. We can’t say that there is contradictory between our Theorem 1.1 and the results of [6, 8, 11], even though in all of those works, the shear profile has non-degenerate critical points. We list differences of those hypothesis. For the ill-posedness works, the decay rate of the shear profile is exponential (also possible with polynomial weights) and the initial perturbations are with same weights. But for the well-posedness results, we assume our shear flow has positive lower and upper bounds with the same polynomial decay rate. Moreover, the decay rate of the initial perturbations around shear flows are faster than that of the shear flow, which is crucial for us to close a new energy estimate. Despite with some loss of decay rate, our solutions $(u - \bar{u})$ still decay faster than the shear flow. But for the ill-posedness work, the decay rate of the shear flow, the initial perturbations and the solutions are with the same weights. Together, we conclude that we look for solutions in the function space with a decay rate faster than the shear flow. In the other words, we work with a smaller set of initial perturbations, which excludes the possible growing eigenfunctions constructed by Gérard-Varet and Dormy [6]. So this yields no contradictory between our results and the ill-posedness works.

It seems that our approach don’t work for the nonlinear Prandtl equation when the shear flows are exponential decay rates. But maybe it is just technical problem. Since for the linearized Prandtl equation around the shear flows with a non degenerate critical points, when the shear flow is exponential decay and admits a lower bounds of same order, we can also prove the well-posedness of linearized Prandtl equation in a smaller set of initial data in Sobolev spaces. Similarly, the solution decays faster than the shear flow, see preprint [28]. Besides, we need supply some decay loss to get the wellposedness. Moreover, the decay loss can be
and (the initial-boundary value problem satisfies the compatibility condition up to order m that u exists for certain c in the analytical frame, Ignatova-Vicol problem for the existence of the smooth global-in-time solution. On the other hand, under the monotonic assumption, it is the almost global-in-time solutions in Sobolev spaces by using the energy methods.

In fact, it is equal to the lifespan T for the more general nonlinear hypo-elliptic equations which yields also the smoothness of the solution of the Prandtl equation.

The lifespan T of solution is not required to be very small in our Theorem 1.1. In fact, it is equal to the lifespan T_1 of shear flow $u^*(t, y)$ such that it preserves the monotonicity and convexity on $[0, T]$ (see Lemma 2.1). So if the initial data of the shear flow u_0^* is uniformly monotonic on \mathbb{R}_+ in the following sense:

$$
\begin{align*}
&c_1(y)^{-k} \leq (\partial_y u_0^*)(y) \leq c_2(y)^{-k}, \quad \forall \ y \geq 0, \\
&|\partial^k_y u_0^*(y)| \leq c_2(y)^{-k-p+1}, \quad \forall \ y \geq 0, \quad 1 \leq p \leq m + 4,
\end{align*}
$$

(1.6)

for certain $c_1, c_2 > 0$, we have the following existence of almost global-in-time solution.

Theorem 1.3. Let $m \geq 6$ be an even integer, $k > 1, 0 \leq \ell < \frac{1}{2}, k + \ell > \frac{3}{2}$. Assume that u_0^* satisfies (1.6), the initial data $(u_0 - u_0^*) \in H^{m+3}_{2k+\ell-1}(\mathbb{R}_+^2)$ and $(u_0 - u_0^*)$ satisfies the compatibility condition up to order $m + 2$. Then for any $T > 0$, there exists $\delta_0 > 0$ small enough such that if

$$
\|(u_0 - u_0^*)\|_{H^{m+1}_{2k+\ell-1}(\mathbb{R}_+^2)} \leq \delta_0,
$$

the initial-boundary value problem (1.1) admits a unique solution (u, v) with

$$(u - u^*) \in L^\infty([0, T]; H^{m}_{k+\ell-1}(\mathbb{R}_+^2)), \quad \partial_y (u - u^*) \in L^\infty([0, T]; H^{m}_{k+\ell}(\mathbb{R}_+^2))$$

and

$$v \in L^\infty([0, T]; L^\infty(\mathbb{R}_+, H^{m-1}_{k+\ell}(\mathbb{R}_x))), \quad \partial_y v \in L^\infty([0, T]; H^{m-1}_{k+\ell-1}(\mathbb{R}_+^2)).$$

It also has the stability with respect to the initial data as in Theorem 1.1.

Remark 1.4. About the global-in-time solution of the Prandtl equation, under the monotonic assumption, by using the Crocco transformation, Oleinik (see [21]) obtain an almost global-in-time solution in Hölder space, Xin-Zhang (26) proved the global existence of weak solutions (see [17] for 3-D case), and it is still an open problem for the existence of the smooth global-in-time solution. On the other hand, in the analytical frame, Ignatova-Vicol [12] recently get an almost global-in-time solution (see also [29]). In this sense, Theorem 1.3 improves the previous results under the monotonic assumption, it is the almost global-in-time solutions in Sobolev spaces by using the energy methods.
This article is arranged as follows. In Section 2, we explain the main difficulties for the study of the Prandtl equation and present an outline of our approach. In Section 3, we study the approximate solutions to (1.1) by a parabolic regularization. In Section 4, we prepare some technical tools and two formal transformations for the Prandtl equations. Sections 5-6 are dedicated to the uniform estimates of approximate solutions obtained in Section 3. We prove finally the main theorem in Section 7-8.

Notations: The letter C stands for various suitable constants, independent with functions and the special parameters, which may vary from line to line and step to step. When it depends on some crucial parameters in particular, we put a sub-index such as C_ε etc, which may also vary from line to line.

2. Outline of our approach and preliminary

2.1. Difficulties and our approach. Now, we explain the main difficulties in proving Theorem 1.1, and present the strategies of our approach.

It is well-known that the major difficulty for the study of the Prandtl equation (1.1) is the term $v \partial_y u$, where the vertical velocity behaves like

$$v(t, x, y) = -\int_0^y \partial_x u(t, x, \tilde{y}) d\tilde{y},$$

by using the divergence free condition and boundary conditions. So it introduces a loss of x-derivative. The y-integration create also a loss of weights with respect to y-variable. Then the standard energy estimates do not work. This explains why there are few existence results in the literatures.

Recalling that in [1] (see also [20] for a similar transformation), under the monotone assumption $\partial_y u > 0$, we divide the Prandtl equations by $\partial_y u$ and then take derivative with respect to y, to obtain an equation of the new unknown function $g = \left(\frac{u}{\partial_y u} \right)_y$. In the new equation, the term v disappears by using the divergence free condition. We call this property the first type nonlinear cancellation. By using this cancellation, under the monotone assumption, we can establish an energy estimate for the new equation in a suitable weighted Sobolev space to deduce the existence of classical solutions. Now, under the assumption of Theorem 1.1, we use this properties together with a cut-off functions to treat the monotonic part, and establish a partial energy estimate.

On the other hand, near the non-degenerate critical points, saying $\partial^2_y u > 0$ on a small domain, we consider the vorticity equation $(w = \partial_y u)$ of (1.1),

$$\partial_t w + u \partial_x w + v \sqrt{\partial_y w} = \partial^2_y w.$$

Since $\partial_y w = \partial^2_y u > 0$, we can try the same approach as the monotone case. But it doesn’t work well because the divergence free condition can’t be used here to make v disappear. In [9, 10], for the hydrostatic Euler equation, E. Grenier proposed another approach(see also [19]), after dividing the vorticity equation by $\sqrt{\partial_y w}$, we get then an equation of the following form

$$\partial_t h + u \partial_x h + v \sqrt{\partial_y w} = \partial^2_y h + \text{commutators}, \quad \text{on a convex domain},$$
with \(h = \frac{w}{\sqrt{\partial_y w}} \). One can then take advantage of the following second type nonlinear cancellation

\[
\int v \sqrt{\partial_y w} \, h dx dy = \int v \partial_y u \, dx dy = -\int (\partial_y v) \, u dx dy
\]

\[
= \int (\partial_x u) \, dx dy = \frac{1}{2} \int \partial_x (u^2) \, dx dy = 0.
\]

This approach works well for the hydrostatic Euler equation, because, in that case, the integration is taken over \(\mathbb{T} \times [0,1] \) and \(\partial_y w > 0 \) everywhere. But for the Prandtl equation, it is defined over \(\mathbb{T} \times \mathbb{R}_+ \) or \(\mathbb{R} \times \mathbb{R}_+ \), and the condition \(\partial_y w > 0 \) holds only on a small sub-domain, so we can’t use directly this approach. In the Prandtl case, we then need to introduce a cut-off function, and in this case, a new problem appears! The above calculation doesn’t preserve the cancellation property. There are remaining terms from the commutators with cut-off functions. So it is standard that we can only close the energy estimate in Gevery class (see [7]) with a suitably chosen cut-off functions in Gevery class.

In this work, our approach is to combine above two type nonlinear cancellations with carefully chosen cut-off functions. We decompose \(\mathbb{R} \times \mathbb{R}_+ \) into two parts, namely monotonic parts and convex part. We prove the energy estimates on each part. Of course, we can’t close the energy estimate on each part separately. But it is a miracle that we can close a full energy estimate when combining those two partial energy estimates together. By using this full energy estimate, we prove then the existence of classical solutions.

In order to prove the existence of solutions, follows the idea of Masmoudi-Wong ([20]), we will construct an approximate scheme and study the parabolic regularized Prandtl equation (3.1), which preserves the nonlinear structure of the original Prandtl equation (1.1), as well as the nonlinear cancellation properties. Then by an uniform energy estimate for the approximate solutions, the existence of solutions to the original Prandtl equation (1.1) follows. This energy estimate also implies the uniqueness and the stability. The uniform energy estimate for the approximate solutions is the main duty of this paper.

2.2. Analysis of shear flow. We write the solution \((u,v) \) of system (1.1) as

\[
u(t,x,y) = u^s(t,y) + \tilde{u}(t,x,y), \quad v(t,x,y) = \tilde{v}(t,x,y),
\]

where \(u^s(t,y) \) is the solution of the following heat equation

\[
\begin{cases}
\partial_t u^s - \partial^2_y u^s = 0, \\
u^s|_{y=0} = 0, \quad \lim_{y \to +\infty} u^s(t,y) = 1, \\
u^s|_{t=0} = u^s_0(y).
\end{cases}
\]

Then (1.1) can be written as

\[
\begin{cases}
\partial_t \tilde{u} + (u^s + \tilde{u}) \partial_x \tilde{u} + \tilde{v}(u^s_y + \partial_y \tilde{u}) = \partial^2_y \tilde{u}, \\
\partial_x \tilde{u} + \partial_y \tilde{v} = 0, \\
\tilde{u}|_{y=0} = \tilde{v}|_{y=0} = 0, \quad \lim_{y \to +\infty} \tilde{u} = 0, \\
\tilde{u}|_{t=0} = \tilde{u}_0(x,y).
\end{cases}
\]

(2.2)
The equation of vorticity $\tilde{w} = \partial_y \tilde{u}$ reads

$$
\begin{cases}
\partial_t \tilde{w} + (u^s + \tilde{u})\partial_x \tilde{w} + v(u^s_{yy} + \partial_y \tilde{w}) = \partial_y^2 \tilde{w}, \\
\partial_y \tilde{w}|_{y=0} = 0, \\
\tilde{w}|_{t=0} = w_0.
\end{cases}
$$

We first study the shear flow, and give a precise version for the condition on u_0^s: there exists $k > 1$, $a > 0$ and $a_0, c_0 > 0$ with $a_0 \leq \frac{1}{2k}$ such that

$$
\begin{align*}
&u_0^s \in C^{m+4}([0, +\infty[), \quad \lim_{y \to +\infty} u_0^s(y) = 1; \\
&(\partial_y^2 u_0^s)(0) = 0, \quad 0 \leq 2p \leq m + 4; \\
&\partial_y u_0^s(a) = 0, \quad \partial_y^2 u_0^s(a) \neq 0, \quad \text{and} \quad \partial_y u_0^s(y) \neq 0, \quad \forall y \in \mathbb{R}_+ \setminus \{a\}; \\
&|\partial_y u_0^s(y)| \geq 2c_0, \quad 0 \leq y \leq a - a_0; \\
&|\partial_y^2 u_0^s(y)| \geq 2c_0^2, \quad a - 6a_0 \leq y \leq a + 6a_0 \\
&c_0(y)^{-k} \leq |\partial_y u_0^s(y)| \leq c_0^{-1}(y)^{-k}, \quad y \geq a + a_0; \\
&|\partial_y^2 u_0^s(y)| \leq c_0^{-1}(y)^{-k-p+1}, \quad y \geq 0, \quad 1 \leq p \leq m + 4.
\end{align*}
$$

We have first,

Lemma 2.1. Assume that u_0^s satisfies (2.3). There exists a $T_1 > 0$ such that the solution $u^s(t, y)$ to the initial-boundary value problem (2.1) satisfies all the following properties on $[0, T_1] \times \mathbb{R}_+$:

1. $u^s \in L^\infty([0, T_1]; C^{m+4}([0, +\infty[) \cap C^1([0, T_1]; C^{m+2}([0, +\infty[));$
2. $\lim_{y \to +\infty} u^s(t, y) = 1, \quad t \in [0, T_1];$
3. $\alpha(t) = a$, such that $a - \frac{a_0}{k} \leq \alpha(t) \leq a + \frac{a_0}{k}$ and $\partial_t u^s(t, \alpha(t)) = 0;$
4. $\frac{1}{2} \leq \frac{a(t)}{y} \leq 2$ for $a \leq y \leq a + 2a_0,$ $t \in [0, T_1];$
5. $\frac{1}{2} \leq \frac{a(t)}{y} \leq 2$ for $a \leq y \leq a + 2a_0,$ $t \in [0, T_1],$
6. and $|\partial_y u^s(t, y)| \leq 2c_0^{-1}(y)^{-k-p+1}, \quad y \geq 0, \quad t \in [0, T_1], \quad 1 \leq p \leq m + 4.$

Proof. Firstly, the solution of (2.1) can be written as

$$
u^s(t, y) = \frac{1}{2\sqrt{\pi t}} \int_0^{+\infty} \left(e^{-\frac{(y-\xi)^2}{4t}} - e^{-\frac{(y+\xi)^2}{4t}} \right) u_0^s(\xi)d\xi
$$

$$
= \frac{1}{\sqrt{\pi}} \left(\int_{-\sqrt{\xi}}^{+\infty} e^{-\xi^2} u_0^s(2\sqrt{\xi} + y)d\xi - \int_{-\sqrt{\xi}}^{+\infty} e^{-\xi^2} u_0^s(2\sqrt{\xi} - y)d\xi \right),
$$

which gives

$$
\partial_t u^s(t, y) = \frac{1}{\sqrt{\pi t}} \left(\int_{-\sqrt{\xi}}^{+\infty} \xi e^{-\xi^2} (\partial_y u_0^s)(2\sqrt{\xi} + y)d\xi \\
- \int_{-\sqrt{\xi}}^{+\infty} \xi e^{-\xi^2} (\partial_y u_0^s)(2\sqrt{\xi} - y)d\xi \right).
$$
By using \((\partial^2_y u^*_0)(0) = 0\) for \(0 \leq 2j \leq m + 4\), it follows

\[
\partial^p_y u^*(t, y) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-\xi^2} (\partial^p_y u^*_0) (2\sqrt{\xi} + y) d\xi \\
+ (-1)^{p+1} \int_{-\infty}^{+\infty} e^{-\xi^2} (\partial^p_y u^*_0) (2\sqrt{\xi} - y) d\xi
\]

\[
= \frac{1}{2\sqrt{\pi} t} \int_0^{+\infty} \left(e^{-\frac{(y - s)^2}{4t}} + (-1)^{p+1} e^{-\frac{(y + s)^2}{4t}} \right) (\partial^p_y u^*_0)(\bar{y}) d\bar{y},
\]

for all \(1 \leq p \leq m + 4\).

This gives the conclusion (1). The conclusions (3) and (4) can be obtained by the continuity of \(\partial_y u^*(t, y)\) and \(\partial^2_y u^*(t, y)\) on \([0, T] \times [a, a + 6a_0]\), where the smallness of \(T_1 > 0\) is required. For the conclusion (2), we use (4) and the implicit function theorem to the equation

\[(\partial_y u^*)(t, y(t)) = 0, (t, y(t)) \in [0, T_1] \times [a - a_0/2, a + a_0/2], \partial_y u^*(0, a) = 0,
\]

where \(T_1 > 0\) is again required to be small. In fact, for (2), the curve \(\alpha(t)\) is the solution of the following ordinary differential equation

\[
\begin{cases}
\alpha'(t) = \frac{(\partial^2_y u^*)(t, \alpha(t))}{(\partial^2_y u^*)(t, \alpha(t))}, & t \in [0, T_1], \\
\alpha(0) = a,
\end{cases}
\]

where \(\frac{(\partial^2_y u^*)(t, y)}{(\partial^2_y u^*)(t, y)} \in C^\infty([0, T_1] \times [a - a_0/2, a + a_0/2]).

For the upper bound of the conclusion (5), (2.4) implies

\[
|\partial^p_y u^*(t, y)| \leq \frac{1}{c_0 2\sqrt{\pi t}} \int_0^{+\infty} \left(e^{-\frac{(y - s)^2}{4t}} + e^{-\frac{(y + s)^2}{4t}} \right) |\bar{y}|^{-k-p+1} d\bar{y} \\
\leq \frac{1}{c_0 2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(y + s)^2}{4t}} |\bar{y}|^{-k-p+1} d\bar{y}.
\]

Using now Peetre’s inequality, for any \(\lambda \in \mathbb{R}\)

\[
\hat{c}_0 |y|^\lambda |\bar{y}+\bar{y}|^{-|\lambda|} \leq |\bar{y}|^\lambda \leq \hat{c}_0^{-1} |y|^\lambda |\bar{y}+\bar{y}|^{|\lambda|},
\]

we get then, with \(\lambda = -k - p + 1\),

\[
|\partial^p_y u^*(t, y)| \leq \hat{c}_0^{-1} c_0^{-1} (1 + t)^{-\frac{k+1}{2}} |y|^{-k-p+1}.
\]

For the lower bound of \(|\partial_y u^*(t, y)|\) on \(y \geq a + 2a_0\), we use the maximal principal, similar to [20]. We suppose that \(\partial_y u^*_0(y) > 0\) for \(y \geq R_0 = a + 2a_0\), denote \(H(t, y) = \langle y \rangle^k \partial_y u^*(t, y)\) (if \(\partial_y u^*_0(y) < 0\) for \(y \geq R_0\) and take \(H(t, y) = -\langle y \rangle^k \partial_y u^*(t, y)\)). Then \(H(t, y)\) satisfies the following equation

\[
\begin{cases}
\partial_t H(t, y) - \partial^2_y H(t, y) + h_1(y) H_y(t, y) + h_2(y) H(t, y) = 0, \\
H|_{y=R_0} = \langle R_0 \rangle^k \partial_y u^*(t, R_0), \\
H|_{t=0} = \langle y \rangle^k \partial_y u^*_0(y),
\end{cases}
\]

where

\[
\begin{align*}
\hat{h}_1(y) &= 2 \frac{\partial_y \langle y \rangle^k}{\langle y \rangle^k}, \\
\hat{h}_2(y) &= -2 \left(\frac{\partial_y \langle y \rangle^k}{\langle y \rangle^k} \right)^2 + \frac{\partial^2 \langle y \rangle^k}{\langle y \rangle^k}.
\end{align*}
\]

Firstly noticing

\[
|h_1(y)| \leq 2k, \quad |h_2(y)| \leq 8k^2,
\]
then we have
\[
\partial_t (H(t, y)e^{-8k^2 t}) - \partial_y^2 (H(t, y)e^{-8k^2 t}) + h_1(y) \partial_y (H(t, y)e^{-8k^2 t}) + (h_2(y) + 8k^2) (H(t, y)e^{-8k^2 t}) = 0,
\]
where the key point is that \(h_2(y) + 8k^2 \geq 0 \).

Denoting \(b(T_1) = \min \left\{ \min_{0 \leq s \leq T_1} H(s, R_0), \min_{y \geq R_0} H(0, y) \right\} \geq \frac{3c_0}{4} \), and, for \(\nu > 0 \)
\[
E(t, y) = \left(H(t, y) - b(T_1) \right) e^{-8k^2 t} + (8k^2 b(T_1) + \nu 2k) t + \nu \ln(1 + y),
\]
also \(E(t, y) \) satisfies
\[
\partial_t E(t, y) - \partial_y^2 E(t, y) + h_1(y) E_y(t, y) + (h_2(y) + 8k^2) E(t, y) \geq 0.
\]
Using the upper bound of (5), \(|H(t, y)|_{L^\infty([0, T_1] \times \mathbb{R}^+)} \leq 2c_0^{-1} \), setting
\[
R_\nu = \exp \left\{ \left(|H(t, y)|_{L^\infty([0, T_1] \times \mathbb{R}^+)} + b(T_1) \right) \nu \right\} - 1,
\]
we have
\[
E(t, y)|_{y=R_\nu} = \left(H(t, R_\nu) - b(T_1) \right) e^{-8k^2 t} + (8k^2 b(T_1) + \nu 2k) t + (|H(t, y)|_{L^\infty([0, T_1] \times \mathbb{R}^+)} + b(T_1)) \geq 0,
\]
and the choose of \(b(T_1) \) imply also
\[
E(t, y)|_{y=R_0} \geq 0, \quad t \in [0, T_1], \quad \text{and} \quad E(t, y)|_{t=0} \geq 0, \quad y \geq R_0.
\]
Now thanks to the maximal principal of heat equation, we have
\[
E(t, y) \geq 0, \quad (t, y) \in [0, T_1] \times [R_0, R_\nu].
\]
Let \(\nu \to 0 \), we get
\[
H(t, y) \geq \frac{3c_0}{4} - (8k^2) t e^{8k^2 t}.
\]
Then we can choose \(T_1 \) such that
\[
(8k^2) T_1 e^{8k^2 T_1} \leq \frac{c_0}{4},
\]
then
\[
H(t, y) \geq \frac{c_0}{2}, \quad t \in [0, T_1] \times [R_0, \infty].
\]
\[\square\]
If the initial date of shear flow \(u_0^s \) is uniformly monotone on \(\mathbb{R}_+ \), we have
Corollary 2.2. Assume that the initial data \(u_0^* \) satisfy (1.6), then for any \(T > 0 \), there exist \(\hat{c}_1, \hat{c}_2, \hat{c}_3 > 0 \) such that the solution \(u^*(t, y) \) of the initial boundary value problem (2.1) satisfies
\[
\begin{aligned}
\hat{c}_1 (y)^{-k} \leq & \partial_y u^*(t, y) \leq \hat{c}_2 (y)^{-k}, \; \forall \; (t, y) \in [0, T] \times \overline{\mathbb{R}}_+ , \\
|\partial_y u^*(t, y)| \leq & \hat{c}_3 (y)^{-k-p+1}, \; \forall \; (t, y) \in [0, T] \times \overline{\mathbb{R}}_+, \; 1 \leq p \leq m+4,
\end{aligned}
\]
where \(\hat{c}_1, \hat{c}_2, \hat{c}_3 \) depend on \(T \).

Proof. We only need to prove the first estimate, using (2.4) for \(p = 1 \),
\[
\partial_y u^*(t, y) = \frac{1}{\sqrt{\pi}} \left(\int_{-\infty}^{+\infty} e^{-\xi^2} (\partial_y u_0^*)(2\sqrt{t}\xi + y) d\xi \right)
\]
\[
= \frac{1}{2\sqrt{\pi t}} \int_{0}^{+\infty} (e^{-\frac{(y-\tilde{y})^2}{4t}} + e^{-\frac{(y+\tilde{y})^2}{4t}}) (\partial_y u_0^*)(\tilde{y}) d\tilde{y}.
\]

Thanks to the monotonic assumption (1.6), we have that
\[
\partial_y u^*(t, y) \approx \frac{1}{2\sqrt{\pi t}} \int_{0}^{+\infty} \left(e^{-\frac{(y-\tilde{y})^2}{4t}} + e^{-\frac{(y+\tilde{y})^2}{4t}} \right) (\tilde{y})^{-k} d\tilde{y}
\]
\[
\approx \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(y+\tilde{y})^2}{4t}} (\tilde{y})^{-k} d\tilde{y}.
\]

Using again Peetre’s inequality (2.5) for \(\lambda = -k \), we get then
\[
(1 + t)^{-\frac{k}{2}} (y)^{-k} \leq \partial_y u^*(t, y) \leq (1 + t)^{\frac{k}{2}} (y)^{-k}.
\]

So we get (2.6) with
\[
\hat{c}_1 = c_1 (1 + T)^{-\frac{k}{2}}, \; \hat{c}_2 = c_2 (1 + T)^{\frac{k}{2}}.
\]

\[\square\]

2.3. Compatibility conditions and reduction of boundary data. We give now the precise version of the compatibility condition for the nonlinear system (2.2) and the reduction properties of boundary data.

Proposition 2.3. Let \(m \geq 6 \) be an even integer, and assume that \(\tilde{u} \) is a smooth solution of the system (2.2), then the initial data \(\tilde{u}_0 \) have to satisfy the following compatibility conditions up to order \(m + 2 \):
\[
\begin{aligned}
\tilde{u}_0(x, 0) = & 0, \; (\partial_y^2 \tilde{u}_0)(x, 0) = 0, \; \forall \; x \in \mathbb{R}, \\
(\partial_x^2 \tilde{u}_0)(x, 0) = & (\partial_y u_0^*)(0) + (\partial_y u_0)(x, 0)) (\partial_y \partial_x \tilde{u}_0)(x, 0), \; \forall \; x \in \mathbb{R},
\end{aligned}
\]
\[\text{and for } 4 \leq 2p \leq m, \]
\[
(\partial_y^{2(p+1)} \tilde{u}_0)(x, 0) = \sum_{q=2}^{p} \sum_{(\alpha, \beta) \in \Lambda_q} C_{\alpha, \beta} \prod_{j=1}^{q} \partial_x^{\alpha_j} \partial_y^{\beta_j+1} (u_0^* + \tilde{u}_0) \big|_{y=0} , \; \forall \; x \in \mathbb{R},
\]

(2.9)
where

\[\Lambda_q = \left\{ (\alpha, \beta) = (\alpha_1, \cdots, \alpha_q; \beta_1, \cdots, \beta_q) \in \mathbb{N}^q \times \mathbb{N}^q; \right. \\
\alpha_j + \beta_j \leq 2p - 1, \ 1 \leq j \leq q; \ \sum_{j=1}^q 3\alpha_j + \beta_j = 2p + 1; \\
\sum_{j=1}^q \beta_j \leq 2p - 2, \ 0 < \sum_{j=1}^q \alpha_j \leq p - 1 \left. \right\}. \tag{2.10} \]

Remark that for \(\alpha_j > 0 \), we have \(\partial_x^{\alpha_j} \partial_y^{\beta_j+1}(u^s + \tilde{u}) = \partial_x^{\alpha_j} \partial_y^{\beta_j+1}\tilde{u} \). So the condition \(0 < \sum_{j=1}^q \alpha_j \) implies that, for each terms of (2.9), there is at least one factor like \(\partial_x^{\alpha_j} \partial_y^{\beta_j+1}\tilde{u}_0 \).

\textbf{Proof.} By the assumption of this Proposition, \(\tilde{u} \) is a smooth solution. If we need the existence of the trace of \(\partial_y^{m+2}\tilde{u} \) on \(y = 0 \), then we at least need to assume that \(\tilde{u} \in L^\infty([0, T]; H^m_{k+\ell-1}({\mathbb{R}}^3_+)) \).

Recalling the boundary condition in (2.2):

\[\tilde{u}(t, x, 0) = 0, \quad \tilde{v}(t, x, 0) = 0, \quad (t, x) \in [0, T] \times \mathbb{R}, \]

then the following is obvious:

\[(\partial_t \partial_x^3 \tilde{u})(t, x, 0) = 0, \quad (\partial_t \partial_x^2 \tilde{v})(t, x, 0) = 0, \quad (t, x) \in [0, T] \times \mathbb{R}, \ 0 \leq n \leq m. \]

Thus the first result of (2.8) is exactly the compatibility of the solution with the initial data at \(t = 0 \). For the second result of (2.8), using the equation of (2.2), we find that, for \(0 \leq n \leq m \)

\[(\partial_y^2 \partial_x^2 \tilde{u})(t, x, 0) = 0, \quad (\partial_x \partial_y^2 \partial_x \tilde{u})(t, x, 0) = 0, \quad (t, x) \in [0, T] \times \mathbb{R}. \]

Derivating the equation of (2.2) with \(y \),

\[\partial_t \partial_y \tilde{u} + \partial_y ((u^s + \tilde{u})\partial_x \tilde{u}) + \partial_y (\tilde{v}(u_y^s + \partial_y \tilde{u})) = \partial_y^3 \tilde{u}, \]

observing

\[\left. \left(\partial_y ((u^s + \tilde{u})\partial_x \tilde{u}) + \partial_y (\tilde{v}(u_y^s + \partial_y \tilde{u})) \right) \right|_{y=0} = 0, \]

then we get

\[(\partial_t \partial_y \tilde{u})|_{y=0} = (\partial_y^3 \tilde{u})|_{y=0}. \]

Derivating again the equation of (2.2) with \(y \),

\[\partial_t \partial_y^2 \tilde{u} + \partial_y^2 ((u^s + \tilde{u})\partial_x \tilde{u}) + \partial_y^2 (\tilde{v}(u_y^s + \partial_y \tilde{u})) = \partial_y^3 \tilde{u}, \]

using Leibniz formula

\[\partial_y^2 (\tilde{u} + \tilde{u}) \partial_x \tilde{u} + \partial_y^2 (\tilde{v}(u_y^s + \partial_y \tilde{u})) \]

\[= (\partial_y^2 (u^s + \tilde{u})) \partial_x \tilde{u} + (\partial_y^2 \tilde{v})(u_y^s + \partial_y \tilde{u}) \]

\[+ (u^s + \tilde{u}) \partial_y^2 \partial_x \tilde{u} + \tilde{v} \partial_y^2 (u_y^s + \partial_y \tilde{u}) \]

\[+ 2(\partial_y (u^s + \tilde{u}) \partial_y \partial_x \tilde{u} + (u_y^s + \partial_y \tilde{u}), \]

\[\partial_y^2 \partial_x \tilde{u} + 2(\partial_y \tilde{v}) \partial_y (u_y^s + \partial_y \tilde{u}), \]

\[\]
thus,
\[
(\partial_y^6 \tilde{u})(t, x, 0) = \left(u_y^*(t, 0) + (\partial_y \tilde{u})(t, x, 0) \right) (\partial_y \partial_x \tilde{u})(t, x, 0),
\]
and
\[
(\partial_t \partial_y^4 \tilde{u})(t, x, 0) = \left(\partial_y u^*(t, 0) + (\partial_y \tilde{u})(t, x, 0) \right) \left((\partial_y^2 \partial_x \tilde{u})(t, x, 0) \right)
+ \left(\partial_y^3 u^*(t, 0) + (\partial_y^2 \tilde{u})(t, x, 0) \right) \left((\partial_y \partial_x \tilde{u})(t, x, 0) \right).
\]
(2.11)

For \(p = 2 \), we have
\[
\partial_t \partial_y^4 \tilde{u} + \partial_y^4 \left((u^* + \tilde{u}) \partial_x \tilde{u} \right) + \partial_y^4 \left(\tilde{v}(u_y^* + \partial_y \tilde{u}) \right) = \partial_y^6 \tilde{u},
\]
using Leibniz formula
\[
\partial_y^4 \left((u^* + \tilde{u}) \partial_x \tilde{u} \right) + \partial_y^4 \left(\tilde{v}(u_y^* + \partial_y \tilde{u}) \right)
= (\partial_y^4 (u^* + \tilde{u})) \partial_x \tilde{u} + (\partial_y^4 \tilde{v})(u_y^* + \partial_y \tilde{u})
+ (u^* + \tilde{u}) \partial_y^4 \partial_x \tilde{u} + \tilde{v} \partial_y^4 (u_y^* + \partial_y \tilde{u})
\]
\[+ \sum_{1 \leq j \leq 3} C_j^4 \left((\partial_y^j (u^* + \tilde{u})) \partial_y^{4-j} \partial_x \tilde{u} + (\partial_y^j \tilde{v}) \partial_y^{4-j} (u_y^* + \partial_y \tilde{u}) \right),
\]
thus, by (2.11)
\[
(\partial_y^6 \tilde{u})(t, x, 0) = (\partial_t \partial_y^4 \tilde{u})(t, x, 0) - (\partial_y^3 \partial_x u)(u_y^* + \partial_y \tilde{u})(t, x, 0)
+ \sum_{1 \leq j \leq 3} C_j^4 \left((\partial_y^j (u^* + \tilde{u})) \partial_y^{4-j} \partial_x \tilde{u} + (\partial_y^j \tilde{v}) \partial_y^{4-j} (u_y^* + \partial_y \tilde{u}) \right)(t, x, 0)
\]
\[= \left(\partial_y^6 u^*(t, 0) + (\partial_y^2 \tilde{u})(t, x, 0) \right) \left((\partial_y \partial_x \tilde{u})(t, x, 0) \right)
+ \sum_{1 \leq j \leq 3} C_j^4 \left((\partial_y^j (u^* + \tilde{u})) \partial_y^{4-j} \partial_x \tilde{u} - (\partial_y^{j-1} \partial_x \tilde{u}) \partial_y^{4-j} (u_y^* + \partial_y \tilde{u}) \right)(t, x, 0).
\]
(2.12)

Taking the values at \(t = 0 \), we have proven (2.9) for \(p = 2 \). The case of \(p \geq 3 \) is then by induction. \(\square \)

Remark 2.4. By the similar methods, we can prove that if \(\tilde{u} \) is a smooth solution of the system (2.2), then we have
\[
\left\{ \begin{array}{l}
\tilde{u}(t, x, 0) = 0, (\partial_y^2 \tilde{u})(t, x, 0) = 0, \forall (t, x) \in [0, T] \times \mathbb{R},
(\partial_y^4 \tilde{u})(t, x, 0) = (u_y^*(t, 0) + (\partial_y \tilde{u})(t, x, 0))(\partial_y \partial_x \tilde{u})(t, x, 0), \forall (t, x) \in [0, T] \times \mathbb{R},
\end{array} \right.
\]
and for \(4 \leq 2p \leq m, \)
\[
(\partial_y^{2(p+1)} \tilde{u})(t, x, 0) = \sum_{q=2}^{p} \sum_{(\alpha, \beta) \in \Lambda_q} C_{\alpha, \beta} \prod_{j=1}^{q} \partial_x^{\alpha_j} \partial_y^{j+1} \left(u^*(t, 0) + \tilde{u}(t, x, 0) \right),
\]
(2.13)
for all \((t, x) \in [0, T] \times \mathbb{R} \), where \(\Lambda_q \) is defined in (2.10).

