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LONG TIME WELL-POSDNESS
OF THE PRANDTL EQUATIONS IN SOBOLEV SPACE

CHAO-JIANG XU AND XU ZHANG

ABSTRACT. In this paper, we study the long time well-posedness for the non-
linear Prandtl boundary layer equation on the half plane. While the initial
data are small perturbations of some monotonic shear profile, we prove the
existence, uniqueness and stability of solutions in weighted Sobolev space by
energy methods. The key point is that the life span of the solution could be
any large T as long as its initial date is a perturbation around the monotonic
shear profile of small size like e, The nonlinear cancellation properties of
Prandtl equations under the monotonic assumption are the main ingredients
to establish a new energy estimate.
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In this work, we study the initial-boundary value problem for the Prandtl bound-

ary layer equation in two dimension, which reads

Ou + udpu + vOyu + pp = Opu, >0, (x,y) € RY,
Ou+ Oyv =0,

u|y:0 = ”|y:0 = Oa ygr}rloou = U(t,ZC),

u|t:0 - UO(‘Tu y) 5
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where R3 = {(z,y) € R*% y > 0}, u(t,x,y) represents the tangential velocity,
v(t, x,y) normal velocity. p(t,x) and U(t,x) are the values on the boundary of the
Euler’s pressure and Euler’s tangential velocity and determined by the Bernoulli’s
law: O.U (¢, z) + U(t,x)0,U(t,x) + dxp = 0.

Prandtl equations is a major achievement in the progress of understanding the
famous D’Alembert’s paradox in fluid mechanics. In a word, D’Alembert’s para-
dox can be stated as: while a solid body moves in an incompressible and inviscid
potential flow, it undergoes neither drag or buoyancy. This of course disobeys our
everyday experiences. In 1904, Prandtl said that, in fluid of small viscosity, the
behavior of fluid near the boundary is completely different from that away from the
boundary. Away from the boundary part can be almost considered as ideal fluid,
but the near boundary part is deeply affected by the viscous force and is described
by Prandtl boundary layer equation which was firstly derived formally by Prandtl
in 1904 ([22]).

From the mathematical point of view, the well-posedness and justification of the
Prandtl boundary layer theory don’t have satisfactory theory yet, and remain open
for general cases. During the past century, lots of mathematicians have investigated
this problems. The Russian school has contributed a lot to the boundary layer
theory and their works were collected in [21]. Up to now, the local existence theory
for the Prandtl boundary layer equation has been achieved when the initial data
belong to some special functional spaces: 1) the analytic space or analytic with
respect to the tangential variable [15, 19, 24, 25]; 2) Sobolev spaces or Holder
spaces under monotonicity assumption [1, 17, 20, 21, 26]; 3) recently [7] in Gevrey
class with non-degenerate critical point. See also [16] where the initial data is
monotone on a number of intervals and analytic on the complement.

Except explaining the D’Alembert’s Parabox, Prandtl equations play a vital
role in the challenging problem: inviscid limit problem. In deed, as pointed
out by Grenier-Guo-Nguyen [9, 10, 11], the long time behavior of the Prandtl
equations is important to make progress towards the inviscid limit of the Navier-
Stokes equations. We must understand behaviors of solutions to on a longer time
interval than the one which causes the instability used to prove ill-posedness.

To the best of our knowledge, under the monotonic assumption, by using the
Crocco transformation, Oleinik ([21]) obtained the long-time smooth solution in
Holder space for the Prandtl equation defined on the interval 0 < x < L with L
very small. Xin-Zhang ([26]) proved the global existence of weak solutions if the
pressure gradient has a favorable sign, that is d,p < 0. See [18] for a similar work in
3-D case. The global existence of smooth solutions in the monotonic case remains
open.

In the analytical frame, Ignatova-Vicol ([14]) recently get an almost global-in-
time solution which is analytic with respect to the tangential variable, see also [27]
for a same attempt work by using a refined Littlewood-Paley analysis. On the other
side, without the monotonicity assumption, E and Engquist in [5] constructed finite
time blowup solutions to the Prandtl equation. After this work, there are many
un-stability or strong ill-posedness results. In particular, Gérard-Varet and Dormy
[6] showed that the linearized Prandtl equation around the shear flow with a non-
degenerate critical point is ill-posed in the sense of Hadamard in Sobolev spaces.
See also [4, 8, 12, 13, 23] for the relative works.
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Besides, Crocoo transformation can’t be used to Navier-Stokes equations. The
best choice left for us is to get the long time wellposedness by energy method, since
energy method works well for both Navier-Stokes equations and Euler equations.
Recently, there are two works[1, 20] where the local-in-time wellposedness is ob-
tained by different kinds of energy methods. One is by Nash-Moser-Hormander
iteration. The other is by using uniform estimates of the regularized parabolic
equation and Maximal Principle.