Remark that the condition \(0 < \sum_{j=1}^{q} \alpha_j\) implies that, for each terms of (2.13), there is at least one factor like \(\partial_x^{\alpha_j} \partial_y^{\beta_j+1} \tilde{u}(t,x,0)\).

3. The approximate solutions

To prove the existence of solution of the Prandtl equation, we study a parabolic regularized equation for which we can get the existence by using the classical energy method.

3.1. Nonlinear regularized Prandtl equation. In this section, we study the following nonlinear regularized Prandtl equation, for \(0 < \epsilon \leq 1\),

\[
\begin{aligned}
\partial_t \tilde{u}_\epsilon + (u^s + \hat{u}_\epsilon) \partial_x \tilde{u}_\epsilon + v_\epsilon (u_y^s + \partial_y \tilde{u}_\epsilon) &= \partial_y^2 \tilde{u}_\epsilon + \epsilon \partial_x^2 \tilde{u}_\epsilon, \\
\partial_x \tilde{u}_\epsilon + \partial_y v_\epsilon &= 0, \\
\tilde{u}_\epsilon|_{y=0} = v_\epsilon|_{y=0} = 0, \\
\lim_{y \to +\infty} \tilde{u}_\epsilon &= 0,
\end{aligned}
\]
(3.1)

where we choose the corrector \(\epsilon \mu_\epsilon\) such that \(\tilde{u}_0 + \epsilon \mu_\epsilon\) satisfies the compatibility condition up to order \(m + 2\) for the regularized system (3.1).

The equation of vorticity \(\tilde{\omega}_\epsilon = \partial_y \tilde{u}_\epsilon\) reads

\[
\begin{aligned}
\partial_t \tilde{\omega}_\epsilon + (u^s + \hat{u}_\epsilon) \partial_x \tilde{\omega}_\epsilon + v_\epsilon (u_y^s + \partial_y \tilde{\omega}_\epsilon) &= \partial_y^2 \tilde{\omega}_\epsilon + \epsilon \partial_x^2 \tilde{\omega}_\epsilon, \\
\partial_y \tilde{\omega}_\epsilon|_{y=0} &= 0, \\
\tilde{\omega}_\epsilon|_{t=0} = \tilde{u}_0, = \tilde{u}_0 + \epsilon \mu_\epsilon.
\end{aligned}
\]
(3.2)

Formally the solution sequence \((u^s + \hat{u}_\epsilon, \tilde{\omega}_\epsilon)\) of above system is the approximate solution of the original Prandtl equation (1.1).

We give now the boundary data of the solution for the regularized nonlinear system (3.1) which deduce also the compatibility condition for the system (3.1).

Proposition 3.1. Let \(m \geq 6\) be an even integer, and assume that \(\tilde{u}_0\) satisfies the compatibility conditions (2.8) and (2.9) for the system (2.2), and \(\mu_\epsilon \in H^{m+3}_{2k+\ell+1}(\mathbb{R}^2_+)^\times\) such that \(\tilde{u}_0 + \epsilon \mu_\epsilon\) satisfies the compatibility conditions up to order \(m + 2\) for the regularized system (3.1). If \(\tilde{u}_\epsilon \in L^\infty([0,T]; H^{m+3}_{k+\ell}(\mathbb{R}^2_+)) \cap Lip([0,T]; H^{m+1}_{k+\ell}(\mathbb{R}^2_+))\) is a solution of the system (3.1), then we have

\[
\begin{aligned}
\tilde{u}_\epsilon(t,x,0) &= 0, \quad \partial_y^2 \tilde{u}_\epsilon(t,x,0) = 0, \quad \forall (t,x) \in [0,T] \times \mathbb{R}, \\
(\partial_y^p \tilde{u}_\epsilon)(t,x,0) &= (u_y^s(t,0) + \partial_y \tilde{u}_\epsilon)(t,x,0))(\partial_y \partial_x \tilde{u}_\epsilon)(t,x,0), \quad \forall (t,x) \in [0,T] \times \mathbb{R},
\end{aligned}
\]

and for \(4 \leq 2p \leq m\),

\[
(\partial_y^p (u^s + \hat{u}_\epsilon))(t,x,0) = \sum_{q=2}^{p} \sum_{l=0}^{q-1} \epsilon^l \sum_{(\alpha^l, \beta^l) \in \Lambda_q^l} C_{\alpha^l, \beta^l} \\
\times \prod_{j=1}^{q} \partial_x^{\alpha^l_j} \partial_y^{\beta^l_j+1} \left(u^s(t,0) + \hat{u}_\epsilon(t,x,0) \right),
\]
(3.3)
Proof. On the other hand, observing from the equation of (3.1), we have also
\[\frac{\partial}{\partial y} \sum_{j=1}^{q} \beta_j \leq 2p - 2l - 2, \quad 0 < \sum_{j=1}^{q} \alpha_j \leq p + 2l - 1 \right\}. \\
Remark that the condition \(0 < \sum_{j=1}^{q} \alpha_j \) implies that, for each terms of (3.3), there are at least one factor like \(\partial_x^\beta \partial_y^\alpha u_\varepsilon(t, x, 0) \).

Proof. Firstly, for \(p \leq \frac{|q|}{2} \), we have \(\partial_y^{2p+2} u_\varepsilon \in L^\infty([0, T]; H^1_{k+\varepsilon+2p+1}(\mathbb{R}^2)) \). So the trace of \(\partial_y^{2p+2} u_\varepsilon \) exists on \(y = 0 \).

Using the boundary condition of (3.1), we have, for \(0 \leq n \leq m+2 \),
\[\partial_x^n u_\varepsilon(t, x, 0) = 0, \quad \partial_x^n v_\varepsilon(t, x, 0) = 0, \quad (t, x) \in [0, T] \times \mathbb{R}, \]
and for \(0 \leq n \leq m \)
\[(\partial_t \partial_x^n u_\varepsilon)(t, x, 0) = 0, \quad (\partial_t \partial_x^n v_\varepsilon)(t, x, 0) = 0, \quad (t, x) \in [0, T] \times \mathbb{R}. \]
From the equation of (3.1), we get also
\[(\partial_y^2 \partial_x^n u_\varepsilon)(t, x, 0) = 0, \quad (\partial_y^2 \partial_x^n v_\varepsilon)(t, x, 0) = 0, \quad (t, x) \in [0, T] \times \mathbb{R}. \]

On the other hand,
\[\partial_t \partial_y u_\varepsilon + \partial_y ((u^s + \tilde{u}_\varepsilon) \partial_x u_\varepsilon) + \partial_y (v_\varepsilon (u_y^s + \partial_y \tilde{u}_\varepsilon)) = \partial_y^3 \tilde{u}_\varepsilon + \varepsilon \partial_y^2 \partial_y \tilde{u}_\varepsilon, \]
observing
\[\left(\partial_y ((u^s + \tilde{u}_\varepsilon) \partial_x u_\varepsilon) + \partial_y (v_\varepsilon (u_y^s + \partial_y \tilde{u}_\varepsilon)) \right) \bigg|_{y=0} = 0, \]
we get
\[(\partial_t \partial_y u_\varepsilon)|_{y=0} = (\partial_y^3 \tilde{u}_\varepsilon)|_{y=0} + \varepsilon (\partial_y^2 \partial_y \tilde{u}_\varepsilon)|_{y=0}. \]
We have also
\[\partial_t \partial_y^2 u_\varepsilon + \partial_y^2 (u^s + \tilde{u}_\varepsilon) \partial_x u_\varepsilon + \partial_y^2 (v_\varepsilon (u_y^s + \partial_y \tilde{u}_\varepsilon)) = \partial_y^3 \tilde{u}_\varepsilon + \varepsilon \partial_y^2 \partial_y^2 \tilde{u}_\varepsilon, \]
using Leibniz formula
\[\partial_y^2 (u^s + \tilde{u}_\varepsilon) \partial_x u_\varepsilon + \partial_y^2 (v_\varepsilon (u_y^s + \partial_y \tilde{u}_\varepsilon)) = (\partial_y^2 (u^s + \tilde{u}_\varepsilon)) \partial_x u_\varepsilon + (\partial_y^2 v_\varepsilon) (u_y^s + \partial_y \tilde{u}_\varepsilon) + (u^s + \tilde{u}_\varepsilon) \partial_y^2 \partial_x u_\varepsilon + v_\varepsilon \partial_y^2 (u_y^s + \partial_y \tilde{u}_\varepsilon) \]
\[+ 2(\partial_y (u^s + \tilde{u}_\varepsilon)) \partial_y \partial_x u_\varepsilon + 2(\partial_y v_\varepsilon) \partial_y (u_y^s + \partial_y \tilde{u}_\varepsilon), \]
thus,
\[(\partial_y^3 \tilde{u}_\varepsilon)(t, x, 0) = (u^s_\varepsilon(t, 0) + (\partial_y \tilde{u}_\varepsilon)(t, x, 0)) (\partial_y \partial_x \tilde{u}_\varepsilon)(t, x, 0). \]
Applying ∂_t to (3.5), we have
\[
(\partial_t \partial_y^3 \tilde{u}_c)(t, x, 0) = (\partial_y^3 u^s(t, 0) + (\partial_y^3 \tilde{u}_c)(t, x, 0) + \epsilon(\partial_y^2 \partial_y \tilde{u}_c)(t, x, 0)) (\partial_y \partial_x \tilde{u}_c)(t, x, 0)
+ (u_y^s(t, 0) + (\partial_y \tilde{u}_c)(t, x, 0)) ((\partial_y^3 \partial_x \tilde{u}_c)(t, x, 0) + \epsilon(\partial_y^2 \partial_y \tilde{u}_c)(t, x, 0)).
\]

On the other hand, we have
\[
\partial_t \partial_y^4 \tilde{u}_c + \partial_y^4 \left((u^s + \tilde{u}_c)\partial_x \tilde{u}_c\right) + \partial_y^4 \left(v_\epsilon (u_y^s + \partial_y \tilde{u}_c)\right) = \partial_y^6 \tilde{u}_c + \epsilon \partial_y^2 \partial_y^4 \tilde{u}_c,
\]
using Leibniz formula
\[
\partial_y^4 \left((u^s + \tilde{u}_c)\partial_x \tilde{u}_c\right) + \partial_y^4 \left(v_\epsilon (u_y^s + \partial_y \tilde{u}_c)\right)
= (\partial_y^4 (u^s + \tilde{u}_c))\partial_x \tilde{u}_c + (\partial_y^4 v_\epsilon) (u_y^s + \partial_y \tilde{u}_c)
+ (u^s + \tilde{u}_c)\partial_y^4 \partial_x \tilde{u}_c + v_\epsilon \partial_y^4 (u_y^s + \partial_y \tilde{u}_c)
+ \sum_{1 \leq j \leq 3} C_j \left((\partial_y^4 (u^s + \tilde{u}_c))\partial_y^{4-j} \partial_x \tilde{u}_c + (\partial_y^4 v_\epsilon)\partial_y^{4-j} (u_y^s + \partial_y \tilde{u}_c)\right),
\]
thus,
\[
(\partial_y^6 \tilde{u}_c)(t, x, 0) = (\partial_t \partial_y^3 \tilde{u}_c)(t, x, 0) - (\partial_y^3 \partial_x \tilde{u}_c)(u_y^s + \partial_y \tilde{u}_c)(t, x, 0)
+ \sum_{1 \leq j \leq 3} C_j \left((\partial_y^4 (u^s + \tilde{u}_c))\partial_y^{4-j} \partial_x \tilde{u}_c + (\partial_y^4 v_\epsilon)\partial_y^{4-j} (u_y^s + \partial_y \tilde{u}_c)\right)(t, x, 0)
- \epsilon \partial_y^2 \partial_y^4 \tilde{u}_c(t, x, 0).
\]

Using (3.5), we get then
\[
(\partial_y^6 \tilde{u}_c)(t, x, 0) = (\partial_y^3 u^s(t, 0) + \partial_y^3 \tilde{u}_c(t, x, 0)) \partial_y \partial_x \tilde{u}_c(t, x, 0)
- 2 \epsilon \partial_x \partial_y \tilde{u}_c(t, x, 0)(\partial_y \partial_y^2 \tilde{u}_c)(t, x, 0)
+ \sum_{1 \leq j \leq 3} C_j \left((\partial_y^4 (u^s + \tilde{u}_c))\partial_y^{4-j} \partial_x \tilde{u}_c - \partial_y^{j-1} \partial_x \tilde{u}_c \partial_y^{j-1} (u_y^s + \partial_y \tilde{u}_c)\right)(t, x, 0),
\]
(3.6)
Compared to (2.12), the underlined term is the new term.

This is the Proposition 3.1 for $p = 2$. We can complete the proof of Proposition 3.1 by induction.\[\square\]

The proof of the above Proposition implies also the following result.

Corollary 3.2. Let $m \geq 6$ be an even integer, assume that \tilde{u}_0 satisfies the compatibility conditions (2.8) - (2.9) for the system (2.2) and $\tilde{w}_0 \in H_{k+\ell}^{m+2}(\mathbb{R}_x^2)$, then there exists $\epsilon_0 > 0$, and for any $0 < \epsilon \leq \epsilon_0$ there exists $\mu_\epsilon, \in H_{2k+\ell-1}^{m+3}(\mathbb{R}_x^2)$ such that $\tilde{u}_0 + \epsilon \mu_\epsilon$ satisfies the compatibility condition up to order $m + 2$ for the regularized system (3.1). Moreover, for any $m \leq M \leq m + 2$
\[
||\tilde{w}_0, \epsilon||_{H_{k+\ell}^{m+2}(\mathbb{R}_x^2)} \leq \frac{3}{2} ||\tilde{w}_0||_{H_{k+\ell}^{m+2}(\mathbb{R}_x^2)};
\]
and
\[
\lim_{\epsilon \to 0} ||\tilde{w}_0, \epsilon - \tilde{w}_0||_{H_{k+\ell}^{m+2}(\mathbb{R}_x^2)} = 0.
\]
Proof. We use the proof of the Proposition 3.1.

Taking the values at \(t = 0 \) for (3.4), then (2.8) implies that the function \(\mu_\varepsilon \) satisfies

\[
(\partial^2_{x} \mu_\varepsilon)(x, 0) = 0, \quad (\partial^2_{y} \partial_x \mu_\varepsilon)(x, 0) = 0, \quad x \in \mathbb{R}.
\]

Taking \(t = 0 \) for (3.5), we have

\[
(\partial^4_y \tilde{u}_0)(x, 0) + \epsilon(\partial^4_y \mu_\varepsilon)(x, 0) = \left(\partial_y u_0^\varepsilon(0) + (\partial_y \tilde{u}_0)(x, 0) + \epsilon(\partial_y \mu_\varepsilon)(x, 0) \right) \times \left(\partial_y \partial_x \tilde{u}_0(x, 0) + \epsilon(\partial_y \partial_x \mu_\varepsilon)(x, 0) \right),
\]

using (2.8), we have that \(\mu_\varepsilon \) satisfies

\[
(\partial^4_y \mu_\varepsilon)(x, 0) = (\partial_y u_0^\varepsilon(0) + (\partial_y \tilde{u}_0)(x, 0))(\partial_y \partial_x \mu_\varepsilon)(x, 0)
+ (\partial_y \mu_\varepsilon)(x, 0)(\partial_y \partial_x \tilde{u}_0)(x, 0)
+ \epsilon(\partial_y \partial_x \mu_\varepsilon)(x, 0)(\partial_y \partial_x \mu_\varepsilon)(x, 0).
\]

We have also

\[
(\partial_t \partial^2_y \tilde{u}_0)(0, x, 0) = \left(\partial^3_y u_0^\varepsilon(0) + (\partial^2_y \tilde{u}_0)(0, x, 0) + \epsilon(\partial^2_y \partial_y \mu_\varepsilon)(0, x, 0) \right) \times \left(\partial_y \partial_x \tilde{u}_0(0, x, 0) + \epsilon(\partial^2_y \partial_y \mu_\varepsilon)(0, x, 0) \right).
\]

Taking the values at \(t = 0 \) for (3.6), we obtain a restraint condition for \((\partial^4_y \mu_\varepsilon)(x, 0) \),

\[
\partial^4_y \mu_\varepsilon(x, 0) = ((\partial^3_y u_0^\varepsilon + \partial^3_y \tilde{u}_0)(\partial_y \partial_x \mu_\varepsilon)\big|_{y=0} + (\partial^3_y \mu_\varepsilon)(\partial_y \partial_x \tilde{u}_0)\big|_{y=0} + \epsilon(\partial^3_y \partial_y \mu_\varepsilon)(\partial_y \partial_x \mu_\varepsilon)\big|_{y=0}
- 2\partial_x \partial_y \tilde{u}_0(0, 0)(\partial_y \partial^2_x \tilde{u}_0)(0, 0) - 2\epsilon\partial_x \partial_y \tilde{u}_0(0, 0)(\partial_y \partial^2_x \mu_\varepsilon)(0, 0)
- 2\epsilon \partial_t \partial_y \mu_\varepsilon(t, x, 0)(\partial_y \partial^2_x \mu_\varepsilon)(t, x, 0) - 2\epsilon^2 \partial_x \partial_y \mu_\varepsilon(t, x, 0)(\partial_y \partial^2_x \mu_\varepsilon)(t, x, 0)
+ \sum_{1 \leq j \leq 3} C_j \left(\partial^3_y (u_0^\varepsilon + \tilde{u}_0)(\partial_y \partial^2_x \partial_y \mu_\varepsilon + \partial_y \partial_x \partial_y \mu_\varepsilon) \right) \big|_{y=0}
- \sum_{1 \leq j \leq 3} C_j \left(\partial^3_y (\tilde{u}_0^\varepsilon - \partial_x \tilde{u}_0)(\partial_y \partial^2_x \partial_y \mu_\varepsilon + \partial_y \partial_x \partial_y \mu_\varepsilon) \right) \big|_{y=0}
- \sum_{1 \leq j \leq 3} C_j \partial^3_y \partial_x \partial_y \mu_\varepsilon \partial_y \partial^2_x \partial_y \mu_\varepsilon \big|_{y=0},
\]

thus

\[
\partial^4_y \mu_\varepsilon(x, 0) = -2\partial_x \partial_y \tilde{u}_0(0, 0)(\partial_y \partial^2_x \tilde{u}_0)(0, 0)
+ \sum_{\alpha_1, \beta_1; \alpha_2, \beta_2} C_{\alpha_1, \beta_1; \alpha_2, \beta_2} \partial^{\alpha_1} \partial^{\beta_1+1} (u_0^\varepsilon + \tilde{u}_0)(\partial_x \partial_y \partial^2_x \partial_y \mu_\varepsilon)(0, 0)
+ \sum_{\alpha_1, \beta_1; \alpha_2, \beta_2} C_{\alpha_1, \beta_1; \alpha_2, \beta_2} \partial^{\alpha_1} \partial^{\beta_1+1} \partial_x \partial_y \partial^2_x \partial_y \mu_\varepsilon(0, 0)(\partial_x \partial_y \partial^2_x \partial_y \mu_\varepsilon)(0, 0),
\]

(3.7)

where the summation is for the index \(\alpha_2 + \beta_2 \leq 3; \alpha_1 + \beta_1 + \alpha_2 + \beta_2 \leq 3 \). The underlined term in the above equality is deduced from the underlined term in (3.6). All these underlined terms are from the added regularizing term \(\epsilon \partial^2_y \tilde{u} \) in the equation (3.1). This means that the regularizing term \(\epsilon \partial^2_y \tilde{u} \) has an affect on the boundary. This is why we add a corrector term.
More generally, for $6 \leq 2p \leq m$, we have that $(\partial_y^{2(p+1)} \mu_e)(x, 0)$ is a linear combination of the terms of the form

$$\prod_{j=1}^{q_1} \left(\partial_x^{\alpha_1^j} \partial_y^{\beta_1^j + 1} (u_0^s + \tilde{u}_0) \right) \bigg|_{y=0}, \quad \prod_{i=1}^{q_2} \left(\partial_x^{\alpha_2^i} \partial_y^{\beta_2^i + 1} \mu_e \right) \bigg|_{y=0},$$

and

$$\prod_{j=1}^{q_1} \left(\partial_x^{\alpha_1^j} \partial_y^{\beta_1^j + 1} (u_0^s + \tilde{u}_0) \right) \bigg|_{y=0} \times \prod_{i=1}^{q_2} \left(\partial_x^{\alpha_2^i} \partial_y^{\beta_2^i + 1} \mu_e \right) \bigg|_{y=0},$$

where the coefficients of the combination can be determined by ϵ but with a non-negative power. We have also $\alpha_1^j + \beta_1^j + 1 \leq 2p, l = 1, 2$, thus $(\partial_y^{2(p+1)} \mu_e)(x, 0)$ is determined by the low order derivatives of μ_e and these of \tilde{u}_0.

We now construct a polynomial function $\tilde{\mu}_e$ on y by the following Taylor expansion,

$$\tilde{\mu}_e(x, y) = \sum_{p=3}^{+1} \tilde{\mu}_e^{2p}(x) \frac{y^{2p}}{(2p)!},$$

where

$$\tilde{\mu}_e^{2p}(x) = -2(\partial_x \partial_y \tilde{u}_0)(x, 0) (\partial_x \partial_y \tilde{u}_0)(x, 0),$$

and $\tilde{\mu}_e^{2p}(x)$ will give successively by $(\partial_y^{2q} \mu_e)(x, 0)$ with $(\partial_y^{2q+1} \mu_e)(x, 0) = 0, q = 0, \cdots, m$, and it is then determined by $(\partial_y^{m} \partial_y \tilde{u}_0)|_{y=0}$. Finally we take $\mu_e = \chi(y)\tilde{\mu}_e$ with $\chi \in C^\infty([0, +\infty[); \chi(y) = 1, 0 \leq y \leq 1; \chi(y) = 0, y \geq 2$. Thus we complete the proof of the Corollary. \qed

Remark 3.3. Suppose that \tilde{u}_0 satisfies the compatibility conditions up to order $m + 2$ for the system (2.2) with $m \geq 4$, then for the regularized system (3.1), if we want to obtain the smooth solution \tilde{w}_e, we have to add a non-trivial corrector μ_e to the initial data such that $\tilde{u}_0 + \epsilon \mu_e$ satisfies the compatibility conditions up to order $m + 2$ for the system (3.1). In fact, if we take μ_e with

$$(\partial_y^{j} \mu_e)(x, 0) = 0, \quad 0 \leq j \leq 5,$$

then (3.7) implies

$$(\partial_y^{6} \mu_e)(x, 0) = -2(\partial_x \partial_y \tilde{u}_0)(x, 0) (\partial_x \partial_y \tilde{u}_0)(x, 0),$$

which is not equal to 0. So added a corrector is necessary for the initial data of the regularized system.

We will prove the following theorem for the existence of approximate solutions.

Theorem 3.4. Let $\partial_y \tilde{u}_0 \in H_{k+\ell}^{m+2} R^2_+$, and $m \geq 6$ be an even integer, $k > 1, 0 \leq \ell < \frac{1}{3}, k + \ell > \frac{3}{2}$, assume that \tilde{u}_0 satisfies the compatibility conditions of order $m + 2$ for the system (2.2). Suppose that the shear flow satisfies

$$|\partial_y^{p+1} u^s(t, y)| \leq C(y)^{-k-p}, \quad (t, y) \in [0, T_1] \times \mathbb{R}_+, \quad 0 \leq p \leq m + 2.$$

Then, for any $0 < \epsilon \leq \epsilon_0$ and $0 < \tilde{\zeta}$, there exits $T_\epsilon > 0$ which depends on ϵ and $\tilde{\zeta}$, such that if

$$\|\tilde{w}_0\|_{H_{k+\ell}^{m+2}(R^2_+)} \leq \tilde{\zeta},$$

then the system (3.2) admits a unique solution

$$\tilde{w}_e \in L^\infty([0, T_\epsilon]; H_{k+\ell}^{m+2}(R^2_+)),$$
which satisfies
\[\| \tilde{w}_\epsilon \|_{L^\infty ([0,T_\epsilon]; H^{m+2}_{k+\ell} (\mathbb{R}^2_+))} \leq \frac{4}{3} \| \tilde{w}_{0,\epsilon} \|_{H^{m+2}_{k+\ell} (\mathbb{R}^2_+)} \leq 2 \| \tilde{w}_0 \|_{H^{m+2}_{k+\ell} (\mathbb{R}^2_+)}. \] (3.8)

Remark 3.5.

1. We remark that \(T_\epsilon \) depends on \(\epsilon \) and \(\bar{\zeta} \), and \(T_\epsilon \to 0 \) as \(\epsilon \to 0 \). So this is not a bounded estimate for the approximate solution sequences \(\{ u^s + \tilde{u}_\epsilon; 0 < \epsilon \leq \epsilon_0 \} \) where \(\epsilon_0 > 0 \) is given in Corollary 3.2. When the initial data \(\tilde{u}_0 \) is small enough, we observe that \(u^s + \tilde{u}_\epsilon \) preserves the monotonicity and convexity of the shear flow on \([0,T_\epsilon]\).

2. In this theorem, for the regularized Prandtl equation, there are not constraints on the initial data, meaning that we don’t need the monotonicity or convexity of shear flow \(u^s \), and \(\bar{\zeta} \) is also arbitrary.

We prove Theorem 3.4 by the following three Propositions, where the first one is devoted to the local existence of approximate solution \(\tilde{w}_\epsilon \) of (3.2).

Proposition 3.6. Let \(\tilde{w}_{0,\epsilon} \in H^{m+\ell}_{k+\ell} (\mathbb{R}^2_+) \), \(m \geq 6 \) be an even integer, \(k > 1, \ell \leq \frac{1}{2}, k + \ell > \frac{3}{2} \), and satisfy the compatibility conditions up to order \(m + 2 \) for (3.2). Suppose that the shear flow satisfies
\[\| \partial_y^{\alpha_1} u^s (t,y) \| \leq C(y)^{-k-p}, \quad (t,y) \in [0,T_1] \times \mathbb{R}_+, \quad 0 \leq p \leq m + 2. \]
Then, for any \(0 < \epsilon \leq 1 \) and \(\bar{\zeta} > 0 \), there exists \(T_\epsilon > 0 \) such that if
\[\| \tilde{w}_{0,\epsilon} \|_{H^{m+2}_{k+\ell} (\mathbb{R}^2_+)} \leq \bar{\zeta}, \]
then the system (3.2) admits a unique solution
\[\tilde{w}_\epsilon \in L^\infty ([0,T_\epsilon]; H^{m+2}_{k+\ell} (\mathbb{R}^2_+)). \]

Remark 3.7. If \(\tilde{w}_0 \in H^{m+2}_{k+\ell} (\mathbb{R}^2_+) \) is the initial data in Theorem 3.4, using Corollary 3.2, there exists \(\epsilon_0 > 0 \), and for any \(0 < \epsilon \leq \epsilon_0 \), there exists \(\mu_\epsilon \in H^{m+3}_{k+\ell} (\mathbb{R}^2_+) \) such that \(\tilde{w}_{0,\epsilon} = \tilde{w}_0 + \epsilon \partial_y \mu_\epsilon \) satisfies the compatibility conditions up to order \(m + 2 \) for the system (3.2), and
\[\| \tilde{w}_{0,\epsilon} \|_{H^{m+2}_{k+\ell} (\mathbb{R}^2_+)} \leq \frac{3}{2} \| \tilde{w}_0 \|_{H^{m+2}_{k+\ell} (\mathbb{R}^2_+)}. \]
Then, using Proposition 3.6, we obtain also the existence of the approximate solution under the assumption of Theorem 3.4.

The proof of this Proposition is standard since the equation in (3.2) is a parabolic type equation. Firstly, we establish \(\text{à priori} \) estimate and then prove the existence of solution by the standard iteration and weak convergence methods. Because we work in the weighted Sobolev space and the computation is not so trivial, we give a detailed proof in the Appendix, to make the paper self-contained. So the rest of this section is devoted to proving the estimate (3.8).

3.2. Uniform estimate with loss of \(x \)-derivative

In the proof of the Proposition 3.6 (see Lemma C.2), we already get the \(\text{à priori} \) estimate for \(\tilde{w}_\epsilon \). Now we try to prove the estimate (3.8) in a new way, and our object is to establish an uniform estimate with respect to \(\epsilon > 0 \). We first treat the easy part in this subsection.

We define the anisotropic Sobolev norm,
\[\| f \|_{H^{m-1}_{k+\ell} (\mathbb{R}^2_+)}^2 = \sum_{|\alpha_1 + \alpha_2| \leq m-1, \alpha_1 \leq \alpha_2} \| (y)^{k+\ell+\alpha_2} \partial_x^{\alpha_1} \partial_y^{\alpha_2} f \|_{L^2 (\mathbb{R}^2_+)}^2, \] (3.9)
where we don’t have the m-order derivative with respect to x-variable. Then
\[
\|f\|_{L^2_{k+\ell}(\mathbb{R}^2_+)}^2 = \|f\|_{H^{m-1}_{k+\ell}(\mathbb{R}^2_+)}^2 + \|\partial_x^m f\|_{L^2_{k+\ell}(\mathbb{R}^2_+)}^2.
\]

Proposition 3.8. Let $m \geq 6$ be an even integer, $k > 1$, $0 \leq \ell < \frac{1}{2}$, $k + \ell > \frac{3}{2}$, and assume that $\tilde{w}_\epsilon \in L^\infty([0, T_\epsilon]; H^{m+2}_{k+\ell}(\mathbb{R}^2_+))$ is a solution to (3.2), then we have
\[
\frac{d}{dt} \|\tilde{w}_\epsilon\|_{H^{m-1}_{k+\ell}(\mathbb{R}^2_+)}^2 + \|\partial_y^\alpha \tilde{w}_\epsilon\|_{H^{m-1}_{k+\ell}(\mathbb{R}^2_+)}^2
+ \epsilon \|\partial_x \tilde{w}_\epsilon\|_{L^2_{k+\ell}(\mathbb{R}^2_+)}^2 \leq C_1 \left(\|\tilde{w}_\epsilon\|_{H^{m}_{k+\ell}(\mathbb{R}^2_+)}^2 + \|\tilde{w}_\epsilon\|_{H^{m}_{k+\ell}(\mathbb{R}^2_+)}^2 \right),
\]
where $C_1 > 0$ is independent of ϵ.

Remark. The above estimate is uniform with respect to $\epsilon > 0$, but on the left hand of (3.10), there is the extra terms $\|\partial_x^m \tilde{w}_\epsilon\|_{L^2_{k+\ell}}^2$. This is because that we can’t control the term
\[
\partial_x^m \tilde{w}_\epsilon(t, x, y) = - \int_0^y \partial_x^{m+1} \tilde{u}_\epsilon(t, x, \tilde{y}) d\tilde{y}
\]
which is the major difficulty in the study of the Prandtl equation. We will study this term in the next Proposition with a non-uniform estimate firstly, and then focus on proving the uniform estimate in the rest part of this paper.

Proof. For $|\alpha| = \alpha_1 + \alpha_2 \leq m$, $\alpha_1 \leq m - 1$, we have
\[
\partial_t \partial^\alpha \tilde{w}_\epsilon = - \epsilon \partial_x^2 \partial^\alpha \tilde{w}_\epsilon - \partial_y^2 \partial^\alpha \tilde{w}_\epsilon
= - \partial^\alpha \left((u^s + \tilde{u}_\epsilon) \partial_x \tilde{w}_\epsilon \right) - \partial^\alpha \left(\tilde{v}_\epsilon (u_{yy}^s + \partial_y \tilde{w}_\epsilon) \right).
\]
Multiplying the (3.11) with $(y)^{2(k+\ell+\alpha_2)} \partial^\alpha \tilde{w}_\epsilon$, and integrating over \mathbb{R}^2_+,
\[
\int_{\mathbb{R}^2_+} (\partial_t \partial^\alpha \tilde{w}_\epsilon)(y)^{2(k+\ell)+2\alpha_2} \partial^\alpha \tilde{w}_\epsilon \, dx \, dy - \epsilon \int_{\mathbb{R}^2_+} (\partial_x^2 \partial^\alpha \tilde{w}_\epsilon)(y)^{2(k+\ell)+2\alpha_2} \partial^\alpha \tilde{w}_\epsilon \, dx \, dy
\]
\[
- \int_{\mathbb{R}^2_+} (\partial_y^2 \partial^\alpha \tilde{w}_\epsilon)(y)^{2(k+\ell)+2\alpha_2} \partial^\alpha \tilde{w}_\epsilon \, dx \, dy
\]
\[
= - \int_{\mathbb{R}^2_+} \partial^\alpha \left((u^s + \tilde{u}_\epsilon) \partial_x \tilde{w}_\epsilon - \tilde{v}_\epsilon (u_{yy}^s + \partial_y \tilde{w}_\epsilon) \right)(y)^{2(k+\ell)+2\alpha_2} \partial^\alpha \tilde{w}_\epsilon \, dx \, dy.
\]
Remark that for $\tilde{w}_\epsilon \in L^\infty([0, T_\epsilon]; H^{m+2}_{k+\ell}(\mathbb{R}^2_+))$, all above integrations are in the classical sense. We deal with each term on the left hand respectively. After integration by part, we have
\[
\int_{\mathbb{R}^2_+} (\partial_t \partial^\alpha \tilde{w}_\epsilon)(y)^{2(k+\ell)+2\alpha_2} \partial^\alpha \tilde{w}_\epsilon \, dx \, dy = \frac{1}{2} \frac{d}{dt} \|\partial^\alpha \tilde{w}_\epsilon\|_{L^2_{k+\ell+\alpha_2}(\mathbb{R}^2_+)}^2,
\]
\[
- \epsilon \int_{\mathbb{R}^2_+} (\partial_x^2 \partial^\alpha \tilde{w}_\epsilon)(y)^{2(k+\ell)+2\alpha_2} \partial^\alpha \tilde{w}_\epsilon \, dx \, dy = \epsilon \|\partial_x \partial^\alpha \tilde{w}_\epsilon\|_{L^2_{k+\ell+\alpha_2}(\mathbb{R}^2_+)}^2,
\]
and
\[
- \int_{\mathbb{R}^2_+} \partial_y^2 \partial^\alpha \tilde{w}_\epsilon(y)^{2(k+\ell)+2\alpha_2} \partial^\alpha \tilde{w}_\epsilon \, dx \, dy
= \|\partial_y \partial^\alpha \tilde{w}_\epsilon\|_{L^2_{k+\ell+\alpha_2}(\mathbb{R}^2_+)}^2 + \int_{\mathbb{R}^2_+} \partial^\alpha \partial_y \tilde{w}_\epsilon(y)^{2(k+\ell)+2\alpha_2} \partial^\alpha \tilde{w}_\epsilon \, dx \, dy
\]
\[+ \int_{\mathbb{R}} (\partial^\alpha \partial_y \tilde{w}_t \partial^\alpha \tilde{w}_t) \bigg|_{y=0} \, dx. \]

Cauchy-Schwarz inequality implies
\[\left| \int_{\mathbb{R}_+} \partial^\alpha \partial_y \tilde{w}_t \left((y)^{2(k+\ell)+2\alpha_2} \right) \partial^\alpha \tilde{w}_t \, dx \, dy \right| \leq \frac{1}{16} \| \partial_y \partial^\alpha \tilde{w}_t \|_{L^2(\mathbb{R}_+)}^2 + C \| \partial^\alpha \tilde{w}_t \|_{L^2(\mathbb{R}_+)}^2. \]

We study now the term
\[\int_{\mathbb{R}} (\partial^\alpha \partial_y \tilde{w}_t \partial^\alpha \tilde{w}_t) \bigg|_{y=0} \, dx. \]

Case: \(|\alpha| \leq m - 1\), using the trace Lemma A.2, we have
\[\left| \int_{\mathbb{R}} (\partial^\alpha \partial_y \tilde{w}_t \partial^\alpha \tilde{w}_t) \bigg|_{y=0} \right| \leq \| (\partial^\alpha \partial_y \tilde{w}_t) \|_{y=0} \| L^2(\mathbb{R}) \| (\partial^\alpha \tilde{w}_t) \|_{y=0} \| L^2(\mathbb{R}) \| \leq C \| \partial^\alpha \partial_y \tilde{w}_t \|_{L^2(\mathbb{R}_+)} \| \partial^\alpha \tilde{w}_t \|_{L^2(\mathbb{R}_+)} \| \partial^\alpha \tilde{w}_t \|_{H^m(\mathbb{R}_+)} \| \tilde{w}_t \|_{H^m(\mathbb{R}_+)} \leq \frac{1}{16} \| \partial_y \tilde{w}_t \|_{H^m, m-1(\mathbb{R}_+)}^2 + C \| \tilde{w}_t \|_{H^m(\mathbb{R}_+)}^2. \]

Case: \(\alpha_1 = m - 1, \alpha_2 = 1\), using (3.4), we have
\[(\partial^\alpha \tilde{w}_t) \bigg|_{y=0} = (\partial^\alpha \partial_y \tilde{w}_t) \bigg|_{y=0} = 0, \]

thus
\[\int_{\mathbb{R}} (\partial^\alpha \partial_y \tilde{w}_t \partial^\alpha \tilde{w}_t) \bigg|_{y=0} \, dx = 0. \]

Case: \(\alpha_1 = 0, \alpha_2 = m\). Only in this case, we need to suppose that \(m\) is even.

Using again the trace Lemma A.2, we have
\[\left| \int_{\mathbb{R}} (\partial^\alpha \tilde{w}_t \partial^\alpha \tilde{w}_t) \bigg|_{y=0} \right| \leq \| (\partial^\alpha \tilde{w}_t) \|_{y=0} \| L^2(\mathbb{R}) \| (\partial^\alpha \tilde{w}_t) \|_{y=0} \| L^2(\mathbb{R}) \| \leq C \| \partial^\alpha \tilde{w}_t \|_{L^2(\mathbb{R}_+)} \| \partial^\alpha \tilde{w}_t \|_{L^2(\mathbb{R}_+)} \| \partial^\alpha \tilde{w}_t \|_{H^m(\mathbb{R}_+)} \| \tilde{w}_t \|_{H^m(\mathbb{R}_+)} \leq \frac{1}{16} \| \partial_y \tilde{w}_t \|_{H^m, m-1(\mathbb{R}_+)}^2 + C \| (\partial^\alpha \tilde{w}_t) \|_{y=0} \| L^2(\mathbb{R}) \|. \]

Using Proposition 3.1 and the trace Lemma A.2, we can estimate the above last term \(\| (\partial^\alpha \tilde{w}_t) \|_{y=0} \| L^2(\mathbb{R}) \|^2 \) by a finite summation of the following forms
\[\| \prod_{j=1}^p (\partial^\alpha_\gamma \partial^\beta_{\gamma+1}(u^s + \tilde{u}_t)) \|_{y=0} \| L^2(\mathbb{R}) \| \leq C \| \partial_y \prod_{j=1}^p (\partial^\alpha_\gamma \partial^\beta_{\gamma+1}(u^s + \tilde{u}_t)) \|_{L^2(\mathbb{R}_+)} \]

with \(2 \leq p \leq \frac{m}{2}, \alpha_j + \beta_j \leq m - 1\) and \(\{j; \alpha_j > 0\} \neq \emptyset\). Then using Sobolev inequality and \(m \geq 6\), we get
\[\| (\partial^\alpha \tilde{w}_t) \|_{y=0} \| L^2(\mathbb{R}) \| \leq C \| \tilde{w}_t \|_{H^m(\mathbb{R}_+)}^{m/2}. \]
Case : $1 \leq \alpha_1 \leq m - 2$, $\alpha_1 + \alpha_2 = m, \alpha_2$ even, using the same argument to the precedent case, we have

$$
\left| \int_{\mathbb{R}} (\partial_t^\alpha \partial_y \bar{\varphi}_x \partial_y \bar{\varphi}_x) |y=0| dx \right| = \left| \int_{\mathbb{R}} (\partial_t^{\alpha_1} \partial_y^{\alpha_2+1} \bar{\varphi}_x \partial_x^{\alpha_1} \partial_y^{\alpha_2} \bar{\varphi}_x) |y=0| dx \right|
$$

$$
\leq \left\| (\partial_t^{\alpha_1} \partial_y^{\alpha_2+1} \bar{\varphi}_x) |y=0| \right\|_{L^2(\mathbb{R})} \left\| (\partial_x^{\alpha_1} \partial_y^{\alpha_2} \bar{\varphi}_x) |y=0| \right\|_{L^2(\mathbb{R})}
$$

$$
\leq \frac{1}{16} \left\| \partial_y \bar{\varphi}_x \right\|_{H_{k+\ell}^{m,m-1}(\mathbb{R}_+^2)}^2 + C \left\| (\partial_t^{\alpha_1} \partial_y^{\alpha_2+2} \bar{\varphi}_x) |y=0| \right\|_{L^2(\mathbb{R})}^2
$$

$$
\leq \frac{1}{16} \left\| \partial_y \bar{\varphi}_x \right\|_{H_{k+\ell}^{m,m-1}(\mathbb{R}_+^2)}^2 + C \left\| \bar{\varphi}_x \right\|_{H_{k+\ell}^m(\mathbb{R}_+^2)}^{\alpha_2-1}.
$$

Case : $1 \leq \alpha_1 \leq m - 2$, $\alpha_1 + \alpha_2 = m, \alpha_2$ odd, integration by part with respect to x variable implies

$$
\left| \int_{\mathbb{R}} (\partial_t^{\alpha_1} \partial_y^{\alpha_2+1} \bar{\varphi}_x \partial_x^{\alpha_1} \partial_y^{\alpha_2} \bar{\varphi}_x) |y=0| dx \right| = \left| \int_{\mathbb{R}} (\partial_t^{\alpha_1-1} \partial_y^{\alpha_2+1} \bar{\varphi}_x \partial_x^{\alpha_1+1} \partial_y^{\alpha_2} \bar{\varphi}_x) |y=0| dx \right|
$$

$$
\leq \left\| (\partial_t^{\alpha_1-1} \partial_y^{\alpha_2+1} \bar{\varphi}_x) |y=0| \right\|_{L^2(\mathbb{R})} \left\| (\partial_x^{\alpha_1+1} \partial_y^{\alpha_2} \bar{\varphi}_x) |y=0| \right\|_{L^2(\mathbb{R})}
$$

$$
\leq \frac{1}{16} \left\| \partial_t \bar{\varphi}_x \right\|_{H_{k+\ell}^{m,m-1}(\mathbb{R}_+^2)}^2 + C \left\| (\partial_t^{\alpha_1+1} \partial_y^{\alpha_2+1} \bar{\varphi}_x) |y=0| \right\|_{L^2(\mathbb{R})}^2
$$

$$
\leq \frac{1}{16} \left\| \partial_t \bar{\varphi}_x \right\|_{H_{k+\ell}^{m,m-1}(\mathbb{R}_+^2)}^2 + C \left\| \bar{\varphi}_x \right\|_{H_{k+\ell}^m(\mathbb{R}_+^2)}^{\alpha_2-1}.
$$

Finally, we have proven

$$
\int_{\mathbb{R}_+^2} \left(\partial_t \partial^\alpha \bar{\varphi}_x - \partial^\beta \partial^\alpha \partial_t \partial^\beta \bar{\varphi}_x \right) (y)^{2(k+\ell+\alpha_2)} \partial^\alpha \bar{\varphi}_x dx dy
$$

$$
\geq \frac{1}{2} \frac{d}{dt} \left\| \partial^\alpha \bar{\varphi}_x \right\|_{L^2}^2 + \epsilon \left\| \partial_t \partial^\alpha \bar{\varphi}_x \right\|_{L^2}^2 + \left\| \partial_t \partial^\alpha \bar{\varphi}_x \right\|_{L^2}^2
$$

$$
- \frac{1}{4} \left\| \partial_t \partial^\alpha \bar{\varphi}_x \right\|_{H_{k+\ell}^{m,m-1}(\mathbb{R}_+^2)}^2 - C \left\| \partial^\alpha \partial_t \bar{\varphi}_x \right\|_{H_{k+\ell}^m(\mathbb{R}_+^2)}^2.
$$

We estimate now the right hand of (3.11). For the first item, we need to split it into two parts

$$
- \partial^\alpha \left((u^s + \bar{u}_c) \partial_x \bar{\varphi}_x \right) = - (u^s + \bar{u}_c) \partial_x \partial^\alpha \bar{\varphi}_x + [(u^s + \bar{u}_c), \partial^\alpha] \partial_x \bar{\varphi}_x.
$$

Firstly, we have

$$
\int_{\mathbb{R}_+^2} \left((u^s + \bar{u}_c) \partial_x \partial^\alpha \bar{\varphi}_x \right) (y)^{2(k+\ell+\alpha_2)} \partial^\alpha \bar{\varphi}_x dx dy \leq \left\| \partial_x \bar{\varphi}_x \right\|_{L^\infty} \left\| \partial^\alpha \bar{\varphi}_x \right\|_{L^2}^2,
$$

then using (A.2), we get

$$
\int_{\mathbb{R}_+^2} \left((u^s + \bar{u}_c) \partial_x \partial^\alpha \bar{\varphi}_x \right) (y)^{2(k+\ell+\alpha_2)} \partial^\alpha \bar{\varphi}_x dx dy \leq \left\| \partial^\alpha \bar{\varphi}_x \right\|_{H_{k+\ell}^m(\mathbb{R}_+^2)}^2.
$$

For the commutator operator, in fact, it can be written as

$$
[(u^s + \bar{u}_c), \partial^\alpha] \partial_x \bar{\varphi}_x = \sum_{\beta \leq \alpha, 1 \leq |\beta|} C^{\beta}_{\alpha} \partial^\beta (u^s + \bar{u}_c) \partial^{\alpha-\beta} \partial_x \bar{\varphi}_x.
$$

Then for $|\alpha| \leq m, m \geq 4$, using the Sobolev inequality again and Lemma A.1,

$$
\left\| [(u^s + \bar{u}_c), \partial^\alpha] \partial_x \bar{\varphi}_x \right\|_{L^2} \leq C \left(\left\| \partial^\alpha \bar{\varphi}_x \right\|_{H_{k+\ell}^m} + \left\| \bar{\varphi}_x \right\|_{H_{k+\ell}^m} \right).
$$
Thus
\[
\int_{\mathbb{R}^2_+} (y)^{2(\kappa + \ell + \alpha_2)} \left((u^s + \tilde{v}_\varepsilon) \partial^{\alpha} \tilde{w}_\varepsilon \cdot \partial^\beta \tilde{w}_\varepsilon \right) \, dx \, dy \leq C \left(\left\| \tilde{w}_\varepsilon \right\|_{H^m_{k+\ell}}^2 + \left\| \tilde{w}_\varepsilon \right\|_{H^m_{k+\ell}}^3 \right),
\]
and
\[
\int_{\mathbb{R}^2_+} (y)^{2(\kappa + \ell + \alpha_2)} \left(\partial^\alpha \left((u^s + \tilde{v}_\varepsilon) \partial_x \tilde{w}_\varepsilon \right) \right) \partial^\beta \tilde{w}_\varepsilon \, dx \, dy \leq C \left(\left\| \tilde{w}_\varepsilon \right\|_{H^m_{k+\ell}}^2 + \left\| \tilde{w}_\varepsilon \right\|_{H^m_{k+\ell}}^3 \right),
\]
where \(C \) is independent of \(\varepsilon \).

For the next one, similar to the first term in (3.11), we have
\[
\partial^\alpha \left(\tilde{v}_\varepsilon (u^s_{yy} + \partial_y \tilde{w}_\varepsilon) \right) = \tilde{v}_\varepsilon \partial_y \partial^\alpha \tilde{w}_\varepsilon - \left[\tilde{v}_\varepsilon, \partial^\alpha \right] \partial_y \tilde{w}_\varepsilon + \partial^\alpha (\tilde{v}_\varepsilon u^s_{yy}).
\]
Then
\[
\int_{\mathbb{R}^2_+} (y)^{2(\kappa + \ell + \alpha_2)} \left(\partial_x \partial^\alpha \tilde{w}_\varepsilon \right) \cdot \partial^\beta \tilde{w}_\varepsilon \, dx \, dy
\]
\[
\leq \left\| \tilde{v}_\varepsilon \right\|_{L^\infty(\mathbb{R}^2_+)} \left\| \partial_y \tilde{w}_\varepsilon \right\|_{H^m_{k+\ell}} \left\| \tilde{w}_\varepsilon \right\|_{H^m_{k+\ell}}
\]
\[
\leq \frac{1}{4} \left\| \partial_y \tilde{w}_\varepsilon \right\|_{H^m_{k+\ell}(\mathbb{R}^2_+)}^4 + C \left\| \tilde{w}_\varepsilon \right\|_{H^m_{k+\ell}(\mathbb{R}^2_+)}^4,
\]
where we have used
\[
\left\| \tilde{v}_\varepsilon \right\|_{L^\infty(\mathbb{R}^2_+)} \leq C \left\| \partial_x \tilde{w}_\varepsilon \right\|_{L^\infty(\mathbb{R}; L^2_{k+\ell}(\mathbb{R}_+, \varepsilon))}
\]
\[
\leq C \int_{\mathbb{R}^2_+} (y)^{1+2\delta} \left(\left\| \partial_x \tilde{w}_\varepsilon \right\|^2 + \left\| \partial_y^2 \tilde{w}_\varepsilon \right\|^2 \right) \, dx \, dy
\]
\[
\leq C \int_{\mathbb{R}^2_+} (y)^{3+2\delta} \left(\left\| \partial_x \tilde{w}_\varepsilon \right\|^2 + \left\| \partial_y^2 \tilde{w}_\varepsilon \right\|^2 \right) \, dx \, dy \leq C \left\| \tilde{w}_\varepsilon \right\|_{H^m_{k+\ell}},
\]
where \(\delta > 0 \) is small.

Noticing that
\[
\left[\tilde{v}_\varepsilon, \partial^\alpha \right] \partial_y \tilde{w}_\varepsilon = \sum_{\beta \leq \alpha} C^\alpha_\beta \partial^\beta \tilde{v}_\varepsilon \partial^\alpha - \beta \partial_y \tilde{w}_\varepsilon.
\]
Since \(H^m_{k+\ell} \) is an algebra for \(m \geq 6 \), we only need to pay attention to the order of derivative in the above formula. Firstly for \(|\beta| \geq 1 \), we have for \(|\alpha - \beta| + 1 \leq m \),
\[
-\partial^\beta \tilde{v}_\varepsilon = \partial^\beta_0 \partial^\beta_1 \left\{ \int_0^y \tilde{u}_{\varepsilon,x} \, dy \right\} = \left\{ \int_0^\delta \partial^\beta_0 \tilde{u}_{\varepsilon,x} \, dy \right\}, \quad \beta_1 \geq 1,
\]
\[
\left\| \tilde{v}_\varepsilon, \partial^\alpha \right\|_{L^2_{k+\ell+\alpha_2}} \leq C \left\| \tilde{w}_\varepsilon \right\|_{H^m_{k+\ell}}^3.
\]
On the other hand, if \(\alpha_2 = 0 \), using \(-1 + \ell < -\frac{1}{2}\), we can get
\[
\left\| \partial_x^{\alpha_2-1} (\tilde{v}_\varepsilon u^s_{yy}) \right\|_{L^2_{k+\ell}} \leq C \left\| \partial_x^{\alpha_2} \tilde{u}_\varepsilon \right\|_{L^2_{k+\ell}(\mathbb{R}^2_+)} \left\| u^s_{yy} \right\|_{L^2_{k+\ell}(\mathbb{R}_+, \varepsilon)} \leq C \left\| \tilde{w}_\varepsilon \right\|_{H^m_{k+\ell}}.
\]
Similar computation for other cases, we can get, for \(\alpha_2 > 0, \alpha_1 + \alpha_2 \leq m \),
\[
\left\| \partial^\alpha (\tilde{v}_\varepsilon u^s_{yy}) \right\|_{L^2_{k+\ell+\alpha_2}} \leq C \left\| \tilde{w}_\varepsilon \right\|_{H^m_{k+\ell}}.
\]
Combining the above estimates, we have finished the proof of the Proposition 3.8. \(\square \)
3.3. Smallness of approximate solutions. To close the energy estimate, we still need to estimate the term $\partial_x^m \tilde{w}_t$.

Proposition 3.9. Under the hypothesis of Theorem 3.4, and with the same notations as in Proposition 3.8, we have

$$
\frac{1}{2} \frac{d}{dt} \left\| \partial_x^m \tilde{w}_t \right\|_{L_{k+\ell}^2}^2 + \frac{3c}{4} \left\| \partial_x^{m+1} \tilde{w}_t \right\|_{L_{k+\ell}^2}^2 + \frac{3}{4} \left\| \partial_y \partial_x^m \tilde{w}_t \right\|_{L_{k+\ell}^2}^2
\leq C \left(\left\| \tilde{w}_t \right\|^2_{H_{k+\ell}^m} + \left\| \tilde{w}_t \right\|^3_{H_{k+\ell}^m} \right) + \frac{32}{\epsilon} \left(\left\| \tilde{w}_t \right\|^4_{H_{k+\ell}^m} + \left\| \tilde{w}_t \right\|^2_{H_{k+\ell}^m} \right).
$$

(3.12)

Proof. We have

$$
\partial_t \partial_x^m \tilde{w}_t - \partial^2_y \partial_x^m \tilde{w}_t - \epsilon \partial_x^m \partial^2 \tilde{w}_t = -\partial_x^m \left((u^s + \tilde{u}_x) \partial_x \tilde{w}_t \right) - \partial_x^m \left(\tilde{v}_x (\partial_y \tilde{w}_t + u_{yy}^s) \right),
$$

then the same computations as in Proposition 3.8 give

$$
\frac{d}{dt} \left\| \partial_x^m \tilde{w}_t \right\|_{L_{k+\ell}^2}^2 + \epsilon \left\| \partial_x^{m+1} \tilde{w}_t \right\|_{L_{k+\ell}^2}^2 + \frac{3}{4} \left\| \partial_y \partial_x^m \tilde{w}_t \right\|_{L_{k+\ell}^2}^2
\leq C \left(\left\| \tilde{w}_t \right\|^2_{H_{k+\ell}^m} + \left\| \tilde{w}_t \right\|^3_{H_{k+\ell}^m} \right) + \left| \int_{\mathbb{R}^2_x} \partial_x^m \left(\tilde{v}_x (\partial_y \tilde{w}_t + u_{yy}^s) \right) \gamma^{2(k+\ell)} \partial_x^m \tilde{w}_t \, dx \, dy \right|,
$$

(3.13)

where the boundary terms is more easy to control, since

$$
(\partial_y \partial_x^m \tilde{w}_t)(t, x, 0) = (\partial^2_y \partial_x^m \tilde{u}_x)(t, x, 0) = 0, \ (t, x) \in [0, T] \times \mathbb{R}.
$$

The estimate of the last term on right hand is the main obstacle for the study of the Prandtl equations.

$$
\partial_x^m \left(\tilde{v}_x (\partial_y \tilde{w}_t + u_{yy}^s) \right) = \tilde{v}_x \partial_x^m \partial_y \tilde{w}_t + (\partial_x^m \tilde{v}_x) (\partial_y \tilde{w}_t + u_{yy}^s) + \sum_{1 \leq j \leq m-1} C^j_m \partial_x^j \tilde{v}_x \partial_x^{m-j} \partial_y \tilde{w}_t.
$$

For the first term

$$
\int_{\mathbb{R}^2_x} \tilde{v}_x (\partial_x^m \partial_y \tilde{w}_t) \gamma^{2(k+\ell)} (\partial_x^m \tilde{w}_t) \, dx \, dy
= \frac{1}{2} \int \tilde{v}_x \gamma^{2(k+\ell)} \partial_y (\partial_x^m \tilde{w}_t)^2 \, dx \, dy
= \frac{1}{2} \int \tilde{u}_{x,x} \gamma^{2(k+\ell)} (\partial_x^m \tilde{w}_t)^2 \, dx \, dy
- \ell \int \tilde{v}_x \gamma^{2(k+\ell)-1} (\partial_x^m \tilde{w}_t)^2 \, dx \, dy
\leq C \left\| \tilde{w}_t \right\|^2_{H_{k+\ell}^m},
$$

where we have used $\tilde{v}_x |_{y=0} = 0$, and

$$
\left| \int_{\mathbb{R}^2_x} \left(\sum_{1 \leq j \leq m-1} C^j_m \partial_x^j \tilde{v}_x \partial_x^{m-j} \partial_y \tilde{w}_t \right) \gamma^{2(k+\ell)} (\partial_x^m \tilde{w}_t) \, dx \, dy \right|
\leq C \left\| \tilde{w}_t \right\|^2_{H_{k+\ell}^m}.
$$
Finally for the worst term, we have
\[
\left| \int_{\mathbb{R}^2} (\partial_x^m \tilde{v}_x)(\partial_y \tilde{w}_x + u^{s}_{yy}) \langle y \rangle^{2(k+\ell)} (\partial_x^m \tilde{w}_x) dx dy \right| \\
\leq C \|\partial_x^m \tilde{v}_x\|_{L^2(\mathbb{R};L^\infty(\mathbb{R})^{+})} \|\partial_y \tilde{w}_x\|_{L^\infty(\mathbb{R};L^{k+\ell}_{x+\epsilon}(\mathbb{R}))} \|\tilde{w}_x\|_{H^{m}_{k+\epsilon}} \\
+ \|\partial_x^m \tilde{v}_x u^{s}_{yy}\|_{L^2_{k+\epsilon}(\mathbb{R}^2)} \|\tilde{w}_x\|_{H^{m}_{k+\epsilon}}.
\]

On the other hand, observing
\[
\partial_x^m \tilde{v}_x(t, x, y) = - \int_0^y \partial_x^m \tilde{u}_x(t, x, \tilde{y}) d\tilde{y},
\]
then using Sobolev inequality and Lemma A.1
\[
\|\partial_x^m \tilde{v}_x\|_{L^2(\mathbb{R};L^\infty(\mathbb{R}^{+}))} \leq C \|\partial_x^m \tilde{u}_x\|_{L^2_{1+\epsilon}(\mathbb{R}^2)} \leq C \|\partial_x^m \tilde{u}_x\|_{L^{2}_{1+\epsilon}(\mathbb{R}^2)},
\]
we get
\[
\|\partial_x^m \tilde{v}_x\|_{L^2(\mathbb{R};L^\infty(\mathbb{R}^{+}))} \leq C \|\partial_x^m \tilde{w}_x\|_{L^2_{1+\epsilon}(\mathbb{R}^2)}.
\]
Using the hypothesis for the shear flow \(u^s\) and \(-1 + \ell < -\frac{1}{2}\),
\[
\|\partial_x^m (\tilde{v}_x u^{s}_{yy})\|_{L^2_{k+\epsilon}(\mathbb{R}^2)} \leq \|\partial_x^m \tilde{v}_x\|_{L^2(\mathbb{R};L^\infty(\mathbb{R}^{+}))} \|u^{s}_{yy}\|_{L^2_{k+\epsilon}(\mathbb{R}^2)} \\
\leq C \|\partial_x^m \tilde{w}_x\|_{L^2_{1+\epsilon}(\mathbb{R}^2)},
\]
and
\[
\|\partial_y \tilde{w}_x\|_{L^\infty(\mathbb{R};L^2_{k+\epsilon}(\mathbb{R}^2))} \leq C \|\partial_y \tilde{w}_x\|_{H^1(\mathbb{R};L^2_{k+\epsilon}(\mathbb{R}^2))} \leq C \|\tilde{w}_x\|_{H^{m}_{k+\epsilon}(\mathbb{R}^2)}.
\]
Thus, we have
\[
\int \left(\partial_x^m (\tilde{v}_x(\partial_y \tilde{w}_x + u^{s}_{yy})) \right) \langle y \rangle^{2(k+\ell)} \partial_x^m \tilde{w}_x dx dy \\
\leq C \|\tilde{w}_x\|^3_{H^{m}_{k+\epsilon}} + \frac{32}{\epsilon} (\|\tilde{w}_x\|_{H^{m}_{k+\epsilon}}^2 + \|\tilde{w}_x\|_{H^{m}_{k+\epsilon}}^2) + \frac{\epsilon}{4} \|\partial_x^m \tilde{w}_x\|^2_{L^2_{1+\epsilon}}. \tag{3.14}
\]
From (3.13) and (3.14), we have, if \(k + \ell > \frac{3}{2}\),
\[
\frac{1}{2} \frac{d}{dt} \|\tilde{w}_x\|^2_{H^{m}_{k+\epsilon}(\mathbb{R}^2)} + \frac{3\epsilon}{4} \|\partial_x^m \tilde{w}_x\|^2_{L^2_{k+\epsilon}} + \frac{3}{4} \|\partial_y \partial_x^m \tilde{w}_x\|^2_{L^2_{k+\epsilon}} \\
\leq C \left(\|\tilde{w}_x\|^2_{H^{m}_{k+\epsilon}(\mathbb{R}^2)} + \|\tilde{w}_x\|^3_{H^{m}_{k+\epsilon}(\mathbb{R}^2)} \right) + \frac{32}{\epsilon} (\|\tilde{w}_x\|_{H^{m}_{k+\epsilon}}^4 + \|\tilde{w}_x\|^2_{H^{m}_{k+\epsilon}}). \tag{3.15}
\]

End of proof of Theorem 3.4. Combining (3.10) and (3.12), for \(m \geq 6, k > 1, \frac{3}{2} - k < \ell < \frac{1}{2}\) and \(0 < \epsilon \leq 1\), we get
\[
\frac{d}{dt} \|\tilde{w}_x\|^2_{H^{m}_{k+\epsilon}(\mathbb{R}^2)} \leq C \left(\|\tilde{w}_x\|^2_{H^{m}_{k+\epsilon}(\mathbb{R}^2)} + \|\tilde{w}_x\|^m_{H^{m}_{k+\epsilon}(\mathbb{R}^2)} \right), \tag{3.15}
\]
with \(C > 0\) independent of \(\epsilon\).

From (3.15), by the nonlinear Gronwall’s inequality, we have
\[
\|\tilde{w}_x(t)\|_{H^{m}_{k+\epsilon}(\mathbb{R}^2)} \leq \frac{\|\tilde{w}_x(0)\|_{H^{m}_{k+\epsilon}}^{m-2}}{e^{\frac{m-2}{2}(t-1)}} \left(\frac{(m-1)e^{\frac{m-2}{2}t} - (m-1)e^{\frac{m-2}{2}t}}{\epsilon t} \right)^{m-2}, \hspace{1cm} 0 < t \leq T_c,
\]
where we choose $T_\epsilon > 0$ such that
\[
\left(e^{-\frac{C}{2} T_\epsilon \left(\frac{m}{2} - 1 \right) - \frac{m}{2}} - 1 \right) \frac{C}{2} T_\epsilon \tilde{\zeta}^{m-2} = \left(\frac{4}{3} \right)^{m-2} .
\]
Finally, we get for any $\| \hat{w}_\epsilon (0) \|_{H^m_{k+\ell}(\mathbb{R}_+^2)} \leq \tilde{\zeta}$, and $0 < \epsilon \leq \epsilon_0$,
\[
\| \hat{w}_\epsilon (t) \|_{H^m_{k+\ell}(\mathbb{R}_+^2)} \leq \frac{4}{3} \| \hat{w}_\epsilon (0) \|_{H^m_{k+\ell}(\mathbb{R}_+^2)} \leq 2 \| \hat{w}_\epsilon \|_{H^m_{k+\ell}(\mathbb{R}_+^2)} , \quad 0 < t \leq T_\epsilon .
\]

The rest of this paper is dedicated to improve the results of Proposition 3.9, and try to get an uniform estimate with respect to ϵ. Of course, we have to recall the assumption on the shear flow in the main Theorem 1.1.

4. Formal transformations

Since the estimate (3.10) is independent of ϵ, we only need to treat (3.12) in a new way to get an estimate which is also independent of ϵ. To simplify the notations, from now on, we drop the notation tilde and sub-index ϵ, that is, with no confusion, we take
\[
u = \tilde{\nu}_\epsilon , \quad w = \tilde{w}_\epsilon .
\]

4.1. The cut-off functions and a priori assumptions. We will decompose the approximate solution into the monotone part and convex part, so we need to introduce the cut-off functions. Choose $\phi_1, \phi_2, \psi \in C^\infty (\mathbb{R}_+), 0 \leq \phi_1, \phi_2, \psi \leq 1$ with
\[
\phi_1 (y) = 1 \quad \text{for} \quad 0 \leq y \leq a - 3a_0 ; \quad \phi_1 (y) = 0 \quad \text{for} \quad y \geq a - 2a_0 ; \\
\phi_2 (y) = 0 \quad \text{for} \quad 0 \leq y \leq a + 2a_0 ; \quad \phi_2 (y) = 1 \quad \text{for} \quad y \geq a + 3a_0 ; \\
\psi (y) = 1 \quad \text{for} \quad | y - a | \leq 4a_0 ; \quad \psi (y) = 0 \quad \text{for} \quad | y - a | \geq 5a_0 .
\]

Also the support of those cut-off functions are as follows
\[
I_{\phi_1} = \{ y ; 0 \leq y \leq a - 2a_0 \} , \quad I_{\phi_1'} = \{ y ; a - 3a_0 \leq y \leq a - 2a_0 \} , \\
I_{\phi_2} = \{ y ; y \geq a + 2a_0 \} , \quad I_{\phi_2'} = \{ y ; y \geq a + 3a_0 \} , \\
I_{\psi} = \{ y ; | y - a | \leq 4a_0 \} , \quad I_{\psi'} = \{ y ; 4a_0 \leq | y - a | \leq 5a_0 \} .
\]

And we have
\[
I_{\phi_1} \cup I_{\phi_2} \subset \{ y ; \psi (y) = 1 \} , \quad I_{\psi} \subset \{ y ; \phi_1 (y) = 1 \} \cup \{ y ; \phi_2 (y) = 1 \} .
\]

Let $w \in L^\infty ([0, T]; H^m_{k+\ell}(\mathbb{R}_+^2)), m \geq 6, k > 1, 0 \leq \ell < \frac{1}{2}, k + \ell > \frac{3}{2}$ be a classical solution of (3.2) which satisfies the following à priori condition
\[
\| w \|_{L^\infty ([0, T]; H^m_{k+\ell}(\mathbb{R}_+^2))} \leq \zeta .
\]

Then (A.2) gives
\[
\| \langle y \rangle^{k+\ell} w \|_{L^\infty ([0, T] \times \mathbb{R}_+^2)} \leq C \langle \| \langle y \rangle^{k+\ell} w \|_{L^\infty ([0, T]; L^2(\mathbb{R}_+^2))} \rangle + \| \langle y \rangle^{k+\ell} w \|_{L^\infty ([0, T]; L^2(\mathbb{R}_+^2))} \|_{L^\infty ([0, T]; L^2(\mathbb{R}_+^2))} \leq C_\eta \| w \|_{L^\infty ([0, T]; H^m_{k+\ell}(\mathbb{R}_+^2))} ,
\]

which implies
\[
| \partial_y u (t, x, y) | = | w (t, x, y) | \leq C_\eta \zeta \langle y \rangle^{-k-\ell} , \quad (t, x, y) \in [0, T] \times \mathbb{R}_+^2 .
\]
and similarly
\[|\partial_y^2 u(t, x, y)| = |\partial_y w(t, x, y)| \leq \hat{C}_m \zeta, \quad (t, x, y) \in [0, T] \times \mathbb{R} \times I_\psi. \]

We assume that \(\zeta \) is small enough such that
\[C_m \zeta \leq \frac{c_0}{2}, \quad \hat{C}_m \zeta \leq \frac{c_0^2}{2}, \tag{4.2} \]
where \(C_m \) is the above Sobolev embedding constant. Then we have for \(\ell \geq 0 \),
\[|u_y^\ell + \partial_y w| \geq \frac{c_0^2}{2}, \quad (t, x, y) \in [0, T] \times \mathbb{R} \times I_\psi; \tag{4.3} \]
\[\frac{c_0}{4} \langle y \rangle^{-k} \leq |u_y^\ell + u_y| \leq 4c_0^{-1} \langle y \rangle^{-k}, \quad (t, x, y) \in [0, T] \times \mathbb{R} \times (I_{\phi_1} \cup I_{\phi_2}). \tag{4.4} \]

4.2. The formal transformation of equations.
Under the conditions (4.3) and (4.4), in this subsection, we will introduce two transformations of system (3.1), one to be used for the monotone domain, and the other for the convex domain.

Monotone parts.
Set, for \(0 \leq n \leq m \)
\[g_n = \left(\frac{\partial^n_x u}{u_y^\ell + u_y} \right)_y, \quad \eta_1 = \frac{u_{xy}}{u_y^\ell + u_y}, \quad \eta_2 = \frac{u_{yy} + u_{yy}}{u_y^\ell + u_y}, \quad \forall (t, x, y) \in [0, T] \times \mathbb{R} \times (I_{\phi_1} \cup I_{\phi_2}). \]

Formally, we will use the following notations
\[\partial_y^{-1} g_n(t, x, y) = \frac{\partial^n_x u}{u_y^\ell + u_y}(t, x, y), \quad \partial_y \partial_y^{-1} g_n = g_n, \quad \forall (t, x, y) \in [0, T] \times \mathbb{R} \times (I_{\phi_1} \cup I_{\phi_2}). \]

Applying \(\partial_x^n \) to (3.1), we have
\[\partial_t \partial_x^n u + (u^s + u) \partial_x \partial_x^n u + (\partial_x^n v) (u_y^\ell + \partial_y u) = \partial_y^2 \partial_x^n u + \epsilon \partial_y^2 \partial_x^n u + A_n^1 + A_n^2, \tag{4.5} \]
where
\[A_n^1 = -[\partial^n_x, (u^s + u)] \partial_x u = -\sum_{i=1}^n C_n \partial_x^i u \partial_x^{n+1-i} u, \]
\[A_n^2 = -[\partial^n_x, (u_y^\ell + \partial_y u)] v = -\sum_{i=1}^n C_n \partial_x^i u \partial_x^{n-i} v. \]

Dividing (4.5) with \((u_y^\ell + u_y) \) and performing \(\partial_y \) on the resulting equation, observing
\[\partial_x \partial_x^n u + \partial_y \partial_x^n v = \partial_x^n (\partial_x u + \partial_y v) = 0, \]
we have for \(j = 1, 2, \)
\[\phi_j \partial_y \left(\frac{\partial_t \partial_x^n u}{u_y^\ell + u_y} \right) + \phi_j (u^s + u) \partial_y \left(\frac{\partial_x \partial_x^n u}{u_y^\ell + u_y} \right) = \phi_j \partial_y \left(\frac{\partial^2_x \partial_x^n u + \epsilon \partial_x^2 \partial_x^n u}{u_y^\ell + u_y} \right) + \phi_j \partial_y \left(A_n^1 + A_n^2 \right). \]

We compute each term on the support of \(\phi_j \),
\[\partial_y \left(\frac{\partial_t \partial_x^n u}{u_y^\ell + u_y} \right) = \partial_y \left(\frac{\partial_t \partial_x^n u}{u_y^\ell + u_y} + \partial_y^{-1} g_n \frac{\partial_y u_y^\ell + \partial_t u_y^\ell}{u_y^\ell + u_y} \right) = \partial_t g_n + \partial_y \left(\partial_y^{-1} g_n \frac{\partial_y u_y^\ell + \partial_t u_y^\ell}{u_y^\ell + u_y} \right). \]
(u^s + u)\partial_y \left(\frac{\partial_x \partial^u_{u_y}}{u_y^s + u_y} \right) = (u^s + u) \left\{ \partial_x \partial_y \left(\frac{\partial^u_{u_y} u}{u_y^s + u_y} \right) + \partial_y \left(\frac{\partial^u_{u_y} u}{u_y^s + u_y} \right) \frac{u_{xy}}{u_y^s + u_y} \right\} + \left(\frac{\partial^u_{u_y} u}{u_y^s + u_y} \right) \partial_y \left(\frac{u_{xy}}{u_y^s + u_y} \right)

= (u^s + u)(\partial_x g_n + g_n \eta_1 + \partial_y^{-1} g_n \partial_y \eta_1),

\partial_y^2 \left(\frac{1}{u_y^s + u_y} \right) = \partial_y \left(\frac{u_{yy}^s + u_{yy}}{(u_y^s + u_y)^2} \right) = -u_{yy}^s + u_{yy} \left(\frac{u_{yy}^s + u_{yy}}{(u_y^s + u_y)^2} \right) + 2 \left(\frac{u_{yy}^s + u_{yy}}{(u_y^s + u_y)^2} \right)^2 \frac{1}{u_y^s + u_y},

\partial_y \left(\frac{\partial^u_{u_y} u}{u_y^s + u_y} \right) = \partial_y g_n + 2(\partial_y g_n) \eta_2 + 2g_n \partial_y \eta_2 - 4g_n \eta_2^2

- 8\partial_y^{-1} g_n \eta_2 \eta_1 + \partial_y \left(\partial_y^{-1} g_n \left(\frac{u_{yy}^s + u_{yy}}{(u_y^s + u_y)^2} \right) \right).

So

\partial_y^2 \partial^u_{u_y} = \partial_y g_n + 2(g_n \eta_2 - 2\partial_y^{-1} g_n \eta_2^2) + \partial_y^{-1} g_n \left(\frac{u_{yy}^s + u_{yy}}{(u_y^s + u_y)^2} \right),

\partial_y \left(\frac{\partial^u_{u_y} u}{u_y^s + u_y} \right) = \partial_y^2 g_n + 2(\partial_y g_n) \eta_2 + 2g_n \partial_y \eta_2 - 4g_n \eta_2^2

- 8\partial_y^{-1} g_n \eta_2 \eta_1 + \partial_y \left(\partial_y^{-1} g_n \left(\frac{u_{yy}^s + u_{yy}}{(u_y^s + u_y)^2} \right) \right).

Similarly, we have

\partial_y^2 \partial^u_{u_y} = \partial_y^2 \left(\frac{\partial^u_{u_y} u}{u_y^s + u_y} \right) + 2 \left(\frac{\partial^u_{u_y} u}{u_y^s + u_y} \right) \frac{u_{xy}}{u_y^s + u_y}

- 2 \frac{\partial^u_{u_y} u}{u_y^s + u_y} \left(\frac{u_{xy}}{u_y^s + u_y} \right)^2 + \frac{\partial^u_{u_y} u}{u_y^s + u_y} \frac{u_{xx}}{u_y^s + u_y},

\partial_y \left(\frac{\partial^u_{u_y} u}{u_y^s + u_y} \right) = \partial_y^2 g_n + 2\partial_x g_n \eta_1 + 2\partial_x \partial_y^{-1} g_n \partial_y \eta_1

- 2g_n \eta_1^2 - 4\partial_y^{-1} g_n \partial_y \eta_1 + \partial_y \left(\partial_y^{-1} g_n \left(\frac{u_{xy}}{u_y^s + u_y} \right) \right).

For the boundary condition, we only need to pay attention to \(j = 1 \). From (4.5) and the boundary condition for \((u, v)\) in (3.1), we observe

\partial^u_{u_y} u|_{y=0} = 0, \ \partial^u_{u_y} \partial^u_{u_y} u|_{y=0} = 0, \ \left(u_y^s + u_y \right)|_{y=0} \neq 0.

At the same time,

0 = \frac{\partial^u_{u_y} \partial^u_{u_y} u}{u_y^s + u_y}|_{y=0} = \partial_y g_n|_{y=0} + 2(g_n \eta_2 - 2\partial_y^{-1} g_n \eta_2^2)|_{y=0}

+ \partial_y^{-1} g_n \left(\frac{u_{yy}^s + u_{yy}}{(u_y^s + u_y)^2} \right)|_{y=0}.

We calculate each term \(\psi \eta \). Finally, we have, for \(j = 1, 2 \),

\[
\begin{align*}
\phi_j (\partial_y g_n)|_{y=0} &=
\left\{
\begin{array}{l}
\partial_t \phi_j g_n + (u^s + u) \phi_j \partial_x g_n - \phi_j \partial_y^2 g_n - \epsilon \phi_j \partial^2_y g_n \\
- \epsilon 2 \phi_j (\partial_x \partial_y^{-1} g_n) \partial_y \eta_1 = \phi_j M_n,
\end{array}
\right.
\end{align*}
\]

with \(M_n = \sum_{j=1}^n M^n_j \),

\[
\begin{align*}
M^n_1 &= -(u^s + u)(g_n \eta_1 + (\partial_y^{-1} g_n) \partial_y \eta_1), \\
M^n_2 &= 2(\partial_y g_n) \eta_2 + 2g_n(\partial_y \eta_2 - 2\eta_2) - 8(\partial_y^{-1} g_n) \eta_2 \partial_y \eta_2, \\
M^n_3 &= \epsilon (2(\partial_x g_n) \eta_1 - 2g_n \eta_2 - \partial_y^{-1} g_n) \partial_y \eta_1, \\
M^n_4 &= \partial_y \left(\partial_y^{-1} g_n \frac{(u^s + u) w_x + v(w_y + u_y)}{u_y + u_y}\right), \\
M^n_5 &= -\partial_y \left(\sum_{i=1}^n C^i_n \partial_x^i w \cdot \partial_y^{n+1-i} \right), \\
M^n_6 &= -\partial_y \left(\sum_{i=1}^n C^i_n \partial_x^i w \cdot \partial_y^{i-n} \right),
\end{align*}
\]

where we have used the relation,

\[
\partial_t u_y + \partial_x u_y - (u_y^{yy} + u_y^{yy}) - \epsilon u_{xx} = -(u^s + u) w_x + v(u_y^{yy} + w_y).
\]

The convex part. Taking the equation in (3.2) with derivative \(\partial^m_x \),

\[
\partial_t \partial^m_x w + (u^s + u) \partial_x \partial^m_x w + (\partial^m_x v)(u_y^{yy} + \partial_y w) = \partial_x^2 \partial^m_x w + \epsilon \partial^2_x \partial^m_x w
\]

(4.7)

On the support of \(\psi \), we have \(u_y^{yy} + w_y > 0 \), then set

\[
\begin{align*}
h_m &= \partial^m_x w, \\
\eta_3 &= \frac{u_y^{yy} + w_y}{u_y^{yy} + u_y}, \\
\eta_4 &= \frac{w_y^{yy} + w_y}{u_y^{yy} + u_y}.
\end{align*}
\]

Dividing (4.7) with \(\sqrt{u_y^{yy} + w_y} \), we have, on the support of \(\psi \),

\[
\begin{align*}
\frac{\partial_t \partial^m_x w}{\sqrt{u_y^{yy} + w_y}} + (u^s + u) \frac{\partial_x \partial^m_x w}{\sqrt{u_y^{yy} + w_y}} + \frac{\sqrt{u_y^{yy} + w_y} \partial^m_x v}{\sqrt{u_y^{yy} + w_y}} = \\
\frac{\partial^2_x \partial^m_x w}{\sqrt{u_y^{yy} + w_y}} + \frac{-[\partial^m_x, (u^s + u)] \partial_x w - [\partial^m_x, (u_y^{yy} + \partial_y w)] v}{\sqrt{u_y^{yy} + w_y}}.
\end{align*}
\]

We calculate each term

\[
\begin{align*}
\frac{\partial_t \partial^m_x w}{\sqrt{u_y^{yy} + w_y}} &= \partial_t h_m + \frac{1}{2} h_m \frac{\partial_t (u_y^{yy} + w_y)}{(u_y^{yy} + w_y)}, \\
\frac{\partial_x \partial^m_x w}{\sqrt{u_y^{yy} + w_y}} &= \partial_x h_m + \frac{1}{2} h_m \frac{w_y}{(u_y^{yy} + w_y)},
\end{align*}
\]

and

\[
\eta_2|_{y=0} = \frac{u_y^{yy} + u_y}{u_y^{yy} + u_y}|_{y=0} = 0, \quad \partial_y^{-1} g_n(t, x, y)|_{y=0} = \frac{\partial^m_x u}{u_y^{yy} + u_y}(t, x, y)|_{y=0} = 0,
\]

we get then

\((\partial_y g_n)|_{y=0} = 0, \quad 0 \leq n \leq m.\)
\[-\frac{\partial^2 \sigma^m w}{\sqrt{u_{yy}^2 + u_y^2}} = -\partial^2_y \frac{\partial^m w}{\sqrt{u_{yy}^2 + u_y^2}} + 2\partial_y \partial^m w \partial_y \frac{1}{\sqrt{u_{yy}^2 + u_y^2}} + \partial^m w \partial^2_y \frac{1}{\sqrt{u_{yy}^2 + u_y^2}},\]

Similarly, we have

\[-\frac{\partial^2 \partial^m w}{\sqrt{u_{yy}^2 + u_y^2}} = -\partial^2_y h_m + 2\partial_x \partial^m w \partial_x \left(\frac{1}{\sqrt{u_{yy}^2 + u_y^2}} \right) + \partial^m w \partial^2_x \left(\frac{1}{\sqrt{u_{yy}^2 + u_y^2}} \right),\]

and

\[2\partial_x \partial^m w \partial_x \left(\frac{1}{\sqrt{u_{yy}^2 + u_y^2}} \right) = -\partial_x \partial^m w \partial_x \left(\frac{1}{\sqrt{u_{yy}^2 + u_y^2}} \right) = -\partial_x h_m \eta_3 - \frac{1}{2} h_m \eta_3^2 - \frac{5}{4} h_m \eta_3^2 - \frac{1}{2} h_m \frac{w_{yy}^2 + u_y^2}{u_y^2 + w_y}.\]

Then

\[-\frac{\partial^2 \partial^m w}{\sqrt{u_{yy}^2 + u_y^2}} = -\partial^2_y h_m - \partial_x h_m \eta_4 + \frac{1}{4} h_m \eta_4^2 - \frac{1}{2} h_m \frac{w_{xx}^2}{u_y^2 + w_y}.\]

Taking the equation (3.2) with derivative \(y\), we get the relation

\[\partial_t (w_y) + (u^s + u)w_{xy} - w_{yyy} - \epsilon w_{xy} = -v(w_{yy} + u_{yy}) + u_x(u_{yy} + w_y) - (u_y^s + w)w_x,\]

and also

\[\partial_t (u_{yy}^s) - u_{xyyy} = 0,\]

Finally we get

\[\partial_t (\psi h_m) + (u^s + u)\partial_x (\psi h_m) + \sqrt{u_{yy}^2 + u_y^2} \psi \partial^m w \partial^2_x \psi = \psi \partial^2_y h_m + \epsilon \psi \partial^2_x h_m + \psi N_m, \tag{4.8}\]

where \(N_m = N_1^m + N_2^m + N_3^m + N_4^m\)

\[N_1^m = \frac{1}{4} h_m \eta_3^2 + \partial_y h_m \eta_3 - \frac{\epsilon}{4} h_m \eta_4^2 + \epsilon \partial_x h_m \eta_4,\]

\[N_2^m = h_m \frac{v(u_{yy}^s + w_{yy}) - u_x(u_{yy} + w_y) - (u_y^s + w)w_x)}{2\sqrt{u_{yy}^2 + u_y^2}},\]

\[N_3^m = -\sum_{p=0}^{m-1} C_m^p \partial_x^{m-p} u \partial_x^{p+1} w \sqrt{u_{yy}^2 + u_y^2},\]

\[N_4^m = -\sum_{p=0}^{m-1} C_m^p \partial_x^{m-p} u \partial_x^{p+1} w \sqrt{u_{yy}^2 + u_y^2}.\]
5. Uniform estimate for the monotone part

We first have

Lemma 5.1. If \(\tilde{w}_0 \in H^{m+2}_{2k+\ell}(\mathbb{R}^2_+) \), \(m \geq 6, k > 1, 0 \leq \ell < \frac{1}{2}, k+\ell > \frac{3}{2} \) which satisfies (4.1)-(4.2) with \(0 < \zeta \leq 1 \), then \((\phi_2 g_m)(0) \in H^2_{k+\ell}(\mathbb{R}^2_+) \), and we have

\[
\| (\phi_2 g_m)(0) \|_{H^2_{k+\ell}(\mathbb{R}^2_+)} \leq C \| \tilde{w}_0 \|_{H^{m+2}_{2k+\ell}(\mathbb{R}^2_+)}.
\]

Remark. With the same proof, we can also get

\[
\| \phi_2 g_m \|_{H^2_{k+\ell}(\mathbb{R}^2_+)} \leq C \| w \|_{H^{m+2}_{2k+\ell}(\mathbb{R}^2_+)}.
\]

In fact, observing

\[
\phi_2 g_m(0) = \phi_2 \left(\frac{\partial_x^m \tilde{w}_0}{u_{0,y}^0 + \tilde{w}_0} \right)_y = \phi_2 \frac{\partial_y \partial_x^m \tilde{u}_0}{u_{0,y}^0 + \tilde{u}_0} - \phi_2 \frac{\partial_y^2 \partial_x^m \tilde{u}_0}{u_{0,y}^0 + \tilde{u}_0} \eta_2(0),
\]

then (4.4) implies

\[
\langle y \rangle^{k+\ell} \left| \phi_2 g_m(0) \right| \leq C \langle y \rangle^{2k+\ell} \left| \phi_2 \partial_x^m \tilde{w}_0 \right| + C \langle y \rangle^{2k+\ell-1} \left| \phi_2 \partial_y \partial_x^m \tilde{u}_0 \right|,
\]

which finishes the proof of this Lemma.

Proposition 5.2. Let \(w \in L^\infty([0, T]; H^{m+2}_{k+\ell}(\mathbb{R}^2_+)) \), \(m \geq 6, k > 1, 0 \leq \ell < \frac{1}{2} \) and \(k+\ell > \frac{3}{2} \), satisfy (4.1)-(4.2) with \(0 < \zeta \leq 1 \). Assume that the shear flow \(w^* \) verifies the conclusion of Lemma 2.1, and \(g_n \) satisfies the equation (4.6) for \(1 \leq n \leq m \), then we have the following estimates, for \(t \in [0, T] \)

\[
\frac{d}{dt} \sum_{n=1}^{m} \| \phi_1 g_n \|_{L^2_+}(\mathbb{R}^2_+) + \sum_{n=1}^{m} \| \phi_1 \partial_y g_n \|_{L^2_+}(\mathbb{R}^2_+) + \sum_{n=1}^{m} \| \phi_1 \partial_x g_n \|_{L^2_+}(\mathbb{R}^2_+)
\]

\[
\leq C_2 \left(\sum_{n=1}^{m} \| \phi_1 g_n \|_{L^2_+}(\mathbb{R}^2_+) + \| w \|_{H^{m+2}_{k+\ell}(\mathbb{R}^2_+)} \right),
\]

and

\[
\frac{d}{dt} \sum_{n=1}^{m} \| \phi_2 g_n \|_{L^2_{k+\ell}(\mathbb{R}^2_+)} + \sum_{n=1}^{m} \| \phi_2 \partial_y g_n \|_{L^2_{k+\ell}(\mathbb{R}^2_+)} + \sum_{n=1}^{m} \| \phi_2 \partial_x g_n \|_{L^2_{k+\ell}(\mathbb{R}^2_+)}
\]

\[
\leq C_2 \left(\sum_{n=1}^{m} \| \phi_2 g_n \|_{L^2_{k+\ell}(\mathbb{R}^2_+)} + \| w \|_{H^{m+2}_{k+\ell}(\mathbb{R}^2_+)} \right),
\]

where \(C_2 \) is independent of \(\epsilon \).

Approach of proof for the Proposition 5.2: With the boundary condition \((\partial_y g_n)_{y=0} = 0 \), the estimate of \(\phi_1 g_n \) is simpler than \(\phi_2 g_n \), since \(\phi_1 \) is compactly supported, and then we can neglect the weight \(\langle y \rangle^{2(k+\ell)} \) for \(\phi_1 g_n \) in the estimate (5.1). On the other hand, the proof of (5.2) is much more complicate, since the approximate solution \(w^* \) obtained in Theorem 3.4 is belongs to \(L^\infty([0, T]; H^{m+2}_{k+\ell}(\mathbb{R}^2_+)) \), which implies only \(\phi_2 g_n \in L^\infty([0, T]; H^2_{k+\ell}(\mathbb{R}^2_+)) \). Then we can’t use \(\langle y \rangle^{2(k+\ell)} \phi_2 g_n \) as the test function to the equation (4.6) to establish the estimate (5.2), to overcome this difficulty, we study the following system which is a re-writing of the system...
with \(\tilde{g}_n = \phi_2 g_n, n = 1, \ldots, m, \)

\[
\begin{cases}
\partial_t \tilde{g}_n + (u^s + u) \partial_x \tilde{g}_n - \partial_x^2 \tilde{g}_n - \epsilon \partial_x \tilde{g}_n \\
- \epsilon (\partial_y^{-1} \partial_x \tilde{g}_n) \partial_y \eta_1 - \epsilon (\partial_x \tilde{g}_n) \eta_1 = F_n(\tilde{g}_1, \ldots, \tilde{g}_n, w), \\
(\partial_y \tilde{g}_n)|_{y = 0} = 0,
\end{cases}
\]

(5.3)

where

\[
F_n(\tilde{g}_1, \ldots, \tilde{g}_n, w) = \sum_{j=0}^{6} \tilde{M}_j,
\]

with \(\tilde{M}_j \) defined as follows:

\[
\begin{align*}
\tilde{M}_0 &= (\partial_y^2 \phi_2) g_n - \partial_y (2 \phi_2' g_n) - \epsilon \partial_x \partial_y^{-1} (2 \phi_2' \partial_y^{-1} g_n) \partial_y \eta_1, \\
\tilde{M}_1 &= \phi_2 M_1^n = - (u^s + u) \left(\tilde{g}_n \eta_1 + (\partial_y^{-1} \tilde{g}_n) \partial_y \eta_1 + (2 \phi_2' \partial_y^{-1} g_n) \partial_y \eta_1 \right), \\
\tilde{M}_2 &= \phi_2 M_2^n = 2(\partial_y \tilde{g}_n - \phi_2' g_n) \eta_2 + 2 \tilde{g}_n (\partial_y \eta_2 - 2 \eta_2) \\
&\quad - 8(\partial_y^{-1} (\phi_2' \partial_y^{-1} g_n) + \partial_y^{-1} g_n) \eta_2 \partial_y \eta_2, \\
\tilde{M}_3 &= \phi_2 M_3^n = \epsilon \left(2(\partial_y \tilde{g}_n) \eta_1 - 2 \tilde{g}_n \eta_1^2 - 4(\partial_y^{-1} (\phi_2' \partial_y^{-1} g_n) + \partial_y^{-1} \tilde{g}_n) \eta_1 \partial_y \eta_1 \right), \\
\tilde{M}_4 &= \phi_2 M_4^n = \tilde{g}_n \frac{(u^s + u) w_x + v(w_y + u^s_{yy})}{u_y^s + u_y} \\
&\quad + \left(\partial_y^{-1} (\phi_2' \partial_y^{-1} g_n) + \partial_y^{-1} \tilde{g}_n \right) \left(\frac{(u^s + u) w_x + v(w_y + u^s_{yy})}{u_y^s + u_y} \right), \\
\tilde{M}_5 &= \phi_2 M_5^n = \sum_{i=4}^{n} C_n^i \tilde{g}_i \partial_x^{n+1-i} u + \sum_{1 \leq i \leq 3} C_n^i \partial_x^i u \tilde{g}_n+1-i \\
&\quad + \sum_{i=4}^{n} C_n^i \left(\partial_y^{-1} (\phi_2' \partial_y^{-1} g_i) + \partial_y^{-1} \tilde{g}_n \right) \partial_x^{n+1-i} w \\
&\quad + \sum_{1 \leq i \leq 3} C_n^i \partial_x^i w \left(\partial_y^{-1} (\phi_2' \partial_y^{-1} g_{n+1-i}) + \partial_y^{-1} \tilde{g}_{n+1-i} \right), \\
\tilde{M}_6 &= \phi_2 M_6^n = \sum_{i=1}^{n} C_n^i \tilde{g}_i \eta_2 \partial_x^{n-i} u + \sum_{1 \leq i \leq n} C_n^i \tilde{g}_i \partial_x^{n+1-i} u \\
&\quad + \sum_{i=1}^{n} C_n^i (\partial_y \tilde{g}_i - \phi_2' g_i) \partial_x^{n-i} v \\
&\quad + \sum_{i=1}^{n} \left(\partial_y^{-1} (\phi_2' \partial_y^{-1} g_i) + \partial_y^{-1} \tilde{g}_i \right) \left(C_n^i \partial_x^{n-i} v \partial_y \eta_2 + C_n^i \partial_x^{n+1-i} u \eta_2 \right).
\end{align*}
\]

In fact, from (4.6), we just need to use the following commutator:

\[
\phi_2 \partial_y g_n = \partial_y (\phi_2 g_n) - (\phi_2') g_n, \quad \phi_2 \partial_y^{-1} g_n = \partial_y^{-1} (\phi_2 g_n) + \partial_y^{-1} (\phi_2' \partial_y^{-1} g_n).
\]

With the above calculation, we find that (5.3) is a linear system for \(\tilde{g}_n, n = 1, \ldots, m \) with the coefficients and the source terms depends on \(w \) and their derivatives up to
order m, we will clarify this confirmation in the following proof of the the Proposition 5.2. We prove now the estimate (5.2) by the following approach: For the linear system (5.3), we prove firstly the following \textit{à priori} estimate,

$$
\frac{d}{dt}\sum_{n=1}^{m} \left\| \tilde{g}_n \right\|^2_{L^2_{k+\ell}(\mathbb{R}^2_+)} + \sum_{n=1}^{m} \left\| \partial_y \tilde{g}_n \right\|^2_{L^2_{k+\ell}(\mathbb{R}^2_+)} + \epsilon \sum_{n=1}^{m} \left\| \partial_x \tilde{g}_n \right\|^2_{L^2_{k+\ell}(\mathbb{R}^2_+)} \\
\leq C_2 \left(\sum_{n=1}^{m} \left\| \tilde{g}_n \right\|^2_{L^2_{k+\ell}(\mathbb{R}^2_+)} + \|w\|^2_{H^m_{k+\ell}(\mathbb{R}^2_+)} \right).
$$

(5.4)

Lemma 5.1 imply that $\tilde{g}_n(0) = (\phi_2 g_n)(0) \in H^2_{k+\ell}(\mathbb{R}^2_+), n = 1, \ldots, m$, then by using Hahn-Banach theorem, this \textit{à priori} estimate imply the existence of solutions

$$
\tilde{g}_n \in L^\infty([0, T]; H^2_{k+\ell}(\mathbb{R}^2_+)), \quad n = 1, \ldots, m.
$$

Finally, the uniqueness of solution give $\tilde{g}_n = \phi_2 g_n$, then we can prove the estimate (5.2) by proving (5.4). So that the proof of the Proposition 5.2 is reduced to the proof of the \textit{à priori} estimate (5.4).

Proof of the \textit{à priori} estimate (5.4). Multiplying the linear system (5.3) by $\langle y \rangle^{2(k+\ell)} \tilde{g}_n \in L^\infty([0, T]; H^2_{k+\ell}(\mathbb{R}^2_+))$ and integrating over $\mathbb{R} \times \mathbb{R}^+$. We start to deal with the left hand of (5.3) first, we have

$$
\int_{\mathbb{R}^2_+} \partial_y \langle y \rangle^{2(k+\ell)} \tilde{g}_n dxdy = \frac{1}{2} \frac{d}{dt} \left\| \tilde{g}_n \right\|^2_{L^2_{k+\ell}(\mathbb{R}^2_+)}
$$

and

$$
\int_{\mathbb{R}^2_+} (u^s + u) \partial_x \langle y \rangle^{2(k+\ell)} \tilde{g}_n dxdy
$$

\begin{align*}
&= \frac{1}{2} \int_{\mathbb{R}^2_+} (u^s + u) \cdot \partial_x \langle y \rangle^{2(k+\ell)} \tilde{g}_n^2 dxdy \\
&\quad \leq \frac{1}{2} \|u_x\|_{L^\infty(\mathbb{R}^2_+)} \|\tilde{g}_n\|^2_{L^2_{k+\ell}(\mathbb{R}^2_+)} \\
&\quad \leq C \|w\|_{H^2_{k+\ell}(\mathbb{R}^2_+)} \|\tilde{g}_n\|^2_{L^2_{k+\ell}(\mathbb{R}^2_+)}.
\end{align*}

Integrating by part, where the boundary value is vanish,

$$
- \int_{\mathbb{R}^2_+} \partial^2_{y^2} \langle y \rangle^{2(k+\ell)} \tilde{g}_n dxdy \\
= \|\partial_y \tilde{g}_n\|^2_{L^2_{k+\ell}(\mathbb{R}^2_+)} + \int_{\mathbb{R}^2_+} \partial_y \langle y \rangle^{2(k+\ell)} \tilde{g}_n dxdy \\
\geq \frac{3}{4} \|\partial_y \tilde{g}_n\|^2_{L^2_{k+\ell}(\mathbb{R}^2_+)} - 4(k + \ell)^2 \|\tilde{g}_n\|^2_{L^2(\mathbb{R}^2_+)}.
$$

and

$$
- \epsilon \int_{\mathbb{R}^2_+} \partial^2_x \langle y \rangle^{2(k+\ell)} \tilde{g}_n dxdy = \epsilon \|\partial_x \tilde{g}_n\|^2_{L^2_{k+\ell}(\mathbb{R}^2_+)}.
$$

We have also

$$
- \epsilon \int_{\mathbb{R}^2_+} (\partial_x \partial_y^{-1} \tilde{g}_n) \partial_y \eta \langle y \rangle^{2(k+\ell)} \tilde{g}_n dxdy \\
= \epsilon \int_{\mathbb{R}^2_+} \partial^{-1} \tilde{g}_n \partial_y \eta \langle y \rangle^{2(k+\ell)} \partial_x \tilde{g}_n dxdy
$$
Then we can finish the proof of the \(\text{`a priori} \) estimate (5.4) by the following four Lemmas.

Lemma 5.3. Under the assumption of Proposition 5.2, we have
\[
\| \partial_y^{-1} \hat{g}_n \partial_y \eta_1 \|_{L_{2+k+\ell}^2(\mathbb{R}^2_z)}^2 + \| \partial_y^{-1} \hat{g}_n \partial_y \eta_1 \|_{L^2(\mathbb{R}^2_z)}^2 \leq C \| \hat{g}_n \|_{L_{2+k+\ell}^2(\mathbb{R}^2_z)}^2.
\]
where \(C \) is independent of \(\epsilon \).

Proof. Notice that (4.1) and (4.2) imply
\[
|1_{I_{2\epsilon^2}} \eta_1| \leq C(y)^{-\ell}, \quad |1_{I_{2\epsilon^2}} \partial_y \eta_1| \leq C(y)^{-\ell},
\]
\[
|1_{I_{2\epsilon^2}} \partial_y \eta_1| \leq C(y)^{-\ell-1}, \quad |1_{I_{2\epsilon^2}} \partial_y \partial_y \eta_1| \leq C(y)^{-\ell-1}.
\]

By Lemma A.1, we have
\[
\| \partial_y^{-1} \hat{g}_n (\partial_y \partial_y \eta_1) \|_{L_{2+k+\ell}^2(\mathbb{R}^2_z)}^2 \leq C \| (y)^{k-1} \partial_y^{-1} \hat{g}_n \|_{L^2(\mathbb{R}^2_z)}^2
\]
\[
\leq C \| \hat{g}_n \|_{L_{2+k+\ell}^2(\mathbb{R}^2_z)}^2 \leq C \| \hat{g}_n \|_{L_{2+k+\ell}^2(\mathbb{R}^2_z)}^2.
\]
Similarly, we also obtain
\[
\| \partial_y^{-1} (\partial_y \partial_y^{-1} g_n) \|_{L_{2+k+\ell}^2(\mathbb{R}^2_z)}^2 \leq C \| \hat{g}_n \|_{L_{2+k+\ell}^2(\mathbb{R}^2_z)}^2.
\]
For \(\partial_y^{-1} (\partial_y \partial_y^{-1} g_n) \), we have
\[
\partial_y^{-1} (\partial_y \partial_y^{-1} g_n) = - \int_{y}^{+\infty} \phi_{2} \left(\frac{\partial_y u}{w_y + w} \right) \, dz,
\]
where \(\phi_{2} \) is supported in \([a + 2a_0, a + 3a_0] \), we have
\[
\| \partial_y^{-1} (\partial_y \partial_y^{-1} g_n) \|_{L_{2+k+\ell}^2(\mathbb{R}^2_z)}^2 \leq C \int_{-\infty}^{+\infty} \int_{0}^{a+3a_0} \left(\int_{y}^{+\infty} \phi_{2} \left(\frac{\partial_y u}{w_y + w} \right) \, dz \right)^2 \, dy \, dx
\]
\[
\leq C \int_{-\infty}^{+\infty} \left(\int_{a+2a_0}^{a+3a_0} \phi_{2} \left(\frac{\partial_y u}{w_y + w} \right) \, dx \right)^2 \, dy
\]
which finishes the proof of Lemma 5.3.

\[\square \]
Lemma 5.4. Under the assumption of Proposition 5.2, we have

\[
\left| \int_{\mathbb{R}^d_+} \sum_{j=0}^{3} \bar{M}_j^n \langle y \rangle^{2(2k+\ell)} \tilde{g}_n dxdy \right| \leq \frac{1}{8} \| \partial_y \tilde{g}_n \|_{L^2_{k+\ell} (\mathbb{R}^d_+)}^2 + \frac{\varepsilon}{8} \| \partial_x \tilde{g}_n \|_{L^2_{k+\ell} (\mathbb{R}^d_+)}^2 \\
+ \tilde{C}(\| \tilde{g}_n \|_{L^2_{k+\ell} (\mathbb{R}^d_+)}^2 + \| w \|_{H^m_{k+\ell} (\mathbb{R}^d_+)}^2),
\]

where \(\tilde{C} \) is independent of \(\varepsilon \).

Proof. For \(\tilde{M}_0^n = (\partial_\nu \phi) g_n - 2 \partial_y (\partial_\nu \phi g_n) - 2 \partial_\nu \partial_\nu^{-1} (\partial_\nu \partial_\nu^{-1} g_n) \partial_\nu \eta_1 \), the first term is compactly supported. The second and third term can be controlled like this after integrating by part

\[
- \int_{\mathbb{R}^d_+} (\partial_\nu (\partial_\nu \phi g_n) + \varepsilon \partial_\nu \partial_\nu^{-1} (\partial_\nu \partial_\nu^{-1} g_n) \partial_\nu \eta_1) \langle y \rangle^{2k+2\ell} \tilde{g}_n dxdy
\]

\[
= \int_{\mathbb{R}^d_+} (\partial_\nu \phi g_n) \partial_\nu (\langle y \rangle^{2k+2\ell} \tilde{g}_n) dxdy + \int_{\mathbb{R}^d_+} \varepsilon \partial_\nu^{-1} (\partial_\nu \partial_\nu^{-1} g_n) \partial_\nu \eta_1 \langle y \rangle^{2k+2\ell} \partial_x \tilde{g}_n dxdy
\]

\[
\leq \frac{1}{8} \| \partial_y \tilde{g}_n \|_{L^2_{k+\ell} (\mathbb{R}^d_+)}^2 + \frac{\varepsilon}{8} \| \partial_x \tilde{g}_n \|_{L^2_{k+\ell} (\mathbb{R}^d_+)}^2 + \tilde{C}(\| \tilde{g}_n \|_{L^2_{k+\ell} (\mathbb{R}^d_+)}^2 + \| w \|_{H^m_{k+\ell} (\mathbb{R}^d_+)}^2),
\]

where we have used Lemma 5.3, (4.1) and (4.2).

Recalling \(M_0^n = - (u^* + u) (\tilde{g}_n \eta_1 + (\partial_\nu^{-1} \tilde{g}_n) \partial_\nu \eta_1 + (\partial_\nu \partial_\nu^{-1} g_n) \partial_\nu \eta_1) \), by Lemma 5.3,

\[
\left| \int_{\mathbb{R}^d_+} (u^* + u) \tilde{g}_n \eta_1 \langle y \rangle^{2(k+\ell)} \tilde{g}_n dxdy \right| \leq C \| \tilde{g}_n \|_{L^2_{k+\ell} (\mathbb{R}^d_+)}^2,
\]

\[
\left| \int_{\mathbb{R}^d_+} (u^* + u) \partial_\nu^{-1} (\partial_\nu \partial_\nu^{-1} g_n) \partial_\nu \eta_1 \langle y \rangle^{2k+2\ell} \tilde{g}_n dxdy \right| \leq C \| w \|_{H^m_{k+\ell} (\mathbb{R}^d_+)}^2 + C \| \tilde{g}_n \|_{L^2_{k+\ell} (\mathbb{R}^d_+)}^2.
\]

Then, we have

\[
\left| \int_{\mathbb{R}^d_+} \bar{M}_0^n \langle y \rangle^{2(k+\ell)} \tilde{g}_n dxdy \right| \leq C(\| \tilde{g}_n \|_{L^2_{k+\ell} (\mathbb{R}^d_+)}^2 + \| w \|_{H^m_{k+\ell} (\mathbb{R}^d_+)}^2).
\]

The estimates of \(\bar{M}_2^n \) and \(\bar{M}_3^n \) needs the following decay rate of \(\eta_2 \):

\[
|1_{t_{\nu_2}} \eta_2| \leq C\langle y \rangle^{-1}, \quad |1_{t_{\nu_2}} \partial_x \eta_2| \leq C\langle y \rangle^{-2},
\]

\[
|1_{t_{\nu_2}} \partial_y \eta_2| \leq C\langle y \rangle^{-2}, \quad |1_{t_{\nu_2}} \partial \eta \eta_2| \leq C\langle y \rangle^{-2}.
\]

Recall \(\bar{M}_2^n = 2 (\partial_y \tilde{g}_n - \partial_\nu \phi g_n) \eta_2 + 2 \tilde{g}_n (\partial_y \eta_2 - 2 \eta_2^2) - 8 (\partial_\nu^{-1} (\partial_\nu \partial_\nu^{-1} g_n) + \partial_\nu^{-1} \tilde{g}_n) \eta_2 \partial_y \eta_2 \).

We have

\[
\left| \int_{\mathbb{R}^d_+} \tilde{g}_n (\partial_y \eta_2 - \eta_2^2) \langle y \rangle^{2(k+\ell)} \tilde{g}_n dxdy \right| \leq C \| \tilde{g}_n \|_{L^2_{k+\ell} (\mathbb{R}^d_+)}^2,
\]

\[
\left| \int_{\mathbb{R}^d_+} (\partial_y \tilde{g}_n) \eta_2 \langle y \rangle^{2(k+\ell)} \tilde{g}_n dxdy \right| \leq C \| \tilde{g}_n \|_{L^2_{k+\ell} (\mathbb{R}^d_+)}^2 + \frac{1}{8} \| \partial_y \tilde{g}_n \|_{L^2_{k+\ell} (\mathbb{R}^d_+)}^2.
\]
\[
\left| 2 \int_{\mathbb{R}_+^2} \partial_y^{-1} \tilde{g}_n \partial_y \eta_2 \langle y \rangle^{2(k+\ell)} \tilde{g}_n \, dx \, dy \right| \\
\leq C \| \langle y \rangle^{k+\ell-3} \partial_y^{-1} \tilde{g}_n \|_{L^2}^2 + \| \tilde{g}_n \|_{L^{2+\ell}(\mathbb{R}_+^2)}^2 \\
\leq C \| \tilde{g}_n \|_{L^{2+\ell}(\mathbb{R}_+^2)}^2.
\]

Hence, the proof of Lemma 5.4 is finished.

All together, we conclude
\[
\left| \int_{\mathbb{R}_+^2} \hat{M}_2^n \langle y \rangle^{2(k+\ell)} \tilde{g}_n \, dx \, dy \right| \leq C \left(\| \tilde{g}_n \|_{L^{2+\ell}(\mathbb{R}_+^2)}^2 + \| w \|_{H_{k+\ell}^2(\mathbb{R}_+^2)}^2 \right) + \frac{1}{8} \| \partial_y \tilde{g}_n \|_{L^{2+\ell}(\mathbb{R}_+^2)}^2,
\]
and exactly same computation gives also
\[
\left| \int_{\mathbb{R}_+^2} \hat{M}_3^n \langle y \rangle^{2(k+\ell)} \tilde{g}_n \, dx \, dy \right| \leq C \left(\| \tilde{g}_n \|_{L^{2+\ell}(\mathbb{R}_+^2)}^2 + \| w \|_{H_{k+\ell}^2(\mathbb{R}_+^2)}^2 \right) + \frac{\epsilon}{8} \| \partial_x \tilde{g}_n \|_{L^{2+\ell}(\mathbb{R}_+^2)}^2.
\]

Now using (4.1)-(4.2) and \(m \geq 6 \), with the same computation as above, we can get
\[
\left| \int_{\mathbb{R}_+^2} \hat{M}_4^n \langle y \rangle^{2(k+\ell)} \tilde{g}_n \, dx \, dy \right| \leq C \left(\| \tilde{g}_n \|_{L^{2+\ell}(\mathbb{R}_+^2)}^2 + \| w \|_{H_{k+\ell}^2(\mathbb{R}_+^2)}^2 \right),
\]
which finishes the proof of Lemma 5.4.

Lemma 5.5. Under the assumption of Proposition 5.2, we have
\[
\left| \int_{\mathbb{R}_+^2} \hat{M}_5^n \langle y \rangle^{2(k+\ell)} \tilde{g}_n \, dx \, dy \right| \leq \tilde{C} \left(\sum_{i=1}^n \| \tilde{g}_i \|_{L^{2+\ell}(\mathbb{R}_+^2)}^2 + \| w \|_{H_{k+\ell}^2(\mathbb{R}_+^2)}^2 \right),
\]
where \(\tilde{C} \) is independent of \(\epsilon \).

Proof. Recall,
\[
\hat{M}_5^n = \sum_{i \geq 4} C_n^i \hat{g}_i \partial_x^{n+1-i} u + \sum_{1 \leq i \leq 3} C_i^n \partial_x^i u \tilde{g}_n \tilde{g}_n^{n+1-i}
\]
\[
+ \sum_{i \geq 4, 1 \leq i \leq 3} C_n^i \left(\partial_y^{-1} (\partial_y \partial_y^{-1} \partial_x^{n+1-i}) \right) \tilde{g}_n \tilde{g}_n^{n+1-i} w
\]
\[
+ \sum_{1 \leq i \leq 3} C_n^i \partial_x^i w \left(\partial_y^{-1} (\partial_y \partial_y^{-1} \partial_x^{n+1-i}) \right) \tilde{g}_n \tilde{g}_n^{n+1-i},
\]
here if \(n \leq 3 \), we have only the last term. Then, for \(\| w \|_{H_{k+\ell}^m} \leq \zeta \leq 1, m \geq 6 \),
\[
\sum_{i \geq 4} C_n^i \| \partial_x^{n+1-i} u \|_{L^{2+\ell}(\mathbb{R}_+^2)} + \sum_{1 \leq i \leq 3} \| \partial_x^i u \tilde{g}_n \tilde{g}_n^{n+1-i} \|_{L^{2+\ell}(\mathbb{R}_+^2)}
\]
\[
\leq \sum_{i \geq 4} C_n^i \| \partial_x^{n+1-i} u \|_{L^{2+\ell}(\mathbb{R}_+^2)} + \sum_{1 \leq i \leq 3} \| \partial_x^i u \tilde{g}_n \tilde{g}_n^{n+1-i} \|_{L^{2+\ell}(\mathbb{R}_+^2)}
\]
\[
\leq C \sum_{i \geq 4} C_n^i \| \tilde{g}_i \|_{L^{2+\ell}(\mathbb{R}_+^2)} \| w \|_{H_{k+\ell}^{m+3-i}}.
\]
\[+ C \sum_{1 \leq i \leq 3} C_n^i \| w \|_{H^{i+3}} \| \tilde{g}_{n+1-i} \|_{L_{k+\ell}^2(\mathbb{R}_+^2)} \]
\[\leq C \sum_{i=1}^n \| \tilde{g}_i \|_{L_{k+\ell}^2}^2. \]

Similarly, for the second line in \(\tilde{M}_5 \), by Lemma 5.3, we have
\[\sum_{i \geq 4} C_n^i \| (\partial_y^{-1} \tilde{g}_i) \partial_x^{n+1-i} w \|_{L_{k+\ell}^2(\mathbb{R}_+^2)} + \sum_{i \geq 4} C_n^i \| \partial_x^{n+1-i} w \partial_y^{-1} (\phi_2' \partial_y^{-1} g_i) \|_{L_{k+\ell}^2(\mathbb{R}_+^2)} \]
\[\leq \sum_{i \geq 4} C_n^i \| (y)^{k+\ell-1} (\partial_y^{-1} \tilde{g}_i) \|_{L^2(\mathbb{R}_+^2)} \| (y) \partial_x^{n+1-i} w \|_{L^\infty} \]
\[+ \sum_{i \geq 4} C_n^i \| \partial_y^{-1} (\phi_2' \partial_y^{-1} g_i) \|_{L_{k+\ell}^2(\mathbb{R}_+^2)} \| \partial_x^{n+1-i} w \|_{L^\infty} \]
\[\leq C \sum_{i=1}^n \| \tilde{g}_i \|_{L_{k+\ell}^2(\mathbb{R}_+^2)} + C \| w \|_{H_{k+\ell}^m}. \]

We have proven Lemma 5.5. \(\square \)

Lemma 5.6. Under the assumption of Proposition 5.2, we have
\[\left| \int_{\mathbb{R}_+^2} \tilde{M}_n^\alpha (y)^2 (k+\ell) \tilde{g}_n \, dx \, dy \right| \]
\[\leq \frac{1}{8m} \sum_{p=1}^n \| \partial_y \tilde{g}_p \|_{L_{k+\ell}^2(\mathbb{R}_+^2)}^2 + \tilde{C} \left(\sum_{p=1}^n \| \tilde{g}_p \|_{L_{k+\ell}^2(\mathbb{R}_+^2)}^2 + \| w \|_{H_{k+\ell}^m(\mathbb{R}_+^2)}^2 \right), \]
where \(\tilde{C} \) is independent of \(\epsilon \).

Proof. Recall
\[\tilde{M}_6 = \sum_{i=1}^n C_n^i \tilde{g}_i \eta_2 \partial_x^{n-i} v + \sum_{i=1}^n C_n^i \tilde{g}_i \partial_x^{n+1-i} u \]
\[+ \sum_{i=1}^n C_n^i (\partial_y \tilde{g}_i - \phi_2' \tilde{g}_i) \partial_x^{n-i} v \]
\[+ \sum_{i=1}^n (\partial_y^{-1} (\phi_2' \partial_y^{-1} g_i) + \partial_y^{-1} \tilde{g}_i) \left(C_n^i \partial_x^{n-i} v \partial_y \eta_2 + C_n^i \partial_x^{n+1-i} u \eta_2 \right). \]

In \(\tilde{M}_6^\alpha \), we just study the term \(\partial_y \tilde{g}_i \partial_x^{n-i} v \) as an example, the others terms are similar,
\[\int_{\mathbb{R}_+^2} \partial_y \tilde{g}_i \partial_x^{n-i} v \langle y \rangle^{2k+2\ell} \tilde{g}_n = - \int_{\mathbb{R}_+^2} \tilde{g}_i \partial_x^{n-i} v \langle y \rangle^{2k+2\ell} \partial_y \tilde{g}_n \]
\[+ \int_{\mathbb{R}_+^2} \tilde{g}_i \partial_x^{n-i} u \langle y \rangle^{2k+2\ell} \tilde{g}_n \, dx \, dy, \]
\[
\int_{\mathbb{R}^2_+} \tilde{g}_1 \partial_x^{-1} v (y)^{2k+2\ell} \partial_y \tilde{g}_n \, dx \, dy \leq \frac{1}{8m} \| \partial_y \tilde{g}_n \|_{L^2_{k+\ell}}^2 + C \| \tilde{g}_1 \partial_x^{-1} v \|_{L^2_{k+\ell}}^2.
\]

\[
\| \tilde{g}_1 \partial_x^{-1} v \|_{L^2_{k+\ell}}^2 \leq \sup_{x \in \mathbb{R}} \frac{\int_0^y \int_{\mathbb{R}^+} \int_{-\infty}^{+\infty} \left| \partial_y^s \psi^m \right| \, dz \, dy}{\int_0^y \int_{\mathbb{R}^+} \int_{-\infty}^{+\infty} \left| \partial_y^s \psi^m \right| \, dz \, dy}
\]

Here we have used Lemma 5.3 and

\[
k + \ell - 1 > \frac{1}{2}, \| w \|_{H^m_{k+\ell}} \leq 1,
\]

and

\[
\partial_x \tilde{g}_j = \tilde{g}_{j+1} - \tilde{g}_j \eta_1 - \left(\partial_y^{-1}(\psi_y^{-1} g_n) + \partial_y^{-1} \tilde{g}_n \right) \cdot \partial_y \eta_1.
\]

By the similar trick, we have completed the proof of this lemma.

6. Uniform estimate for the convex part

In this section we consider the convex part. The goal is to obtain the \(L^2\) estimate of \(\partial_x^m w\) on the support of \(\psi\).

Proposition 6.1. Let \(w \in L^\infty([0, T]; H^{m+2}_{k+\ell} (\mathbb{R}^2_+)), m \geq 6\) be a solution of (3.2) such that it satisfies (4.1)-(4.2) with \(0 < \zeta \leq 1\). Assume that the shear flow \(w^s\) verifies the conclusion of Lemma 2.1, then \(h_m\) satisfies the following estimate,

\[
\frac{1}{2} \frac{d}{dt} \| \psi h_m \|_{L^2}^2 + 4 \| \psi \partial_y h_m \|_{L^2}^2 + 4 \| \psi \partial_x h_m \|_{L^2}^2 \leq C \| w \|_{H^m_{k+\ell}}^2 - \int_{\mathbb{R}^2_+} \psi^2 \sqrt{w_{yy} + w_y \partial_x^m v} \, h_m \, dx \, dy,
\]

where \(C\) is independent of \(0 < \epsilon \leq 1\).

Proof. Multiplying (4.8) by \(\psi h_m\), integrating over \(\mathbb{R}^2_+\), then integrating by part, where the boundary value is vanish, we get

\[
\frac{1}{2} \frac{d}{dt} \| \psi h_m \|_{L^2(\mathbb{R}^2_+)}^2 + \| \psi \partial_y h_m \|_{L^2(\mathbb{R}^2_+)}^2 + \epsilon \| \psi \partial_x h_m \|_{L^2(\mathbb{R}^2_+)}^2 \leq - \int_{\mathbb{R}^2_+} \psi^2 \sqrt{w_{yy} + w_y \partial_x^m v} \, h_m \, dx \, dy + \int_{\mathbb{R}^2_+} \psi^2 N_m \, h_m \, dx \, dy
\]
Now, for \(m \geq 6 \), and \(\|w\|_{H_{k+\ell}^m} \leq \zeta \), we have
\[
\left| \frac{1}{\sqrt{u_{yy} + w_y}} 1_{I_w} \right| \leq c_0^{-1}, \quad |\eta_3 1_{I_w}| + |\eta_4 1_{I_w}| \leq C, \tag{6.1}
\]
and also
\[
|h_m 1_{I_w}| = \left| \frac{\partial_{x}^{m} w}{\sqrt{u_{yy} + w_y}} 1_{I_w} \right| \leq c_0^{-1} |1_{I_w} \partial_{x}^{m} w|. \tag{6.2}
\]

Thus,
\[
\left| \int_{\mathbb{R}_{+}^2} (\partial_{x} u) \psi h_m^{2} dxdy \right| + \left| 2 \int_{\mathbb{R}_{+}^2} (\partial_{y} \psi) \psi h_{m} \partial_{y} h_{m} dxdy \right|
\]
\[
\leq C \|w\|_{H_{k+\ell}^{m}}^{2} + \frac{1}{8} \|\psi \partial_{y} h_{m}\|_{L^{2}(\mathbb{R}_{+}^{2})}^{2}.
\]

For the terms \(N_{m} = N_{1}^{m} + N_{2}^{m} + N_{3}^{m} + N_{4}^{m} \) with
\[
N_{1}^{m} = -\frac{1}{4} h_{m} \eta_{3}^{2} + \partial_{x} h_{m} \eta_{3} - \frac{c}{4} h_{m} \eta_{4}^{2} + \epsilon \partial_{x} h_{m} \eta_{4},
\]
\[
N_{2}^{m} = h_{m} \frac{v(u_{yy} + w_y) - u_x(u_{yy} + w_y) - (u_y + w)w_x}{2\sqrt{u_{yy} + w_y}},
\]
using (6.1) and (6.2), we can get directly
\[
\left| \int_{\mathbb{R}_{+}^{2}} \psi (N_{1}^{m} + N_{2}^{m}) \psi h_{m} dxdy \right|
\]
\[
\leq \frac{1}{8} \|\psi \partial_{y} h_{m}\|_{L^{2}}^{2} + \frac{c}{4} \|\psi \partial_{x} h_{m}\|_{L^{2}}^{2} + C \|w\|_{H_{k+\ell}^{m}(\mathbb{R}_{+}^{2})}^{2}.
\]

For the term
\[
N_{3}^{m} = \frac{\sum_{p=0}^{m-1} C_{m}^{p} \partial_{x}^{m-p} u \partial_{x}^{p+1} w}{\sqrt{u_{yy} + w_y}},
\]
using (6.1) and (A.3), we can get
\[
\left| \int_{\mathbb{R}_{+}^{2}} \psi N_{3}^{m} \psi h_{m} dxdy \right| \leq C \|w\|_{H_{k+\ell}^{m}(\mathbb{R}_{+}^{2})}^{2}.
\]

For the term
\[
N_{4}^{m} = -\frac{\sum_{p=0}^{m-1} C_{m}^{p} (\partial_{x}^{m-p} \partial_{y} w) \partial_{x}^{p} v}{\sqrt{u_{yy} + w_y}},
\]
observing that
\[
\partial_{x}^{p} v = -\int_{0}^{y} \partial_{x}^{p+1} udy,
\]
we can also get, by using (6.1) and (A.4),
\[
\left| \int_{\mathbb{R}_{+}^{2}} \psi^{2} \frac{\sum_{p=1}^{m-1} C_{m}^{p} (\partial_{x}^{m-p} \partial_{y} w) \partial_{x}^{p} v}{\sqrt{u_{yy} + w_y}} h_{m} dxdy \right| \leq C \|w\|_{H_{k+\ell}^{m}(\mathbb{R}_{+}^{2})}^{2}.
\]
We study finally the term
\[
\left| \int_{\mathbb{R}^2_+} \psi^2 \frac{(\partial^m_x \partial_y w) v}{\sqrt{u^s_{yy} + w_y}} \, h_m \, dx \, dy \right| = \left| \int_{\mathbb{R}^2_+} \psi^2 \frac{v(\partial^m_x \partial_y w) \partial^m_x w}{u^s_{yy} + w_y} \, dx \, dy \right|
\]
\[
= \frac{1}{2} \left| \int_{\mathbb{R}^2_+} \psi^2 \frac{v(\partial^m_x \partial_y w)^2}{u^s_{yy} + w_y} \, dx \, dy \right|
\]
\[
\leq \frac{1}{2} \left| \int_{\mathbb{R}^2_+} \left(\frac{v \psi^2}{u^s_{yy} + w_y} \right) (\partial^m_x w)^2 \, dx \, dy \right|
\]
\[
\leq C \|w\|_{H^{k+1}(\mathbb{R}^2_+)}^2,
\]
which conclude the Proposition 6.1.

We now study the worst term
\[
- \int_{\mathbb{R}^2_+} \psi^2 \sqrt{u^s_{yy} + w_y} (\partial^m_x v) h_m \, dx \, dy
\]
which is the main difficulty for the study of the Prandtl equation. We have

Proposition 6.2. **Under the assumption of Proposition 6.1, we have**
\[
- \int_{\mathbb{R}^2_+} \psi^2 \sqrt{u^s_{yy} + w_y} (\partial^m_x v) h_m \, dx \, dy
\]
\[
\leq C \|w\|_{H^{k+1}(\mathbb{R}^2_+)}^2 + \epsilon C (\|\phi_1 \partial_x g_m\|_{L^2(\mathbb{R}^2_+)}^2 + \|\phi_2 \partial_x g_m\|_{L^2(\mathbb{R}^2_+)}^2)
\]
\[
- \frac{d}{dt} \int_{\mathbb{R}^2_+} (\partial^m_x u)^2 \frac{\psi \psi'}{u^s_{yy} + w_y} \, dx \, dy
\]

where \(C\) is independent of \(\epsilon\).

Proof. By the definition of \(h_m, w\) and \(v\), firstly, we have
\[
- \int_{\mathbb{R}^2_+} \psi^2 \sqrt{u^s_{yy} + w_y} (\partial^m_x v) h_m \, dx \, dy
\]
\[
= - \int_{\mathbb{R}^2_+} \psi^2 \sqrt{u^s_{yy} + w_y} \partial^m_x v \, \frac{\partial^m_x w}{\sqrt{u^s_{yy} + w_y}} \, dx \, dy
\]
\[
= - \int_{\mathbb{R}^2_+} \psi^2 \partial^m_x v \partial^m_x w \, dx \, dy - \int_{\mathbb{R}^2_+} \psi^2 \partial^m_x v \partial_x \partial^m_x u \, dx \, dy
\]
\[
= - \int_{\mathbb{R}^2_+} \psi^2 \partial^m_x v \partial^m_x u \, dx \, dy + \int_{\mathbb{R}^2_+} \partial_x (\psi^2 \partial^m_x v \partial^m_x u) \, dx \, dy
\]
\[
= 2 \int_{\mathbb{R}^2_+} \psi \psi' \partial^m_x v \partial^m_x u \, dx \, dy,
\]
where we use \(\partial_x \partial^m_x v = -\partial_x^{m+1} u\), and the fact,
\[
\int_{\mathbb{R}^2_+} \psi^2 \partial^m_x^{m+1} u \partial^m_x u \, dx \, dy = \frac{1}{2} \int_{\mathbb{R}^2_+} \psi^2 \partial_x (\partial^m_x u)^2 \, dx \, dy = 0.
\]
Taking the first equation of (3.1) with derivative \(\partial^m_x\), we have
\[
\partial_x \partial^m_x u + (u^s + u) \partial_x^{m+1} u + (u^s + u) \partial^m_x v = \partial^m_x \partial^m_x u + \epsilon \partial_x^{m+2} u + A_1 + A_2, \tag{6.3}
\]
where \(A_1 = [u^s + u, \partial^m_x u], \quad A_2 = [u^s + u_y, \partial^m_x u] \). Observing
\[
\text{Supp}\, \psi' \subset \text{Supp}\, \psi \cap \{ y; \phi_1(y) = 1 \} \cup \{ y; \phi_2(y) = 1 \},
\]
multiplying (6.3) with \(\frac{2\psi' \partial^m u}{u^s + u_y} \), we get
\[
2 \int_{\mathbb{R}^2_+} \psi' \partial^m_x \psi' \partial^m_y u \, dx \, dy = - \int_{\mathbb{R}^2_+} \psi' \partial^m_x \frac{2\psi' \partial^m u}{u^s + u_y} \, dx \, dy
\]
\[
- \int_{\mathbb{R}^2_+} (u^s + u) \partial^m_x u \, dx \, dy
\]
\[
+ \int_{\mathbb{R}^2_+} \partial^m_y \psi' \partial^m_x u \, dx \, dy
\]
\[
+ \epsilon \int_{\mathbb{R}^2_+} \partial^m_x u \, dx \, dy
\]
\[
= - \frac{d}{dt} \int_{\mathbb{R}^2_+} (\partial^m_x u)^2 \frac{\psi' (\partial^m_x u)^2}{u^s + u_y} \, dx \, dy
\]
\[
+ \int_{\mathbb{R}^2_+} (\partial^m_x u)^2 \partial_t \left(\frac{\psi' (\partial^m_x u)^2}{u^s + u_y} \right) \, dx \, dy.
\]

Now, we study each term of (6.5).

\[
I_1 = - \frac{d}{dt} \int_{\mathbb{R}^2_+} (\partial^m_x u)^2 \frac{\psi' (\partial^m_x u)^2}{u^s + u_y} \, dx \, dy
\]
\[
= \frac{d}{dt} \int_{\mathbb{R}^2_+} (\partial^m_x u)^2 \frac{\psi' (\partial^m_x u)^2}{u^s + u_y} \, dx \, dy + \int_{\mathbb{R}^2_+} (\partial^m_x u)^2 \partial_t \left(\frac{\psi' (\partial^m_x u)^2}{u^s + u_y} \right) \, dx \, dy.
\]

For the second term in the above equality, according to (3.2) and (6.4), we obtain, for \(m \geq 6 \),
\[
\left\| \partial_t \left(\frac{\psi' (\partial^m_x u)^2}{u^s + u_y} \right) \right\|_{L^\infty(\mathbb{R}^2_+)} = \left\| \psi' \left(\frac{\partial_t u^s + \partial_t u_y}{u^s + u_y} \right) \right\|_{L^\infty(\mathbb{R}^2_+)}
\]
\[
\leq c_0^{-2} \left\| \psi' (\partial_t u^s + \partial_t u_y) \right\|_{L^\infty(\mathbb{R}^2_+)}
\]
\[
\leq C(1 + \| \psi \|_{H^m_{k+1}(\mathbb{R}^2_+)}^2).
\]

Then under the assumption \(\| \psi \|_{H^m_{k+1}(\mathbb{R}^2_+)} \leq \zeta \), we get
\[
I_1 \leq - \frac{d}{dt} \int_{\mathbb{R}^2_+} (\partial^m_x u)^2 \left(\frac{\psi' (\partial^m_x u)^2}{u^s + u_y} \right) \, dx \, dy + C \| \psi \|_{H^m_{k+1}(\mathbb{R}^2_+)}^2.
\]

For the second term
\[
I_2 = \int_{\mathbb{R}^2_+} (u^s + u) \partial_x \partial^m_x u \, dx \, dy
\]
\[
= \int_{\mathbb{R}^2_+} \frac{\psi' (u^s + u)}{u^s + u_y} \partial_x (\partial^m_x u)^2 \, dx \, dy
\]
\[
= - \int_{\mathbb{R}^2_+} \left(\frac{\psi' (u^s + u)}{u^s + u_y} \right) \partial^m_x u \, dx \, dy.
\]
Similar to (6.6), we can get
\[
\left\| \frac{\psi\psi'(u^s + u)}{u^s_y + u_y} \right\|_{L^\infty(\mathbb{R}_+^2)} \leq C(1 + \|w\|^2_{H^m_{k,+}(\mathbb{R}_+^2)}).
\]
Again with the help of the assumption \(\|w\|_{H^m_{k,+}(\mathbb{R}_+^2)} \leq \zeta\), we get
\[
|I_2| \leq C\|w\|^2_{H^m_{k,+}(\mathbb{R}_+^2)}.
\]
For the term \(I_3\), using \(w = \partial_y u\), and integrating by part,
\[
I_3 = \int_{\mathbb{R}_+^2} \partial_y^2 \partial_x^m u \frac{2\psi\psi' \partial_x^m u}{u^s_y + u_y} = \int_{\mathbb{R}_+^2} \partial_y \partial_x^m w \frac{2\psi\psi' \partial_x^m u}{u^s_y + u_y}
\]
\[
= - \int_{\mathbb{R}_+^2} (\partial_x^m w)^2 \frac{2\psi\psi'}{u^s_y + u_y} dxdy - \int_{\mathbb{R}_+^2} \partial_x^m w \partial_x^m u \partial_y \left(\frac{2\psi\psi'}{u^s_y + u_y} \right) dxdy,
\]
we get
\[
|I_3| \leq C\|w\|^2_{H^m_{k,+}(\mathbb{R}_+^2)}.
\]
For the term \(I_5\), recalling
\[
A_1 = \sum_{i=1}^m C_m^i \partial_x^i u \partial_x^{m+1-i} u, \quad A_2 = \sum_{i=1}^{m-1} C_m^i \partial_x^i w \partial_x^{m-i} v,
\]
we don’t need to worry about it, since the order of derivative is easy to be controlled. So we have
\[
|I_5| \leq C\|w\|^2_{H^m_{k,+}(\mathbb{R}_+^2)}.
\]
For the term \(I_4\), we have to be careful, since the order of derivative with respect to \(x\) is up to \(m + 2\). Integrating by parts with respect to \(x\), we have
\[
I_4 = \epsilon \int_{\mathbb{R}_+^2} \partial_x^{m+2} u \frac{2\psi\psi' \partial_x^m u}{u^s_y + u_y} dxdy
\]
\[
= - \epsilon \int_{\mathbb{R}_+^2} \frac{2\psi\psi'}{u^s_y + u_y} (\partial_x^{m+1} u)^2 dxdy + \epsilon \int_{\mathbb{R}_+^2} \frac{\psi\psi'}{u^s_y + u_y} (\partial_x^m u) \partial_x^{m+1} u dxdy
\]
\[
= I_4^1 + I_4^2.
\]
For the second term, observing
\[
\left\| \frac{\psi\psi'}{u^s_y + u_y} \right\|_{L^\infty(\mathbb{R}_+^2)} \leq C\|w\|_{H^m_{1}(\mathbb{R}_+^2)},
\]
it implies
\[
|I_4^2| = \epsilon \int_{\mathbb{R}_+^2} \frac{\psi\psi'}{(u^s_y + u_y)^{m+1}} \partial_x^m u dxdy \leq C\|w\|^2_{H^m_{1}(\mathbb{R}_+^2)}.
\]
For the first term, recalling
\[
\text{Supp } \psi = [a - 5a_0, a - 4a_0] \cup [a + 4a_0, a + 5a_0] = J_1 \cup J_2;
\]
\[
\phi_1(y) = 1, \forall y \leq a - 3a_0; \quad \phi_2(y) = 1, \forall y \geq a + 3a_0,
\]
and
\[\psi' \frac{\partial^{m+1} u}{u_y^m + u_y} = \psi' \partial_x \left(\frac{\partial^m u}{u_y^m + u_y} \right) + \psi' \frac{\partial^m u}{u_y^m + u_y} \eta = \psi' \partial_y^{-1} g_m + \psi' \frac{\partial^m u}{u_y^m + u_y} \eta, \]
we have
\[\epsilon \left| \int_{\mathbb{R}_+^2} 2 \psi' \left(\frac{\partial^{m+1} u}{u_y^m + u_y} \right)^2 \, dx \, dy \right| = \epsilon \left| \int_{\mathbb{R}_+^2} 2 \psi' \left(\frac{\partial^{m+1} u}{u_y^m + u_y} \right)^2 \, dx \, dy \right| \]
\[\leq \epsilon \int_{\mathbb{R}_+^2} |\psi'|(u_y^m + u_y)(\partial_y^{-1} g_m)^2 \, dx \, dy + \epsilon \int_{\mathbb{R}_+^2} \left| \frac{\psi' \eta^2}{u_y^m + u_y} \right| (\partial^m u)^2 \, dx \, dy \]
\[\leq C \int_{\mathbb{R}_+^2} (\epsilon J_3 \partial_y^{-1} g_m)^2 + (\epsilon J_3 \partial_y^{-1} g_m)^2 \, dx \, dy + C \|w\|_{H^1_2(\mathbb{R}_+^2)}^2. \]

On the other hand,
\[(\epsilon J_3 \partial_y^{-1} g_m)^2(t, x, y) = 1_{J_3}(y) \left(\int_{\min\{y, a-4 \epsilon_0\}}^{\min\{y, a+4 \epsilon_0\}} \partial_y g_m(t, x, \tilde{y}) d\tilde{y} \right)^2 \]
\[= 1_{J_3}(y) \left(\int_{\min\{y, a-4 \epsilon_0\}}^{\min\{y, a+4 \epsilon_0\}} \phi_1(\tilde{y}) \partial_y g_m(t, x, \tilde{y}) d\tilde{y} \right)^2 \]
\[\leq 1_{J_3}(y) C \|\phi_1 \partial_y g_m(t, x)\|_{L^2(\mathbb{R}_+)}^2, \]
and
\[(\epsilon J_3 \partial_y^{-1} g_m)^2(t, x, y) = 1_{J_3}(y) \left(\int_{\max\{y, a+4 \epsilon_0\}}^{+\infty} \partial_y g_m(t, x, \tilde{y}) d\tilde{y} \right)^2 \]
\[= 1_{J_3}(y) \left(\int_{\min\{y, a-4 \epsilon_0\}}^{\max\{y, a+4 \epsilon_0\}} \phi_2(\tilde{y}) \partial_y g_m(t, x, \tilde{y}) d\tilde{y} \right)^2 \]
\[\leq C \|\phi_2 \partial_y g_m(t, x)\|_{L^2(\mathbb{R}_+)}^2. \]

We get finally
\[|I_1| \leq C \|w\|_{H^{1/2}_x(\mathbb{R}_+^2)}^2 + \epsilon C \left(\|\phi_1 \partial_y g_m\|_{L^2(\mathbb{R}_+^2)}^2 + \|\phi_2 \partial_y g_m\|_{L^2(\mathbb{R}_+^2)}^2 \right), \]
with C is independent of \(\epsilon \), which finishes the proof of Proposition 6.2.

Combining Proposition 6.1 and Proposition 6.2, for the convex part, we get the following results.

Proposition 6.3. Under the assumption of Proposition 6.1, we have
\[
\frac{1}{2} \frac{d}{dt} \|\psi h_m\|_{L^2}^2 + \frac{3}{4} \|\psi \partial_y h_m\|_{L^2} + \frac{3}{4} \|\psi \partial_x h_m\|_{L^2}^2 \leq C_3 \|w\|_{H^{1/2}_x(\mathbb{R}_+^2)}^2 + \epsilon C_4 \left(\|\phi_1 \partial_y g_m\|_{L^2(\mathbb{R}_+^2)}^2 + \|\phi_2 \partial_y g_m\|_{L^2(\mathbb{R}_+^2)}^2 \right) \]
\[
- \frac{d}{dt} \int_{\mathbb{R}_+^2} (\partial^m u)^2 \frac{\psi' \eta^2}{u_y^m + u_y} \, dx \, dy, \]
where \(C_3, C_4 \) are independent of \(\epsilon \).
7. Existence of the solution

Now, we can conclude the following energy estimate for the sequence of approximate solutions.

Theorem 7.1. Assume \(u^\epsilon \) satisfies Lemma 2.1. Let \(m \geq 6 \) be an even integer, \(k + \ell > \frac{3}{2}, 0 \leq \ell < \frac{1}{2} \), and \(\tilde{u}_0 \in H^{m+\ell}_k(R^2) \) which satisfies the compatibility conditions (2.8)-(2.9). Suppose that \(\tilde{w}_\epsilon \in L^\infty([0,T];H^{m+2}_k(R^2)) \) is a solution to (3.2) such that
\[
\| \tilde{w}_\epsilon \|_{L^\infty([0,T];H^{m+2}_k(R^2))} \leq \zeta
\]
with
\[
0 < \zeta \leq 1, \quad C_m \zeta \leq \frac{c_0}{2},
\]
where \(0 < T \leq T_1 \) and \(T_1 \) is the lifespan of shear flow \(u^\epsilon \) in the Lemma 2.1, \(C_m \) is the Sobolev embedding constant in (4.2). Then there exists \(C_T > 0, \tilde{C}_T > 0 \) such that,
\[
\| \tilde{w}_\epsilon \|_{L^\infty([0,T];H^{m+\ell}_k(R^2))} \leq C_T \| \tilde{u}_0 \|_{H^{m+1}_{2k+\ell-1}(R^2)}, \tag{7.1}
\]
and
\[
\sum_{n=1}^{m} \| \phi_1 g_n'(t) \|_{L^2(R^2)}^2 + \sum_{n=1}^{m} \| \phi_2 g_n'(t) \|_{L^2(R^2)}^2 + \| \tilde{w}_\epsilon(t) \|_{H^{m+\ell}_k(R^2)}^2
\]
\[
\leq \tilde{C}_T \left(\sum_{n=1}^{m} \| \phi_1 g_n'(0) \|_{L^2(R^2)}^2 + \sum_{n=1}^{m} \| \phi_2 g_n'(0) \|_{L^2(R^2)}^2 + \| \tilde{w}_\epsilon(0) \|_{H^{m+\ell}_k(R^2)}^2 \right) \tag{7.2}
\]
\[
\leq C_T \| \tilde{u}_0 \|_{H^{m+1}_{2k+\ell-1}(R^2)}.
\]
Moreover, \(C_T > 0, \tilde{C}_T > 0 \) is increasing with respect to \(0 < T \leq T_1 \) and independent of \(\epsilon \leq 1 \).

Remark 7.2. Using (7.2) and Lemma 7.5, we have proven that there are no loss of the decay for the tangential derivatives
\[
\| \partial_x^m \tilde{w}_\epsilon(t) \|_{L^\infty(R^2)} \leq C_T \| \tilde{u}_0 \|_{H^{m+\ell}_{2k+\ell}(R^2)}.
\]

Firstly, we collect some results to be used from Section 3 - 6. We come back to the notations with tilde and the sub-index \(\epsilon \). Then \(g_n', h_n' \) are the functions defined by \(\tilde{u}_\epsilon \). Under the hypothesis of Theorem 7.1, we have proven the estimates (3.10), (5.1), (5.2) and (6.7),
\[
\frac{d}{dt} \| \tilde{u}_\epsilon \|_{H^{m+1}_k(R^2)} + \| \partial_y \tilde{w}_\epsilon \|_{H^{m+1}_k(R^2)}^2 + \| \partial_x \tilde{w}_\epsilon \|_{H^{m+1}_k(R^2)}^2 \leq C_1 \| \tilde{w}_\epsilon \|_{H^{m+1}_k(R^2)}, \tag{7.3}
\]
\[
\frac{d}{dt} \sum_{n=1}^{m} \| \phi_1 g_n' \|_{L^2(R^2)}^2 + \sum_{n=1}^{m} \| \phi_2 g_n' \|_{L^2(R^2)}^2 + \epsilon \sum_{n=1}^{m} \| \phi_1 \partial_x g_n' \|_{L^2(R^2)}^2 \leq C_2 \left(\sum_{n=1}^{m} \| \phi_1 g_n' \|_{L^2(R^2)}^2 + \| \tilde{w}_\epsilon \|_{H^{m+1}_k(R^2)}^2 \right), \tag{7.4}
\]
and
\[
\frac{d}{dt} \sum_{n=1}^{m} \|\tilde{\phi}_n\|_{L^2_{x+y}(\mathbb{R}^2_+)}^2 + \sum_{n=1}^{m} \|\tilde{\phi}_n\|_{L^2_{x+y}(\mathbb{R}^2_+)}^2 + \sum_{n=1}^{m} \|\tilde{\phi}_n\|_{L^2_{x+y}(\mathbb{R}^2_+)}^2 + \epsilon \sum_{n=1}^{m} \|\tilde{\phi}_n\|_{L^2_{x+y}(\mathbb{R}^2_+)}^2
\leq C_2\left(\sum_{n=1}^{m} \|\tilde{\phi}_n\|_{L^2_{x+y}(\mathbb{R}^2_+)}^2 + \|\tilde{\omega}_e\|_{H^{1/2}_{x+y}(\mathbb{R}^2_+)}^2\right),
\]
(7.5)

\[
\frac{1}{2} \frac{d}{dt} \|\psi h_m\|_{L^2_{x+y}(\mathbb{R}^2_+)}^2 + \frac{3}{4} \|\psi \partial_y h_m\|_{L^2_{x+y}(\mathbb{R}^2_+)}^2 + \frac{3}{4} \|\psi \partial_x h_m\|_{L^2_{x+y}(\mathbb{R}^2_+)}^2
\leq C_5 \|\tilde{\omega}_e\|_{H^{1/2}_{x+y}(\mathbb{R}^2_+)}^2 + \epsilon C_4\left(\|\tilde{\phi}_n\|_{L^2_{x+y}(\mathbb{R}^2_+)}^2 + \|\tilde{\phi}_n\|_{L^2_{x+y}(\mathbb{R}^2_+)}^2\right)
\]
(7.6)

where \(C_1, C_2, C_3, C_4\) are independent of \(0 < \epsilon \leq 1\).

Lemma 7.3. Under the assumption of Theorem 7.1, we have
\[
\left|\int_{\mathbb{R}^2_+} \frac{\psi' \left(\partial_x^m \tilde{u}_e\right)^2}{u_y + \tilde{\omega}_e} dxdy\right| \leq C_5\left(\|\phi_1 g_m\|_{L^2(\mathbb{R}^2_+)}^2 + \|\phi_2 g_m\|_{L^2_{x+y}(\mathbb{R}^2_+)}^2\right),
\]
(7.7)

where \(C_5\) is independent of \(0 < \epsilon \leq 1\).

Proof. In fact,
\[
\left|\int_{\mathbb{R}^2_+} \frac{\psi' \left(\partial_x^m \tilde{u}_e\right)^2}{u_y + \tilde{\omega}_e} dxdy\right| \leq C_0 \int_{\mathbb{R}^2_+} |\psi'| \left(\frac{\partial_x^m \tilde{u}_e}{u_y + \tilde{\omega}_e}\right)^2 dxdy
\]

\[
\leq C \int_{\mathbb{R}^2_+} \left(\int_{\mathbb{R}^2_+} \phi_1(\tilde{\omega}) g_m(t, x, \tilde{\omega}) d\tilde{\omega}\right)^2 dxdy
\]

\[
\leq C \int_{\mathbb{R}^2_+} \left(\int_{\mathbb{R}^2_+} \phi_1(\tilde{\omega}) g_m(t, x, \tilde{\omega}) d\tilde{\omega}\right)^2 dxdy
\]

\[
\leq C_5\left(\|\phi_1 g_m\|_{L^2(\mathbb{R}^2_+)}^2 + \|\phi_2 g_m\|_{L^2_{x+y}(\mathbb{R}^2_+)}^2\right).
\]

The proof of the Lemma is complete. \[\square\]

We have also directly
\[
\left|\int_{\mathbb{R}^2_+} \frac{\psi' \left(\partial_x^m \tilde{u}_e\right)^2}{u_y + \tilde{\omega}_e} dxdy\right| \leq C_6 \|\tilde{\omega}_e\|_{H^{1/2}_{x+y}(\mathbb{R}^2_+)}^2,
\]
(7.8)

and
\[
\|\psi h_m\|_{L^2(\mathbb{R}^2_+)}^2 \leq C_7 \|\partial_x^m \tilde{\omega}_e\|_{L^2(\mathbb{R}^2_+)}^2.
\]
(7.9)

Denoting \(C_4 = \max\{C_4, 2C_5\}\), and taking
\[
C_4 \times \left\{(7.4) + (7.5)\right\} + (7.3) + (7.6),
\]
we get
\[
\frac{d}{dt} \left\{ \tilde{C}_4 \left(\sum_{n=1}^{m} \| \phi_1 g_n^e \|_{L^2(\mathbb{R}^2_+)} + \sum_{n=1}^{m} \| \phi_2 g_n^e \|_{L^2_{k+\ell}(\mathbb{R}^2_+)} \right) + \frac{1}{2} \| \psi h_m^e \|_{L^2(\mathbb{R}^2_+)}^2 \\
\quad + \| \tilde{w}_e \|_{H^{m,m-1}_{k+\ell}(\mathbb{R}^2_+)} + \int_{\mathbb{R}^2_+} \frac{\psi \psi' (\partial_{n}^m \tilde{u}_e)^2}{u_y^m + \tilde{w}_e} \, dx \, dy \right\}
\]
\[
\leq \tilde{C}_4 C_2 \left(\sum_{n=1}^{m} \| \phi_1 g_n^e \|_{L^2(\mathbb{R}^2_+)}^2 + \sum_{n=1}^{m} \| \phi_2 g_n^e \|_{L^2_{k+\ell}(\mathbb{R}^2_+)}^2 \right)
\quad + (2 \tilde{C}_4 C_2 + C_1 + C_3) \| \tilde{w}_e \|_{H^{m,m}_{k+\ell}(\mathbb{R}^2_+)}^2.
\]
Then we have
\[
\frac{d}{dt} \left\{ e^{-C_2 t} \left(\tilde{C}_4 \left(\sum_{n=1}^{m} \| \phi_1 g_n^e \|_{L^2(\mathbb{R}^2_+)} + \sum_{n=1}^{m} \| \phi_2 g_n^e \|_{L^2_{k+\ell}(\mathbb{R}^2_+)} \right) + \frac{1}{2} \| \psi h_m^e \|_{L^2(\mathbb{R}^2_+)}^2 \\
\quad + \| \tilde{w}_e \|_{H^{m,m-1}_{k+\ell}(\mathbb{R}^2_+)} + \int_{\mathbb{R}^2_+} \frac{\psi \psi' (\partial_{n}^m \tilde{u}_e)^2}{u_y^m + \tilde{w}_e} \, dx \, dy \right) \right\}
\]
\[
\leq (2 \tilde{C}_4 C_2 + C_1 + C_3) e^{-C_2 t} \| \tilde{w}_e \|_{H^{m,m-1}_{k+\ell}(\mathbb{R}^2_+)}^2 - C_2 e^{-C_2 t} \| \psi \psi' (\partial_{n}^m \tilde{u}_e)^2 \|_{L^2(\mathbb{R}^2_+)}^2 \int_{\mathbb{R}^2_+} \frac{u_y^m + \tilde{w}_e}{dx \, dy}.
\]
According to (7.8) and (7.9), we obtain
\[
\frac{d}{dt} \left\{ e^{-C_2 t} \left(\tilde{C}_4 \left(\sum_{n=1}^{m} \| \phi_1 g_n^e \|_{L^2(\mathbb{R}^2_+)} + \sum_{n=1}^{m} \| \phi_2 g_n^e \|_{L^2_{k+\ell}(\mathbb{R}^2_+)} \right) + \frac{1}{2} \| \psi h_m^e \|_{L^2(\mathbb{R}^2_+)}^2 \\
\quad + \| \tilde{w}_e \|_{H^{m,m-1}_{k+\ell}(\mathbb{R}^2_+)} + \int_{\mathbb{R}^2_+} \frac{\psi \psi' (\partial_{n}^m \tilde{u}_e)^2}{u_y^m + \tilde{w}_e} \, dx \, dy \right) \right\}
\]
\[
\leq C_8 e^{-C_2 t} \| \tilde{w}_e \|_{H^{m,m}_{k+\ell}(\mathbb{R}^2_+)}^2.
\]
Using (7.8) and (7.9) again, we have for any \(t \in [0, T] \)
\[
\tilde{C}_4 \left(\sum_{n=1}^{m} \| \phi_1 g_n^e (0) \|_{L^2(\mathbb{R}^2_+)} + \sum_{n=1}^{m} \| \phi_2 g_n^e (0) \|_{L^2_{k+\ell}(\mathbb{R}^2_+)} \right)
\quad + \frac{1}{2} \| \psi h_m^e (0) \|_{L^2(\mathbb{R}^2_+)}^2 \\
\quad + \| \tilde{w}_e (0) \|_{H^{m,m-1}_{k+\ell}(\mathbb{R}^2_+)} + \int_{\mathbb{R}^2_+} \frac{\psi \psi' (\partial_{n}^m \tilde{u}_e (0))^2}{u_y^m + \tilde{w}_e} \, dx \, dy
\]
\[
\leq C_8 e^{C_2 t} \int_0^t \| \tilde{w}_e (\tau) \|_{H^{m,m}_{k+\ell}(\mathbb{R}^2_+)}^2 \, d\tau
\]
\[
+ e^{C_2 t} \tilde{C}_4 \left(\sum_{n=1}^{m} \| \phi_1 g_n^e (0) \|_{L^2(\mathbb{R}^2_+)}^2 + \sum_{n=1}^{m} \| \phi_2 g_n^e (0) \|_{L^2_{k+\ell}(\mathbb{R}^2_+)}^2 \right)
\quad + (1 + C_6 + C_7) e^{C_2 t} \| \tilde{w}_e (0) \|_{H^{m,m}_{k+\ell}(\mathbb{R}^2_+)}^2.
\]
We study now
\[
T_m^e (g, w) (t) = \sum_{n=1}^{m} \| \phi_1 g_n^e (t) \|_{L^2(\mathbb{R}^2_+)}^2 + \sum_{n=1}^{m} \| \phi_2 g_n^e (t) \|_{L^2_{k+\ell}(\mathbb{R}^2_+)}^2 + \| \tilde{w}_e (t) \|_{H^{m,m}_{k+\ell}(\mathbb{R}^2_+)}^2,
\]
Lemma 7.4. For the initial date, we have

\[T_{n}(g, w)(0) = \sum_{n=1}^{m} \left\| \phi_{1}g_{n}(0) \right\|_{L_{2}T_{n}^{+}(\mathbb{R}_{+}^{4})}^{2} + \sum_{n=1}^{m} \left\| \phi_{2}g_{n}(0) \right\|_{L_{2}T_{n}^{+}(\mathbb{R}_{+}^{4})}^{2} + \left\| \tilde{w}_{s}(0) \right\|_{H_{2\kappa+1}^{m}(\mathbb{R}_{+}^{4})}^{2} \leq C \left\| \tilde{u}_{0} \right\|_{H_{2\kappa+1}^{m+1}(\mathbb{R}_{+}^{4})}^{2}, \]

where \(C \) is independent of \(\epsilon \).

Proof. Notice for any \(1 \leq n \leq m \),

\[\phi_{2}g_{n}^{\epsilon}(0) = \phi_{2}(\frac{\partial \phi_{n}}{u_{y}^{\epsilon} + \bar{w}_{y}^{\epsilon}}), g = \phi_{2}(\frac{\partial \phi_{n}}{u_{y}^{\epsilon} + \bar{w}_{y}^{\epsilon}}), \]

and \(\tilde{u}_{s}(0) = \tilde{u}_{0} \), then we deduce, for any \(1 \leq n \leq m \),

\[\left\| \phi_{2}g_{n}^{\epsilon}(0) \right\|_{L_{2}^{2}(\mathbb{R}_{+}^{4})}^{2} \leq 2 \left\| \phi_{2}(\frac{\partial \phi_{n}}{u_{y}^{\epsilon} + \bar{w}_{y}^{\epsilon}}) \right\|_{L_{2}^{2}(\mathbb{R}_{+}^{4})}^{2} + 2 \left\| \phi_{2}(\frac{\partial \phi_{n}}{u_{y}^{\epsilon} + \bar{w}_{y}^{\epsilon}}) \right\|_{L_{2}^{2}(\mathbb{R}_{+}^{4})}^{2} \leq C \left\| \tilde{u}_{0} \right\|_{H_{2\kappa+1}^{m+1}(\mathbb{R}_{+}^{4})}^{2}. \]

The estimate of \(\left\| \tilde{w}_{s}(0) \right\|_{H_{2\kappa+1}^{m+1}(\mathbb{R}_{+}^{4})} \) is easier, since there is no weight. And

\[\left\| \tilde{w}_{s}(0) \right\|_{H_{2\kappa+1}^{m+1}(\mathbb{R}_{+}^{4})} = \left\| \tilde{\phi}_{y} \tilde{u}_{0} \right\|_{H_{2\kappa+1}^{m+1}(\mathbb{R}_{+}^{4})} \leq \left\| \tilde{u}_{0} \right\|_{H_{2\kappa+1}^{m+1}(\mathbb{R}_{+}^{4})}^{2}. \]

This completes the proof of Lemma 7.4. \(\square \)

Using (7.7), Lemma 7.4 and \(2C_{5} \leq \tilde{C}_{4} \), we can deduce from (7.10) that for any \(t \in [0, T] \)

\[C_{5} \left(\left\| \phi_{1}g_{m}^{\epsilon} \right\|_{L_{2}^{2}(\mathbb{R}_{+}^{4})}^{2} + \left\| \phi_{2}g_{m}^{\epsilon} \right\|_{L_{2}^{2}(\mathbb{R}_{+}^{4})}^{2} \right) + \frac{1}{2} \left\| \psi h_{m}^{\epsilon} \right\|_{L^{2}(\mathbb{R}_{+}^{4})}^{2} + \left\| \tilde{w}_{s} \right\|_{H_{2\kappa+1}^{m+1}(\mathbb{R}_{+}^{4})}^{2} \leq C_{8}e^{C_{4}t} \int_{0}^{t} e^{-C_{2}t} \left\| \tilde{w}_{s}(\tau) \right\|_{H_{2\kappa+1}^{m+1}(\mathbb{R}_{+}^{4})}^{2} d\tau + C_{9}e^{C_{4}t} \left\| \tilde{u}_{0} \right\|_{H_{2\kappa+1}^{m+1}(\mathbb{R}_{+}^{4})}^{2}. \] (7.11)

We recall the definition of the cut-off functions

\[\phi_{1}(y) = 1 \quad \text{for} \quad 0 \leq y \leq a - 3a_{0}; \quad \phi_{1}(y) = 0 \quad \text{for} \quad y \geq a - 2a_{0}; \]

\[\phi_{2}(y) = 0 \quad \text{for} \quad 0 \leq y \leq a + 2a_{0}; \quad \phi_{2}(y) = 1 \quad \text{for} \quad y \geq a + 3a_{0}; \]

\[\psi(y) = 1 \quad \text{for} \quad |y - a| \leq 4a_{0}; \quad \psi(y) = 0 \quad \text{for} \quad |y - a| \geq 5a_{0}. \]

We have also the following low bounded estimate.

Lemma 7.5. We have also the following estimate :

\[\left\| \partial_{x}^{m} \tilde{w}_{s} \right\|_{L_{2\kappa+1}^{2}(\mathbb{R}_{+}^{4})} \leq \tilde{C} \left(\left\| \phi_{1}g_{m}^{\epsilon} \right\|_{L_{2}^{2}(\mathbb{R}_{+}^{4})}^{2} + \left\| \phi_{2}g_{m}^{\epsilon} \right\|_{L_{2}^{2}(\mathbb{R}_{+}^{4})}^{2} + \left\| \psi h_{m}^{\epsilon} \right\|_{L^{2}(\mathbb{R}_{+}^{4})}^{2} \right), \]

where \(\tilde{C} \) is independent of \(\epsilon \).

Proof. Firstly,

\[\psi(y) h_{m}^{\epsilon}(t, x, y) = \psi(y) \frac{\partial_{x}^{m} \tilde{w}_{s}}{u_{yy}^{m} + \partial_{y} w_{s}}, \]

Since

\[1_{I_{c}}(y) (y)^{2(2k+\ell)} |u_{yy}^{m} + \partial_{y} w_{s}| \leq C(c_{0}^{-1} + \frac{c_{0}}{2}), \]

PRANDTL EQUATION 47
we have
\[\| \psi \partial_x^m \tilde{u}_x \|^2_{L_{2k+\ell}(\mathbb{R}^2_+)} \leq C \| h_{m\ell}^c \|^2_{L^2(\mathbb{R}^2_+)} . \]
On the other hand,
\[\partial_x^m \tilde{u}_x(t, x, y) = (u_y^s + \tilde{w}_x) \int_y^{+\infty} g_m^c(t, x, \tilde{y}) d\tilde{y}, \quad y \in I_{\phi_2} . \]
Therefore,
\[\partial_x^m \tilde{w} = (u_y^s + (\tilde{w}_x) \int_y^{+\infty} g_m^c(t, x, \tilde{y}) d\tilde{y} - (u_y^s + \tilde{w}_x) g_m^c(t, x, y), \quad y \in I_{\phi_2} . \]
Denoting
\[J_{\phi_2} = \{ y \in \mathbb{R}_+ ; \phi_2(y) = 1 \} = \{ y \in \mathbb{R}_+ ; y \geq a + 3a_0 \} , \]
we have,
\[\| 1_{J_{\phi_2}} \partial_x^m \tilde{u}_x \|^2_{L_{2k+\ell}(\mathbb{R}^2_+)} \leq \int_{\mathbb{R}^2_+} \langle y \rangle^{2(2k+\ell)} (u_{yy}^s + (\tilde{w}_x)_y)^2 \]
\[\times 1_{J_{\phi_2}}(y) \int_y^{+\infty} \phi_2(\tilde{y}) g_m^c(t, x, \tilde{y}) d\tilde{y} \]
\[+ \int_{J_{\phi_2}} \langle y \rangle^{2(2k+\ell)} 1_{J_{\phi_2}}((u_y^s + \tilde{w}_x) \phi_2 g_m^c(t, x, y))^2 \]
\[\leq C \int_{\mathbb{R}^2_+} \langle y \rangle^{2(2k+\ell)} (u_{yy}^s + (\tilde{w}_x)_y)^2 \langle y \rangle^{-2(k+\ell)} \| \phi_2 g_m^c(t, x) \|_{L_{2k+\ell}(\mathbb{R}_+)}^2 \]
\[+ C \| \phi_2 g_m^c \|^2_{L_{2k+\ell}(\mathbb{R}^2_+)} \]
\[\leq C \| u_y^s \|^2_{L_{2k+\ell}(\mathbb{R}_+)} + \| \langle y \rangle k(\tilde{w}_x)_y \|_{L_{2k+\ell}(\mathbb{R}^2_+)}^2 \| \phi_2 g_m^c \|^2_{L_{2k+\ell}(\mathbb{R}^2_+)} \]
\[\leq C \| \phi_2 g_m^c \|^2_{L_{2k+\ell}(\mathbb{R}^2_+)} . \]
Similarly, for the other side,
\[J_{\phi_1} = \{ y \in \mathbb{R}_+ ; \phi_1(y) = 1 \} = \{ y \in \mathbb{R}_+ ; y \leq a - 3a_0 \} , \]
we have,
\[\partial_x^m \tilde{w}_x = (u_y^s + (\tilde{w}_x) \int_0^y g(t, x, \tilde{y}) d\tilde{y} + (u_y^s + \tilde{w}_x) g(t, x, y), \quad y \in I_{\phi_1} . \]
Thus
\[\| 1_{J_{\phi_1}} \partial_x^m \tilde{w}_x \|^2_{L_{2k+\ell}(\mathbb{R}^2_+)} \leq C \| \phi_1 g \|^2_{L^2(\mathbb{R}^2_+)} . \]
Then we can finish the proof of Lemma 7.5 by using
\[1 \leq 1_{J_{\phi_1}}(y) + \psi^2(y) + 1_{J_{\phi_2}}(y), \quad \forall y \in \mathbb{R}_+ . \]
End of proof of Theorem 7.1. Combining (7.11), Lemma 7.4 and Lemma 7.5, we get, for any \(t \in [0, T] \),
\[
\| \tilde{w}_\varepsilon(t) \|^2_{H^m_{k+\ell}(\mathbb{R}^2_+)} \leq \tilde{C}_8 e^{C_2 \tau} \int_0^t e^{-C_2 \tau} \| \tilde{w}_\varepsilon(\tau) \|^2_{H^m_{k+\ell}(\mathbb{R}^2_+)} d\tau + \tilde{C}_9 e^{C_2 \tau} \| \tilde{u}_0 \|^2_{H^{m+1}_{2k+\ell-1}(\mathbb{R}^2_+)}
\]
with \(\tilde{C}_8, \tilde{C}_9 \) independent of \(0 < \varepsilon \leq 1 \). We have by Gronwall's inequality that, for any \(t \in [0, T] \),
\[
\| \tilde{w}_\varepsilon(t) \|^2_{H^m_{k+\ell}(\mathbb{R}^2_+)} \leq \tilde{C}_9 e^{(C_2 + \tilde{C}_9)t} \| \tilde{u}_0 \|^2_{H^{m+1}_{2k+\ell-1}(\mathbb{R}^2_+)}.
\]
(7.12)
So it is enough to take
\[
C_T^2 = \tilde{C}_9 e^{(C_2 + \tilde{C}_9)T}
\]
which gives (7.1), and \(C_T \) is increasing with respect to \(T \).

On the other hand, from (7.11), (7.12) and Lemma 7.5
\[
T^*_{m}(g, w)(t) \leq \tilde{C}_T T^*_{m}(g, w)(0) \leq \tilde{C} \tilde{C}_T \| \tilde{u}_0 \|^2_{H^{m+1}_{2k+\ell-1}(\mathbb{R}^2_+)} \quad \forall t \in [0, T].
\]
is also increasing with respect to \(T \). We finish the proof of Theorem 7.1.

Theorem 7.6. Assume \(u^* \) satisfies Lemma 2.1, and let \(\tilde{u}_0 \in H^{m+3}_{2k+\ell-1}(\mathbb{R}^2_+) \), \(m \geq 6 \) be an even integer, \(k > 1, 0 \leq \ell < \frac{1}{2}, k + \ell > \frac{3}{2} \), and
\[
0 \leq \zeta \leq 1 \quad \text{with} \quad C_m \zeta \leq \frac{\varepsilon^2}{2},
\]
where \(C_m \) is the Sobolev embedding constant. If there exists \(0 < \zeta_0 \) small enough such that,
\[
\| \tilde{u}_0 \|^2_{H^{m+1}_{2k+\ell-1}(\mathbb{R}^2_+)} \leq \zeta_0,
\]
then, there exists \(\epsilon_0 > 0 \) and for any \(0 < \epsilon \leq \epsilon_0 \), the system (3.2) admits a unique solution \(\tilde{w}_\varepsilon \) such that
\[
\| \tilde{w}_\varepsilon \|_{L^\infty([0, T_\varepsilon]; H^{m+\ell}_{k+\ell}(\mathbb{R}^2_+))} \leq \zeta,
\]
where \(T_\varepsilon \) is the lifespan of shear flow \(u^* \) in the Lemma 2.1.

Remark 7.7. Under the uniform monotonic assumption (1.6), some results of above theorem holds for any fixed \(T > 0 \). But \(\zeta_0 \) decreases as \(T \) increases, according to the (2.7).

Proof. We fix \(0 < \varepsilon \leq 1 \), then for any \(\tilde{w}_0 \in H^{m+2}_{k+\ell}(\mathbb{R}^2_+) \) with \(m \geq 6, k > 1, \ell \leq \frac{1}{2}, k + \ell > \frac{3}{2} \), Theorem 3.4 ensures that, there exists \(\epsilon_0 > 0 \) and for any \(0 < \epsilon \leq \epsilon_0 \), there exits \(T_\epsilon > 0 \) such that the system (3.2) admits a unique solution \(\tilde{w}_\epsilon \in L^\infty([0, T_\epsilon]; H^{m+\ell}_{k+\ell}(\mathbb{R}^2_+)) \) which satisfies
\[
\| \tilde{w}_\epsilon \|_{L^\infty([0, T_\epsilon]; H^{m+\ell}_{k+\ell}(\mathbb{R}^2_+))} \leq \frac{4}{3} \| \tilde{w}_\epsilon(0) \|_{H^m_{k+\ell}(\mathbb{R}^2_+)} \leq 2 \| \tilde{u}_0 \|_{H^{m+1}_{k+\ell-1}(\mathbb{R}^2_+)}.
\]
Now choose \(\zeta_0 \) such that
\[
\max \{2, C_{T_\epsilon} \} \zeta_0 \leq \frac{\zeta}{2}.
\]
On the other hand, taking \(\tilde{w}_\epsilon(T_\epsilon) \) as initial data for the system (3.2), Theorem 3.4 ensures that there exits \(T'_\epsilon > 0 \), which is defined by (3.16) with \(\zeta = \frac{\zeta_0}{2} \), such that
the system (3.2) admits a unique solution $\tilde{w}' \in L^\infty([T_\epsilon, T_\epsilon + T'_\epsilon]; H^m_{k+\ell}(\mathbb{R}^2_+))$ which satisfies
\[
\|\tilde{w}'\|_{L^\infty([T_\epsilon, T_\epsilon + T'_\epsilon]; H^m_{k+\ell}(\mathbb{R}^2_+))} \leq \frac{4}{3} \|\tilde{w}_\epsilon(T_\epsilon)\|_{H^m_{k+\ell}(\mathbb{R}^2_+)} \leq \zeta.
\]
Now, we extend \tilde{w}_ϵ to $[0, T_\epsilon + T'_\epsilon]$ by \tilde{w}', then we get a solution $\tilde{w}_\epsilon \in L^\infty([0, T_\epsilon + T'_\epsilon]; H^m_{k+\ell}(\mathbb{R}^2_+))$ which satisfies
\[
\|\tilde{w}_\epsilon\|_{L^\infty([0, T_\epsilon + T'_\epsilon]; H^m_{k+\ell}(\mathbb{R}^2_+))} \leq \zeta.
\]
So if $T_\epsilon + T'_\epsilon < T_1$, we can apply Theorem 7.1 to \tilde{w}_ϵ with $T = T_\epsilon + T'_\epsilon$, and use (7.1), this gives
\[
\|\tilde{w}_\epsilon\|_{L^\infty([0, T_\epsilon + T'_\epsilon]; H^m_{k+\ell}(\mathbb{R}^2_+))} \leq CT_1 \|\tilde{u}_0\|_{H^{m+1}_{k+\ell-1}(\mathbb{R}^2_+)} \leq \frac{\zeta}{2}.
\]
Now taking $\tilde{w}_\epsilon(T_\epsilon + T'_\epsilon)$ as initial data for the system (3.2), applying again Theorem 3.4, for the same $T'_\epsilon > 0$, the system (3.2) admits a unique solution $\tilde{w}' \in L^\infty([T_\epsilon + T'_\epsilon, T_\epsilon + T'_\epsilon + 2T'_\epsilon]; H^m_{k+\ell}(\mathbb{R}^2_+))$ which satisfies
\[
\|\tilde{w}'\|_{L^\infty([T_\epsilon + T'_\epsilon, T_\epsilon + T'_\epsilon + 2T'_\epsilon]; H^m_{k+\ell}(\mathbb{R}^2_+))} \leq \frac{4}{3} \|\tilde{w}_\epsilon(T_\epsilon + T'_\epsilon)\|_{H^m_{k+\ell}(\mathbb{R}^2_+)} \leq \zeta.
\]
Now, we extend \tilde{w}_ϵ to $[0, T_\epsilon + 2T'_\epsilon]$ by \tilde{w}', then we get a solution $\tilde{w}_\epsilon \in L^\infty([0, T_\epsilon + 2T'_\epsilon]; H^m_{k+\ell}(\mathbb{R}^2_+))$ which satisfies
\[
\|\tilde{w}_\epsilon\|_{L^\infty([0, T_\epsilon + 2T'_\epsilon]; H^m_{k+\ell}(\mathbb{R}^2_+))} \leq \zeta.
\]
So if $T_\epsilon + 2T'_\epsilon < T_1$, we can apply Theorem 7.1 to \tilde{w}_ϵ with $T = T_\epsilon + 2T'_\epsilon$, and use (7.1), this gives again
\[
\|\tilde{w}_\epsilon\|_{L^\infty([0, T_\epsilon + 2T'_\epsilon]; H^m_{k+\ell}(\mathbb{R}^2_+))} \leq CT_1 \|\tilde{u}_0\|_{H^{m+1}_{k+\ell-1}(\mathbb{R}^2_+)} \leq \frac{\zeta}{2}.
\]
Then by recurrence, we can extend the solution \tilde{w}_ϵ to $[0, T_1]$, and then the lifespan of approximate solution is equal to that of shear flow if the initial date \tilde{u}_0 is small enough.

We have obtained the following estimate, for $m \geq 6$ and $0 < \epsilon \leq \epsilon_0$,
\[
\|\tilde{w}_\epsilon(t)\|_{H^m_{k+\ell}(\mathbb{R}^2_+)} \leq \zeta, \quad t \in [0, T_1].
\]
By using the equation (3.2) and the Sobolev inequality, we get, for $0 < \delta < 1$
\[
\|\tilde{w}_\epsilon\|_{L^p([0,T_1]; C^{2,\delta}(\mathbb{R}^2_+))} \leq M < +\infty.
\]
Then taking a subsequence, we have, for $0 < \delta' < \delta$,
\[
\tilde{w}_\epsilon \to \tilde{w} \ (\epsilon \to 0), \ locally \ strong \ in \ C^0([0,T_1]; C^{2,\delta'}(\mathbb{R}^2_+)),
\]
and
\[
\partial_t \tilde{w} \in L^\infty([0,T_1]; H^{m-2}_{k+\ell}(\mathbb{R}^2_+)), \quad \tilde{w} \in L^\infty([0,T_1]; H^m_{k+\ell}(\mathbb{R}^2_+)),
\]
with
\[
\|\tilde{w}\|_{L^\infty([0,T_1]; H^m_{k+\ell}(\mathbb{R}^2_+))} \leq \zeta.
\]
Then we have
\[
\tilde{u} = \partial_y^{-1} \tilde{w} \in L^\infty([0,T_1]; H^{m}_{k+\ell-1}(\mathbb{R}^2_+)).
\]
where we use the Hardy inequality (A.1), since
\[
\lim_{y \to +\infty} \tilde{u}(t, x, y) = - \lim_{y \to +\infty} \int_y^{+\infty} \tilde{w}(t, x, y) \, dy = 0.
\]
In fact, we also have
\[
\lim_{y \to 0} \tilde{u}(t, x, y) = \lim_{y \to 0} \int_0^y \tilde{w}(t, x, y) \, dy = 0.
\]
Using the condition \(k + \ell - 1 > \frac{1}{2}\), we have also
\[
\tilde{v} = - \int_0^y \tilde{u}_x \, dy \in L^\infty([0, T_1]; L^\infty(B_+; H^{m-1}(R_x))).
\]
We have proven that, \(\tilde{w}\) is a classical solution to the following vorticity Prandtl equation
\[
\begin{aligned}
\partial_t \tilde{w} + (u^s + \tilde{u}) \partial_x \tilde{w} + \tilde{v} \partial_y (u^s + \tilde{w}) &= 0, \\
\partial_y \tilde{w} |_{y=0} &= 0, \\
\tilde{w} |_{\ell=0} &= \tilde{w}_0,
\end{aligned}
\]
and \((\tilde{u}, \tilde{v})\) is a classical solution to (2.2). Finally, \((u, v) = (u^s + \tilde{u}, \tilde{v})\) is a classical solution to (1.1), and satisfies (7.13). In conclusion, we have proved the following theorem

Theorem 7.8. Let \(m \geq 6\) be an even integer, \(k > 1, 0 \leq \ell < \frac{1}{2}, k + \ell > \frac{3}{2}\), assume that \(u^s_0\) satisfies (1.2), the initial data \(\tilde{u}_0 \in H^{m+3}_{2k+\ell-1}(R^2_x)\) and \(\tilde{u}_0\) satisfies the compatibility condition (2.8)-(2.9) up to order \(m + 2\), then there exists \(T > 0\) such that if
\[
\|\tilde{u}_0\|_{H^{m+1}_{2k+\ell-1}(R^2_x)} \leq \delta_0,
\]
for some \(\delta_0 > 0\) small enough, then the initial-boundary value problem (2.2) admits a solution \((\tilde{u}, \tilde{v})\) with
\[
\tilde{u} \in L^\infty([0, T]; H^{m}_{k+\ell-1}(R^2_x)), \quad \partial_y \tilde{u} \in L^\infty([0, T]; H^{m}_{k+\ell}(R^2_x)).
\]
Moreover, we have the following energy estimate,
\[
\|\partial_y \tilde{u}\|_{L^\infty([0, T]; H^{m}_{k+\ell}(R^2_x))} \leq C\|\tilde{u}_0\|^2_{H^{m+1}_{2k+\ell-1}(R^2_x)},
\] (**7.13**)

Remark 7.9. Under the uniform monotonic assumption (1.6), the result of the above theorem hold for any fixed \(T > 0\), but \(\delta_0 \to 0\) when \(T \to +\infty\).

8. **Uniqueness and stability**

Now, we study the stability of solutions which implies immediately the uniqueness of solution.

Let \(\tilde{u}^1, \tilde{u}^2\) be two solutions obtained in Theorem 7.8 with respect to the initial date \(\tilde{u}^1_0, \tilde{u}^2_0\) respectively. Denote \(\bar{u} = \tilde{u}^1 - \tilde{u}^2\) and \(\bar{v} = \tilde{v}^1 - \tilde{v}^2\), then
\[
\begin{aligned}
\partial_t \bar{u} + (u^s + \tilde{u}_1) \partial_x \bar{u} + (u^s + \tilde{u}_1, y) \bar{v} &= \partial_y \bar{u} - \bar{v} \partial_y \bar{u} - (\partial_x \bar{u}, y) \bar{w}, \\
\partial_x \bar{u} + \partial_y \bar{v} &= 0, \\
\bar{u} |_{y=0} &= \bar{v} |_{y=0} = 0, \\
\bar{u} |_{t=0} &= \bar{u}^1_0 - \bar{u}^2_0.
\end{aligned}
\]
Proof. The proof of this Proposition is similar to the proof of the Proposition \(8.1\), and we need to use that \(m \geq 5\). C.-J. XU AND X. ZHANG

\[\Phi \]

as the initial date

\[u \]

So it is a linear equation for \(\tilde{u}\). We also have for the vorticity \(\tilde{\omega} = \partial_y \tilde{u}\),

\[
\begin{align*}
\partial_t \tilde{w} + (u^s + \tilde{u}^1) \partial_x \tilde{w} + (u^y_{yy} + \tilde{w}_{1,y}) \tilde{v} = \partial_y^2 \tilde{w} - \tilde{v}_2 \partial_y \tilde{w} - (\partial_x \tilde{w}_2) \tilde{u}, \\
\partial_y \tilde{w}|_{y=0} = 0, \\
\tilde{w}|_{t=0} = \tilde{w}_0^1 - \tilde{w}_0^2.
\end{align*}
\]

Estimate with a loss of \(x\)-derivative. Firstly, for the vorticity \(\tilde{\omega} = \partial_y \tilde{u}\), we deduce an energy estimate with a loss of \(x\)-derivative with the anisotropic norm defined by \((3.9)\).

Proposition 8.1. Let \(\tilde{u}^1, \tilde{u}^2\) be two solutions obtained in Theorem 7.8 with respect to the initial data \(\tilde{u}_0^1, \tilde{u}_0^2\), then we have

\[
\frac{d}{dt} \|\tilde{w}\|^2_{H^{m-2} + \alpha^2} + \|\partial_y \tilde{w}\|^2_{H^{m-2} + \alpha^2} \leq \tilde{C}_1 \|\tilde{w}\|^2_{H^{m-2}},
\]

where the constant \(\tilde{C}_1\) depends on the norm of \(\tilde{\omega}^1, \tilde{\omega}^2\) in \(L^\infty((0, T]; H^{m-2} + \alpha^2(\mathbb{R}_+^2))\).

Proof. The proof of this Proposition is similar to the proof of the Proposition 3.8, and we need to use that \(m - 2\) is even. We only give the calculation for the terms which need a different argument. Moreover we also explain why we only get the estimate on \(\|\tilde{\omega}\|_{H^{m-2}}\) but require the norm of \(\tilde{\omega}^1, \tilde{\omega}^2\) in \(L^\infty((0, T]; H^{m-2} + \alpha^2(\mathbb{R}_+^2))\).

With out loss of the generality, we suppose that \(\|\tilde{w}\|_{H^{m-2}} \leq 1, \|\tilde{\omega}^1\|_{H^{m-2}} \leq 1\) and \(\|\tilde{\omega}^2\|_{H^{m-2}} \leq 1\).

Deriving the equation of \((8.1)\) with \(\partial^\alpha = \partial^\alpha_x \partial^\alpha_y\), for \(|\alpha| = \alpha_1 + \alpha_2 \leq m - 2, \alpha_1 \leq m - 3\),

\[
\partial_t \partial^\alpha \tilde{w} - \partial^\alpha_y \partial^\alpha \tilde{w} = -\partial^\alpha ((u^s + \tilde{u}^1) \partial_x \tilde{w} + \tilde{v}_2 \partial_y \tilde{w} \\
+ (u^s_{yy} + \tilde{w}_{1,y}) \tilde{v} + (\partial_x \tilde{w}_2) \tilde{u}).
\]

Multiplying the above equation with \((y)^{2k + \ell + \alpha_2} \partial^\alpha \tilde{w}\), the same computation as in the proof of the Proposition 3.8, in particular, the reduction of the boundary-data are the same, gives

\[
\int_{\mathbb{R}_+^2} \left(\partial_t \partial^\alpha \tilde{w} - \partial^\alpha_y \partial^\alpha \tilde{w} \right) \tilde{w} \partial^\alpha \tilde{w} dx dy
\]

\[
\geq \frac{1}{2} \frac{d}{dt} \|\partial^\alpha \tilde{w}\|^2_{L^2_x + \alpha_2} + \frac{3}{4} \|\partial_y \tilde{w}\|^2_{H^{m-2} + \alpha_2} - C \|\tilde{w}\|^2_{H^{m-2} + \alpha_2}.
\]

As for the right hand of \((8.3)\), for the first item, we split it into two parts

\[
-\partial^\alpha ((u^s + \tilde{u}^1) \partial_x \tilde{w}) = -(u^s + \tilde{u}^1) \partial_x \partial^\alpha \tilde{w} + [(u^s + \tilde{u}^1), \partial^\alpha] \partial_x \tilde{w}.
\]

Firstly, we have

\[
\int_{\mathbb{R}_+^2} ((u^s + \tilde{u}^1) \partial_x \partial^\alpha \tilde{w}) \partial^\alpha \tilde{w} dx dy \leq \|\tilde{w}\|_{H^1_x} \|\partial^\alpha \tilde{w}\|^2_{L^2_x + \alpha_2}.
\]

For the commutator operator, we have,

\[
\|[(u^s + \tilde{u}^1), \partial^\alpha] \partial_x \tilde{w}\|_{L^2_x + \alpha_2} \leq C \|\tilde{w}\|_{H^{m-2} + \alpha_2} \|\tilde{w}\|_{H^{m-2} + \alpha_2}.
\]

Notice that for this term, we don’t have the loss of \(x\)-derivative.
With the similar method for the terms $\partial_2 \partial_y \tilde{w}_1$, we get
\[
\left| \int_{\mathbb{R}^2_+} \tilde{v}_2 \partial_y \tilde{w} (y)^{2(\ell+\alpha_2)} \partial^\alpha \tilde{w} \, dx \, dy \right| \leq \|\tilde{w}\|_{H^{m-2}_{k+\ell}(\mathbb{R}^2_+)} \|\tilde{w}\|_{H^{m-2,m-3}_{k+\ell}(\mathbb{R}^2_+)}.
\]
For the next one, we have
\[
\partial^\alpha \left((u_{yy}^s + \partial_y \tilde{w}_1)^\ell \right) = \sum_{\beta \leq \alpha} C_\beta^\alpha \partial^\beta (u_{yy}^s + \partial_y \tilde{w}_1) \partial^{\alpha-\beta} \tilde{v},
\]
and thus
\[
\left\| \sum_{\beta \leq \alpha} C_\beta^\alpha \partial^\beta (u_{yy}^s + \partial_y \tilde{w}_1) \partial^{\alpha-\beta} \tilde{v} \right\|_{L^2_{k+\ell+n_2}} \leq C \|\tilde{w}_1\|_{H^{m-2}_{k+\ell}(\mathbb{R}^2_+)} \|\tilde{w}\|_{H^{m-2,m-3}_{k+\ell}(\mathbb{R}^2_+)}.
\]
On the other hand, using Lemma A.1 and $\frac{3}{2} - k < \ell < \frac{3}{2}$,
\[
\left\| (\partial^\alpha (u_{yy}^s + \partial_y \tilde{w}_1)) \tilde{v} \right\|_{L^2_{k+\ell+n_2}} \leq \left\| (\partial^\alpha u_{yy}^s) \tilde{v} \right\|_{L^2_{k+\ell+n_2}} + \left\| (\partial^\alpha \partial_y \tilde{w}_1) \tilde{v} \right\|_{L^2_{k+\ell+n_2}}
\leq C \|\tilde{v}\|_{L^2(\mathbb{R}_x; L^\infty(\mathbb{R}_y))} + C \|\tilde{w}_1\|_{H^{m-1}_{k+\ell}(\mathbb{R}^2_+)} \|\tilde{v}\|_{L^\infty(\mathbb{R}^2_+)}
\leq C \|\tilde{w}_1\|_{H^{m-1}_{k+\ell}(\mathbb{R}^2_+)} \|\tilde{w}\|_{H^{m-2}_{k+\ell}(\mathbb{R}^2_+)}
\leq C(1 + \|\tilde{w}_1\|_{H^{m-1}_{k+\ell}(\mathbb{R}^2_+)}) \|\tilde{w}\|_{H^{m-2}_{k+\ell}(\mathbb{R}^2_+)},
\]
So this term requires the norms $\|\tilde{w}_1\|_{H^{m-1}_{k+\ell}(\mathbb{R}^2_+)}$.
Moreover, if $\alpha_\ell \neq 0$
\[
\left\| (u_{yy}^s + \partial_y \tilde{w}_1) \partial^{\alpha_\ell} \tilde{v} \right\|_{L^2_{k+\ell+n_2}} = \left\| (u_{yy}^s + \partial_y \tilde{w}_1) \partial^{\alpha_\ell} \tilde{v} \right\|_{L^2_{k+\ell+n_2}}
\leq C(1 + \|\tilde{w}_1\|_{H^{m-1}_{k+\ell}(\mathbb{R}^2_+)}) \|\tilde{w}\|_{H^{m-2}_{k+\ell}(\mathbb{R}^2_+)},
\]
and also if $\alpha_\ell = 0$
\[
\left\| (u_{yy}^s + \partial_y \tilde{w}_1) \partial^{\alpha_\ell} \tilde{v} \right\|_{L^2_{k+\ell}} = \left\| (u_{yy}^s + \partial_y \tilde{w}_1) \partial^{\alpha_\ell} \tilde{v} \right\|_{L^2_{k+\ell}}
\leq C(1 + \|\tilde{w}_1\|_{H^{m-1}_{k+\ell}(\mathbb{R}^2_+)}) \|\tilde{w}\|_{H^{m-2}_{k+\ell}(\mathbb{R}^2_+)},
\]
These two cases imply the loss of x-derivative.

Similar argument also gives
\[
\left| \int_{\mathbb{R}^2_+} (\partial^\alpha (\partial_x \tilde{w}_2) \tilde{w}) (y)^{2(\ell+\alpha_2)} \partial^\alpha \tilde{w} \, dx \, dy \right| \leq C \|\tilde{w}_2\|_{H^{m-1}_{k+\ell}(\mathbb{R}^2_+)} \|\tilde{w}\|_{H^{m-2}_{k+\ell}(\mathbb{R}^2_+)},
\]
which finishes the proof of the Proposition 8.1. \hfill \Box

8.2. **Estimate on the loss term.** To close the estimate (7.13), we need to study the terms $\|\partial_x^{m-2} \tilde{w}\|_{L^2_{k+\ell}(\mathbb{R}^2_+)}$ which is missing in the left hand side of (8.2).

Similar to the argument in Section 7, we will recover this term by the estimate of functions
\[
\bar{g}_n = \left(\frac{\partial_y \tilde{u}}{u_y + \tilde{u}_{1,y}} \right), \quad \forall (t, x, y) \in [0, T] \times \mathbb{R} \times (I_{\phi_1} \cup I_{\phi_2}),
\]
\(\bar{h}_n = \frac{\partial^n w}{\sqrt{u_{yy} + w_{1,y}}}, \ \forall (t, x, y) \in [0, T] \times \mathbb{R} \times (I_\psi). \)

Proposition 8.2. Let \(\tilde{u}^1, \tilde{u}^2 \) be two solutions obtained in Theorem 7.8 with respect to the initial date \(\tilde{u}_0^1, \tilde{u}_0^2 \), then we have

\[
\frac{d}{dt} \left\| \phi_1 \tilde{g}_{m-2} \right\|_{L_2^2(\mathbb{R}^2)}^2 + \left\| \phi_1 \partial_y \tilde{g}_{m-2} \right\|_{L_2^2(\mathbb{R}^2)}^2 \leq \bar{C}_2 \left(\left\| \phi_1 \tilde{g}_{m-2} \right\|_{L_2^2(\mathbb{R}^2)}^2 + \left\| \tilde{w} \right\|_{H_{k+\ell}^m}^2 \right),
\]

and

\[
\frac{d}{dt} \sum_{n=1}^{m-2} \left\| \phi_2 \tilde{g}_n \right\|_{L_{k+\ell}^2(\mathbb{R}^2)}^2 + \sum_{n=1}^{m-2} \left\| \phi_2 \partial_y \tilde{g}_n \right\|_{L_{k+\ell}^2(\mathbb{R}^2)}^2 \leq C_2 \left(\sum_{n=1}^{m-2} \left\| \phi_2 \tilde{g}_n \right\|_{L_{k+\ell}^2(\mathbb{R}^2)}^2 + \left\| \tilde{w} \right\|_{H_{k+\ell}^{m-2}}^2 \right),
\]

where the constant \(\bar{C}_2 \) depends on the norm of \(\tilde{w}^1, \tilde{w}^2 \) in \(L^\infty([0, T]; H_{k+\ell}^m(\mathbb{R}^2)). \)

Proposition 8.3. With the same assumption as in Proposition 8.2, we have

\[
\frac{d}{dt} \left\| \psi \tilde{h}_{m-2} \right\|_{L^2}^2 + \frac{3}{4} \left\| \psi \partial_y \tilde{h}_{m-2} \right\|_{L^2}^2 \leq \bar{C}_3 \left\| \tilde{w} \right\|_{H_{k+\ell}^{m-2}(\mathbb{R}^2)}^2 - \frac{d}{dt} \int_{\mathbb{R}^2} (\partial_{x}^{m-2} \tilde{u})^2 \frac{\psi \psi'}{u_y + u_y} dxdy,
\]

where \(\bar{C}_3 \) depends on the norm of \(\tilde{w}^1, \tilde{w}^2 \) in \(L^\infty([0, T]; H_{k+\ell}^m(\mathbb{R}^2)). \)

These two Propositions can be proven by using exactly the same calculation and also the same nonlinear cancellation as in Section 5 and Section 6. The only difference is that when we use the Leibniz formula, for the term where the order of derivatives is \(|\alpha| = m - 2 \), it acts on the coefficient which depends on \(\tilde{u}^1, \tilde{u}^2 \). Therefore, we need their norm in the order of \((m - 2) + 1 \). So we omit the proof of the two Proposition here.

With the similar argument to the proof of Theorem 7.1, we get

\[
\left\| \tilde{w} \right\|_{L^\infty([0, T]; H_{k+\ell}^{m-2}(\mathbb{R}^2))} \leq C \left\| \tilde{u}_0 \right\|_{H_{2k+\ell-l-1}^{m}(\mathbb{R}^2)},
\]

which finishes the proof of Theorem 1.1.

APPENDIX A. SOME INEQUALITIES

We will use the following Hardy type inequalities.

Lemma A.1. Let \(f : \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}. \) Then

(i) if \(\lambda > -\frac{1}{2} \) and \(\lim_{y \to \infty} f(x, y) = 0 \), then

\[
\left\| \langle y \rangle^\lambda f \right\|_{L^2(\mathbb{R}^2)} \leq C_\lambda \left\| \langle y \rangle^{\lambda+1} \partial_y f \right\|_{L^2(\mathbb{R}^2)};
\]

(ii) if \(-1 \leq \lambda < -\frac{1}{2} \) and \(f(x, 0) = 0 \), then

\[
\left\| \langle y \rangle^\lambda f \right\|_{L^2(\mathbb{R}^2)} \leq C_\lambda \left\| \langle y \rangle^{\lambda+1} \partial_y f \right\|_{L^2(\mathbb{R}^2)}.
\]

Here \(C_\lambda \to +\infty \), as \(\lambda \to -\frac{1}{2} \).

We need the following trace theorem in the weighted Sobolev space.
Lemma A.2. Let $\lambda > \frac{1}{2}$, then there exists $C > 0$ such that for any function f defined on \mathbb{R}^2_+, if $\partial_y f \in L^2_{k}(\mathbb{R}^2_+)$, it admits a trace on $\mathbb{R}_x \times \{0\}$, and satisfies
\[
\|\gamma_0(f)\|_{L^2(\mathbb{R}_x)} \leq C\|\partial_y f\|_{L^2_{k}(\mathbb{R}^2_+)},
\]
where $\gamma_0(f)(x) = f(x,0)$ is the trace operator.

The proof of the above two Lemmas is elementary, so we leave it to the reader.

We use also the following Sobolev inequality and algebraic properties of $H^m_{k+\ell}(\mathbb{R}^2_+)$,

Lemma A.3. For the suitable functions f, g, we have:

1) If the function f satisfies $f(x,0) = 0$ or $\lim_{y \to +\infty} f(x,y) = 0$, then for any small $\delta > 0$,
\[
\|f\|_{L^\infty(\mathbb{R}^2_+)} \leq C(\|f_y\|_{L^2_{k+\ell}(\mathbb{R}^2_+)} + \|f_{xy}\|_{L^2_{k+\ell}(\mathbb{R}^2_+)}) \quad \text{(A.2)}
\]

2) For $m \geq 6$, $k + \ell \geq 2$, and any $\alpha, \beta \in \mathbb{N}^2$ with $|\alpha| + |\beta| \leq m$, we have
\[
\|(\partial^\alpha f)(\partial^\beta g)\|_{L^2_{k+\ell+\alpha+\beta}(\mathbb{R}^2_+)} \leq C\|f\|_{H^m_{k+\ell}(\mathbb{R}^2_+)} \|g\|_{H^m_{k+\ell}(\mathbb{R}^2_+)} \quad \text{(A.3)}
\]

3) For $m \geq 6$, $k + \ell \geq 2$, and any $\alpha \in \mathbb{N}^2, \beta \in \mathbb{N}$ with $|\alpha| + |\beta| \leq m$, we have,
\[
\|(\partial^\alpha f)(\partial_{y}^{-1} g)\|_{L^2_{k+\ell+\alpha+\beta}(\mathbb{R}^2_+)} \leq C\|f\|_{H^m_{k+\ell}(\mathbb{R}^2_+)} \|g\|_{H^m_{k+\ell}(\mathbb{R}^2_+)} \quad \text{(A.4)}
\]

where ∂_{y}^{-1} is the inverse of derivative ∂_y, meaning, $\partial_{y}^{-1} g = \int_{0}^{y} g(x, \bar{y}) \, d\bar{y}$.

Proof. For (1), using $f(x,0) = 0$, we have
\[
\|f\|_{L^\infty(\mathbb{R}^2_+)} = \left\| \int_{0}^{y} (\partial_y f)(x, \bar{y}) \, d\bar{y} \right\|_{L^\infty(\mathbb{R}^2_+)} \leq C\|\partial_y f\|_{L^\infty(\mathbb{R}_x; L^2_{k+\ell}(\mathbb{R}^2_+))}
\]
\[
\leq C(\|\partial_y f\|_{L^2_{k+\ell}(\mathbb{R}^2_+)} + \|\partial_x \partial_y f\|_{L^2_{k+\ell}(\mathbb{R}^2_+)})
\]

If $\lim_{y \to +\infty} f(x,y) = 0$, we use
\[
f(x, y) = -\int_{y}^{\infty} (\partial_y f)(x, \bar{y}) \, d\bar{y}.
\]

For (2), firstly, $m \geq 6$ and $|\alpha| + |\beta| \leq m$ imply $|\alpha| \leq m - 2$ or $|\beta| \leq m - 2$, without loss of generality, we suppose that $|\alpha| \leq m - 2$. Then, using the conclusion of (1), we have
\[
\|(\partial^\alpha f)(\partial^\beta g)\|_{L^2_{k+\ell+\alpha+\beta}(\mathbb{R}^2_+)} \leq \|y\|^{\alpha_2}(\partial^\alpha f)\|_{L^\infty(\mathbb{R}^2_+)} \|\partial^\beta g\|_{L^2_{k+\ell+\alpha+\beta}(\mathbb{R}^2_+)}
\]
\[
\leq C\|f\|_{H^m_{k+\ell}(\mathbb{R}^2_+)} \|\partial^\beta g\|_{L^2_{k+\ell+\alpha+\beta}(\mathbb{R}^2_+)},
\]

which give (A.3).

For (3), if $|\alpha| \leq m - 2$, we have
\[
\|(\partial^\alpha f)(\partial^\beta (\partial_{y}^{-1} g))\|_{L^2_{k+\ell+\alpha+\beta}(\mathbb{R}^2_+)}
\]
\[
\leq \|y\|^{k+\ell+\alpha_2}(\partial^\alpha f)\|_{L^2_{k+\ell+\alpha}(\mathbb{R}^2_+)} \|\partial^\beta (\partial_{y}^{-1} g)\|_{L^\infty(\mathbb{R}_x; L^2(\mathbb{R}^2_+))}
\]
\[
\leq C\|f\|_{H^m_{k+\ell}(\mathbb{R}^2_+)} \|\partial^\beta g\|_{L^2_{k+\ell}(\mathbb{R}^2_+)}.\]
If \(p \leq m - 2 \), we have
\[
\| (D^a f)(\partial^b_x (\partial_y^{-1} g)) \|_{L^2_{k+\epsilon+\alpha_2}(\mathbb{R}_+^2)} \\
\leq \| y \|^{k+\ell+\alpha_2} \| f \|_{L^2(\mathbb{R}_+^2)} \| \partial^a_x (\partial_y^{-1} g) \|_{L^\infty(\mathbb{R}_+^2)} \\
\lesssim C \| f \|_{H^{m+1}_{k+\alpha}(\mathbb{R}_+^2)} \| \partial^a_x g \|_{L^\infty(\mathbb{R}_+^2)} \\
\leq C \| f \|_{H^{m+1}_{k+\alpha}(\mathbb{R}_+^2)} \| g \|_{H^{m+\delta}_{k+\alpha}(\mathbb{R}_+^2)}.
\]

We have completed the proof of the Lemma. \(\square\)

Appendix B. Some example of initial data

We construct now some example of initial data \(u_0 = u_0^0 + u_0 \) with non degenerate critical points. Let \(u_0^0 \) be the initial date of shear profile satisfying (2.3), we suppose that \(u_0^0 \) is convex, then we have
\[
\partial_y u_0^0(y) < 0, \ 0 \leq y < a; \quad \partial_y u_0^0(y) > 0, \ a < y.
\]

For \(c_0 << 1 \), set
\[
\tilde{u}_0 = \begin{cases}
0, & y \leq a - 6a_0 \\
(c_0)^j f_1(y) b(x) & a - 6a_0 \leq y \leq a - 5a_0 \\
(c_0)^j (y + 6a_0 - a)^2 b(x) & a - 5a_0 \leq y \leq a + 5a_0 \\
(c_0)^j f_2(y) b(x) & y \geq a_0 + 5a_0.
\end{cases}
\]

where \(j \) is a big integer, \(f_1, f_2 \) are two smooth joint functions with compact supports, and \(b \in H^{m+1}(\mathbb{R}_x), 0 < b(x) \leq 1 \) for all \(x \in \mathbb{R} \).

One can check that if \(j \) is big enough, we have that
\[
\| \partial_y \tilde{u}_0 \|_{H^{m+\delta}_{k+\alpha}(\mathbb{R}_+^2)} << 1,
\]
which imply
\[
\partial_y^2 u_0(x, y) = \partial_y^2 u_0^0(y) + \partial_y^2 \tilde{u}_0(x, y) \geq c_0^2, \quad (x, y) \in \mathbb{R} \times [a - 6a_0, a + 6a_0]. \quad (B.1)
\]

If \(j >> 1 \) we have also
\[
0 < \partial_y \tilde{u}_0 \leq 2(c_0)^j (y + 6a_0 - a)^2 b(x) \leq 24a_0(c_0)^j b(x) \leq c_0^6, \quad a - 5a_0 \leq y \leq a + 5a_0.
\]

For the shear profile, according to (2.3),
\[
\partial_y u_0^0(y) \leq -2c_0, \quad 0 \leq y \leq a - a_0.
\]

Then we have
\[
\partial_y u_0^0(a - a_0) + \partial_y \tilde{u}_0(x, a - a_0) \leq -2c_0 + c_0^6 < 0, \\
\partial_y u_0^0(a) + \partial_y \tilde{u}_0(x, a) = \partial_y \tilde{u}_0(x, a) > 0.
\]

By the intermediate value theorem, there exist a point \(a(x) \) such that
\[
\partial_y u_0(x, a(x)) = \partial_y u_0^0(a(x)) + \partial_y \tilde{u}_0(x, a(x)) = 0, \quad a(x) \in]a - a_0, a[.
\]

In detail, it is equal to
\[
2c_0 \left(a(x) + 6a_0 - a \right) b(x) = -\partial_y u_0^0(a(x)), \quad a(x) \in]a - a_0, a[.
\]

So the smoothness of the curve \(a(x) \) can be deduced by implicit function theorem and (B.1).
Appendix C. The proof of Proposition 3.6

Now, we prove the existence of solution to the vorticity equation \(\tilde{w}_\varepsilon = \partial_y \tilde{u}_\varepsilon \) and suppose that \(m, k, \ell \) and \(w^s(t, y) \) satisfy the assumption of Proposition 3.6,

\[
\begin{cases}
\partial_t \tilde{w}_\varepsilon + (u^s + \tilde{u}_\varepsilon) \partial_x \tilde{w}_\varepsilon + v_\varepsilon (u^s_{yy} + \partial_y \tilde{w}_\varepsilon) = \partial_y^2 \tilde{w}_\varepsilon + \varepsilon \partial_x^2 \tilde{w}_\varepsilon, \\
\partial_y \tilde{w}_\varepsilon |_{y=0} = 0 \\
\tilde{w}_\varepsilon |_{t=0} = \tilde{w}_{0,\varepsilon},
\end{cases}
\tag{C.1}
\]

where \(\tilde{u}_\varepsilon = \partial_y^{-1} \tilde{w}_\varepsilon \) and \(\tilde{v}_\varepsilon = -\partial_y^{-1} \tilde{u}_\varepsilon \). We will use the following iteration process to prove the existence of solution, where \(w^0 = \tilde{w}_{0,\varepsilon} \),

\[
\begin{cases}
\partial_t w^n + (u^s + w^{n-1}) \partial_x w^n + (u^s_{yy} + \partial_y w^n) v^n = \partial_y^2 w^n + \varepsilon \partial_x^2 w^n, \\
\partial_y w^n |_{y=0} = 0 \\
w^n |_{t=0} = \tilde{w}_{0,\varepsilon}.
\end{cases}
\tag{C.2}
\]

Here for the boundary data, we have

\[
(\partial_y^3 w^n)(t, x, 0) = ((u^s_{yy} + w^{n-1}) \partial_x w^n)|_{y=0},
\]

\[
= (\partial_x^3 w^n(t, 0) + \partial_y^3 w^n(t, x, 0) + \varepsilon(\partial_x^2 w^{n-1}) (t, x, 0))(\partial_x w^n)(t, x, 0) + (u^s_{yy}(t, 0) + (w^{n-1})(t, x, 0)) (\partial_x^2 w^n)(t, x, 0) + (\partial_y w^n)(t, x, 0)
\]

\[
+ \sum_{1 \leq j \leq 3} C^4 \left(\partial_x^j \partial_y (u^s + w^{n-1}) \partial_x^{4-j} w^n - (\partial_y^j \partial_x \tilde{w}_\varepsilon) \partial_y^{4-j} (u^s_{yy} + w^{n-1}) \right)(t, x, 0)
\]

\[
- \varepsilon \partial_x^2 \left(u^s_{yy}(t, 0) \right) (w^{n-1})(t, x, 0) \right)(\partial_x w^n)(t, x, 0).
\]

and also for \(3 \leq p \leq \frac{m}{2} + 1 \), \(\partial_y^{2p+1} w^n |_{y=0} \) is a linear combination of the terms of the form:

\[
\prod_{j=1}^{q_1} \left(\partial_x^j \partial_y^{\beta_j+1} (u^s + w^n) \right)|_{y=0} \times \prod_{l=1}^{q_2} \left(\partial_x^{\alpha_l} \partial_y^{\beta_l+1} (u^s + w^{n-1}) \right)|_{y=0},
\tag{C.3}
\]

where \(2 \leq q_i + q_2 \leq p \), \(1 \leq i \leq \min \{n, p \} \) and

\[
\begin{align*}
\alpha_j + \beta_j & \leq 2p - 1, \ 1 \leq j \leq q_1; \ \alpha_l + \beta_l & \leq 2p - 1, \ 1 \leq l \leq q_2; \\
\sum_{j=1}^{q_1} (3\alpha_j + \beta_j) + \sum_{l=1}^{q_2} (3\alpha_l + \beta_l) & = 2p + 1; \\
\sum_{j=1}^{q_1} \beta_j + \sum_{l=1}^{q_2} \beta_l & \leq 2p - 2; \ \sum_{j=1}^{q_1} \alpha_j + \sum_{l=1}^{q_2} \alpha_l & \leq p - 1, \ 0 < \sum_{j=1}^{q_1} \alpha_j.
\end{align*}
\]

Remark that the condition \(0 < \sum_{j=1}^{q_1} \alpha_j \) implies that, in (C.3), there are at last one factor like \(\partial_x^2 \partial_y^{\beta_l+1} w^n(t, x, 0) \).

For given \(w^{n-1} \), we have \(u^{n-1} = \partial_y^{-1} u^{n-1} \) and \(v^n = -\partial_y^{-1} u^n \). We will prove the existence and boundness of the sequence \(\{w^n, n \in \mathbb{N} \} \) in \(L^\infty([0, T_\varepsilon]; H^{m+2}_k(\mathbb{R}^2_+)) \) to
the linear equation (C.2) firstly, then the existence of solution to (C.1) is guaranteed by using the standard weak convergence methods.

Lemma C.1. Assume that \(w^{n-i} \in L^\infty([0, T]; H^{m+2}_{k+\ell}(\mathbb{R}^2_+)) \), \(1 \leq i \leq \min\{n, \frac{m}{2} + 1\} \) and \(\tilde{w}_{0,\epsilon} \) satisfies the compatibility condition up to order \(m+2 \) for the system (C.1), then the initial-boundary value problem (C.2) admit a unique solution \(w^m \) such that, for any \(t \in [0, T) \),

\[
\frac{d}{dt} \|w^n(t)\|^2_{H^{m+2}_{k+\ell}(\mathbb{R}^2_+)} \leq B_T^{-1} \|w^n(t)\|^2_{H^{m+2}_{k+\ell}(\mathbb{R}^2_+)} + D_T^{-1} \|w^n\|^2_{H^{m+2}_{k+\ell}(\mathbb{R}^2_+)},
\]

where

\[
B_T^{-1} = C \left(1 + \sum_{i=1}^{\min\{n, m/2 + 1\}} \|w^{n-i}\|_{L^\infty([0, T]; H^{m+2}_{k+\ell}(\mathbb{R}^2_+))} \right)
\]

and

\[
D_T^{-1} = C \sum_{i=1}^{\min\{n, m/2 + 1\}} \|w^{n-i}\|_{L^\infty([0, T]; H^{m+2}_{k+\ell}(\mathbb{R}^2_+))}.
\]

Proof. Once we get \(\text{à priori} \) estimate for this linear problem, the existence of solution is guaranteed by the Hahn-Banach theorem. So we only prove the \(\text{à priori} \) estimate of the smooth solutions.

For any \(\alpha \in \mathbb{N}^2, |\alpha| \leq m + 2 \), taking the equation (C.2) with derivative \(\partial^\alpha \), multiplying the resulting equation by \(\langle y \rangle^{2k+2\ell+2\alpha_2} \partial^\alpha w^n \) and integrating by part over \(\mathbb{R}^2_+ \), one obtains that

\[
\frac{1}{2} \frac{d}{dt} \|w^n\|^2_{H^{m+2}_{k+\ell}(\mathbb{R}^2_+)} + \|\partial_y w^n\|^2_{H^{m+2}_{k+\ell}(\mathbb{R}^2_+)} + \epsilon \|\partial_x w^n\|^2_{H^{m+2}_{k+\ell}(\mathbb{R}^2_+)}
\]

\[
= \sum_{|\alpha| \leq m+2} \int_{\mathbb{R}^2_+} \langle y \rangle^{2k+2\ell+2\alpha_2} \partial^\alpha ((u^\epsilon + u^{n-1}) \partial_x w^n
\]

\[
- \langle \partial_x^{n-1} u^\epsilon \rangle (u^\epsilon_y + \partial_y w^{n-1}) \rangle \partial^\alpha w^n \partial_x w^n \partial_y w^n dy)
\]

\[
+ \sum_{|\alpha| \leq m+2} \int_{\mathbb{R}^2_+} \langle y \rangle^{2k+2\ell+2\alpha_2} \partial^\alpha \partial_y w^n \partial^\alpha \partial_y w^n \partial_y w^n dx dy
\]

\[
+ \sum_{|\alpha| \leq m+2} \int_{\mathbb{R}^2_+} \langle \partial^\alpha \partial_y w^n \partial^\alpha \partial_y w^n \rangle \bigg|_{y=0} \partial_x w^n \partial_y w^n \bigg|_{y=0} dx,
\]

With similar analysis to Section 5, we have

\[
\left| \int_{\mathbb{R}^2_+} \langle y \rangle^{2k+2\ell+2\alpha_2} (u^\epsilon + u^{n-1}) \partial_x \partial^\alpha w^n \partial^\alpha w^n \partial_x w^n dx dy \right|
\]

\[
= \frac{1}{2} \int_{\mathbb{R}^2_+} \langle y \rangle^{2k+2\ell+2\alpha_2} \partial_x (u^\epsilon + u^{n-1}) \partial^\alpha w^n \partial^\alpha w^n dx dy
\]

\[
\leq C \|w^{n-1}\|_{L^\infty(\mathbb{R}^2_+)} \|w^n\|^2_{H^{m+2}_{k+\ell}(\mathbb{R}^2_+)}.
\]
and
\[
\left| \int_{\mathbb{R}^2_+} \langle y \rangle^{2k+2\ell+2\alpha_2} \{ \partial^\alpha (u^s + u^{n-1}) \} \partial_x w^n \partial^\alpha w^n \, dx \, dy \right|
\leq C(1 + \| w^{n-1} \|_{H^{m+2}_k(\mathbb{R}_+^2)}^2 \| w^n \|_{H^{m+2}_k(\mathbb{R}_+^2)}^2).
\]

For the second term on the right hand of (C.5), by using the Leibniz formula, we need to pay more attention to the following two terms
\[
\left| \int_{\mathbb{R}^2_+} \langle y \rangle^{2k+2\ell+2\alpha_2} \{ \partial^\alpha \partial_y^{-1} u_x^n \} (u_y^s + \partial_y w^{n-1}) \partial^\alpha w^n \, dx \, dy \right|
\leq C(1 + \| w^{n-1} \|_{H^{m+2}_k(\mathbb{R}_+^2)}^2 \| \partial_x w^n \|_{H^{m+2}_k(\mathbb{R}_+^2)} \| w^n \|_{H^{m+2}_k(\mathbb{R}_+^2)}^2).
\]
and
\[
\left| \int_{\mathbb{R}^2_+} \langle y \rangle^{2k+2\ell+2\alpha_2} (\partial^\alpha \partial_y w^{n-1}) \partial^\alpha w^n \, dx \, dy \right|
\leq C(1 + \| w^{n-1} \|_{H^{m+2}_k(\mathbb{R}_+^2)}^2 \| \partial_y w^n \|_{H^{m+2}_k(\mathbb{R}_+^2)} \| w^n \|_{H^{m+2}_k(\mathbb{R}_+^2)}^2).
\]

For the boundary term, similar to the proof of Proposition 3.8, we can get
\[
\sum_{|\alpha| \leq m+2} \left| \int_{\mathbb{R}} (\partial^\alpha \partial_y w^n \partial^\alpha \partial_y w^n) \big|_{y=0} \, dx \right|
\leq \frac{1}{16} \| \partial_y w^n \|_{H^{m+2}_k(\mathbb{R}_+^2)}^2 + C(\| w^{n-1} \|_{H^{m+2}_{k+\ell}(\mathbb{R}_+^2)}^2 \| w^n \|_{H^{m+2}_{k+\ell}(\mathbb{R}_+^2)}^2).
\]

We get finally
\[
\frac{d}{dt} \| w^n(t) \|_{H^{m+2}_{k+\ell}(\mathbb{R}_+^2)}^2 + \| \partial_y w^n(t) \|_{H^{m+2}_{k+\ell}(\mathbb{R}_+^2)}^2 + \epsilon \| \partial_x w^n(t) \|_{H^{m+2}_{k+\ell}(\mathbb{R}_+^2)}^2
\leq BT^{-1} \| w^n(t) \|_{H^{m+2}_{k+\ell}(\mathbb{R}_+^2)}^2 + D_T^{-1} \| w^n \|_{H^{m+2}_{k+\ell}(\mathbb{R}_+^2)}^2.
\]

Lemma C.2. Suppose that \(m, k, \ell \) and \(u^s(t, y) \) satisfy the assumption of Proposition 3.6, \(\tilde{\zeta} > 0 \), then for any \(0 < \epsilon \leq 1 \), there exists \(T_\epsilon > 0 \) such that for any \(\tilde{w}_0, \epsilon \in H^{m+2}_{k+\ell}(\mathbb{R}_+^2) \) with
\[
\| \tilde{w}_0, \epsilon \|_{H^{m+2}_{k+\ell}(\mathbb{R}_+^2)} \leq \tilde{\zeta},
\]
the iteration equations (C.2) admit a sequence of solution \(\{w^n, n \in \mathbb{N}\} \) such that, for any \(t \in [0, T_e] \),
\[
\|w^n(t)\|_{H^m_{k+\ell}(\mathbb{R}_+^2)} \leq \frac{4}{3} \|\tilde{w}_0,\epsilon\|_{H^m_{k+\ell}(\mathbb{R}_+^2)}, \quad \forall n \in \mathbb{N}.
\]

Remark. Here \(\zeta \) is arbitrary.

Proof. Integrating (C.4) over \([0, t]\), for \(0 < t \leq T \) and \(T > 0 \) small,
\[
\|w^n(t)\|_{H^m_{k+\ell}(\mathbb{R}_+^2)} \leq \frac{\|\tilde{w}_0,\epsilon\|_{H^m_{k+\ell}(\mathbb{R}_+^2)}}{e^{-\frac{1}{4}B_T^{m-1}t} - \frac{m}{2}D_T^{n-1}t}\|\tilde{w}_0,\epsilon\|_{H^m_{k+\ell}(\mathbb{R}_+^2)}.
\]

We prove the Lemma by induction. For \(n = 1 \), we have
\[
B_T^0 = C \left(1 + \|\tilde{w}_0,\epsilon\|_{H^m_{k+\ell}(\mathbb{R}_+^2)} + (1 + \frac{1}{\epsilon})\|\tilde{w}_0,\epsilon\|_{H^m_{k+\ell}(\mathbb{R}_+^2)}^2 \right)
\leq C \left(1 + \zeta^{\frac{1}{2}} + (1 + \frac{1}{\epsilon})\zeta^2 \right),
\]
and
\[
D_T^{n-1} = C\|\tilde{w}_0,\epsilon\|_{H^m_{k+\ell}(\mathbb{R}_+^2)}^{m+2} \leq C\zeta^{m+2}.
\]

Choose \(T_\epsilon > 0 \) small such that
\[
\left(e^{-\frac{1}{4}C(1+\zeta+4(1+\frac{1}{\epsilon})\zeta^2)T_\epsilon} - \frac{m}{2}C(2\zeta)^{m+2}T_\epsilon(2\zeta)^m \right)^{-1} = \left(\frac{4}{3} \right)^m,
\]
we get
\[
\|w^1(t)\|_{H^m_{k+\ell}(\mathbb{R}_+^2)} \leq \frac{4}{3} \|\tilde{w}_0,\epsilon\|_{H^m_{k+\ell}(\mathbb{R}_+^2)}.
\]

Now the induction hypothesis is: for \(0 \leq t \leq T_\epsilon \),
\[
\|w^{n-1}(t)\|_{H^m_{k+\ell}(\mathbb{R}_+^2)} \leq \frac{4}{3} \|\tilde{w}_0,\epsilon\|_{H^m_{k+\ell}(\mathbb{R}_+^2)},
\]
thanks to the choose of \(T_\epsilon \), we have also
\[
\left(e^{-\frac{1}{4}B_T^{m-1}T_\epsilon} - \frac{m}{2}D_T^{n-1}T_\epsilon\|\tilde{w}_0,\epsilon\|_{H^m_{k+\ell}(\mathbb{R}_+^2)}^{m} \right)^{n} \leq \left(\frac{4}{3} \right)^m
\]
for any \(t \in [0, T_\epsilon] \), then we finish the proof of the Lemma C.2. \(\square \)

Final remarks and acknowledgments

After posting this manuscript at the preprint web-site Hal and ArXiv, Vlad Vicol pointed out some missed points about physics meanings of polynomial decay of shear flow and relative references. Gérard-Varet and Nguyen communicated with us and gave some comments about differences and compatibility of our well-posedness results with their ill-posedness works. In particular, T. Nguyen wrote a very interesting blog: “On well-posedness of Prandtl: a contradictory claim?” (http://blog.toannguyen.org/on-wellposedness-of-prandtl-a-contradictory-claim/). All those comments help us to improve the presentation of our results and to understand the speciality of Prandtl equations.

The first author was partially supported by “the Fundamental Research Funds for the Central Universities” and the NSF of China (No. 11171261). The second author was supported by a period of sixteen months scholarship from the State Scholarship Fund of China, and he would thank “Laboratoire de mathématiques
Raphaël Salem de l’Université de Rouen” for their hospitality. The authors would like to thank Ning Jiang, Weixi Li for their careful check and many suggestions to improve this manuscript. We also would like to express our gratitude to Weinan E and Tong Yang for their valuable discussions.

References

Chao-Jiang Xu
School of Mathematics and Statistics, Wuhan University
430072, Wuhan, P. R. China
and
Université de Rouen, CNRS, UMR 6085-Laboratoire de Mathématiques
76801 Saint-Etienne du Rouvray, France
E-mail address: chao-jiang.xu@univ-rouen.fr

Xu Zhang
School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China
and
Université de Rouen, CNRS, UMR 6085-Laboratoire de Mathématiques
76801 Saint-Etienne du Rouvray, France
E-mail address: xu.zhang1@etu.univ-rouen.fr