Motivated by above analysis, in this work, using directly energy method, we will
prove the long time existence of smooth solutions of Prandtl equations in Sobolev
space. In details, for any fixed T' > 0, we will show that if the initial perturbation
are size of e~T small enough, then the life time of solutions to Prandtl equations
could at least be T'.

In what follows, we choose the uniform outflow U (¢, z) = 1 which implies p, = 0.
In other words the following problem for the Prandtl equation is considered :

Owu + udyu + voyu = agu, t>0, (z,y) € Ri,
Orzu + Oyv =0,

Uly—g = V|y=0 =0, lim u=1
|y0 |y0 7y—>+oo 9

u|t:0 = uO(Ia y)

The weighted Sobolev spaces (similar to [20]) are defined as follows:

Hf”%{;(]Ri) = Z <y>2)\+2a2|a§1332f|2dxdy7 A>0, neN".

2
a1 +az|<n R

Specially, HfHLi(Ri) = ||f||H§(Ri) and H" stands for the usual Sobolev space.

Initial data of shear flow. Loosely speaking, shear flow is a solution to Prandtl
equations and is independent of x. For more details, please check the analysis of
shear flow part in Section 2 and Lemma 2.1. We denote shear flow as u®. From
now on, we consider solutions to Prandtl equations as their perturbations around
some shear flow. That is to say,

u(t,z,y) = u’(t,y) + u(t,x,y),t > 0.
Assume that u(initial datum of shear flow) satisfies the following conditions:
s m+4 : S 1.
ug € C™ ([0, +o0), ygr_{loo ui(y) =1,
(35%8)(0) 0, 0<2p<m+4 (1.2)
afy) " < (Qyup)(y) < eafy) ™", Yy 20,
(Opud) )] < ca(y)™*7PF1, Yy 20, L<p<m+4,
for certain c1,co > 0 and even integer m.

We have the following long time wellposedness results.

Theorem 1.1. Let m > 6 be an even integer, k > 1 and —5 < v < 0. Assume that
u satisfies (1.2), the initial data iy = (ug — uf) € H,::f;g(RQ ), and Ug satisfies the
compatibility condition up to order m + 2. Then for any T > 0, there exists §g > 0
small enough such that if

[@oll grynt1 gz y < do, (1.3)
then the initial-boundary value problem (1.1) admits a unique solution (u,v) with

(uw—u”) € L=([0, T} HyYy, 5 (R)), ve L¥(0,T]; L%(Ry+5 H™ ™ (Ry)),
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where 0" > 0 satisfying v + % <d<v+landk+v—-9§ > %
Moreover, we have the stability with respect to the initial data in the following
sense: gwen any two initial data
ugy = ud +ay,  ud=ud+al,
if u satisfies (1.2) and ad, a3 satisfies (1.3), then the solutions u' and u® to (1.1)
satisfy,

1 2 1 2
" =l oy 2 vy = Cllvo = ol ez,

where the constant C' depends on the norm of d,u', dyu® in L>=([0,T]; H" ,_5 . 1 (R%)).
Remark 1.2.

1. We also can verify ,

9, (u—u?) € L¥(0, T HY g1 (B2)), dyv € L([0, T B 50 (R2)).

2. From (2.5) and (6.5), the relationship between the life span T and the size

of initial data is:
60 ~ e_T.

3. The results of main Theorem can be generated to the periodic case where x
18 in torus.

4. We find that the weight of solution u(t) — u®(t) is smaller than that of
initial dates ug — uy. There means that there exist decay loss of order
8" > 0 which may be very small. It results from the term v dyu which is the
magor difficulty for the analysis of Prandtl equation.

This article is arranged as follows. In Section 2, we explain the main difficulties
for the study of the Prandtl equation and present an outline of our approach. In
Section 3, we study the approximate solutions to (1.1) by a parabolic regularization.
In Section 4, we prepare some technical tools and the formal transformation for the
Prandtl equations. Sections 5 is dedicated to the uniform estimates of approximate
solutions obtained in Section 3. We prove finally the main theorem in Section 6-7.

Notations: The letter C stands for various suitable constants, independent with
functions and the special parameters, which may vary from line to line and step to
step. When it depends on some crucial parameters in particular, we put a sub-index
such as C. etc, which may also vary from line to line.

2. PRELIMINARY

Difficulties and our approach. Now, we explain the main difficulties in proving
Theorem 1.1, and present the strategies of our approach.

It is well-known that the major difficulty for the study of the Prandtl equation
(1.1) is the term v dyu, where the vertical velocity behaves like

Y
'U(t,.f,y) = _/0 8Iu(t7$7g)dg7

by using the divergence free condition and boundary conditions. So it introduces
a loss of x-derivative. The y-integration create also a loss of weights with respect
to y-variable. Then the standard energy estimates do not work. This explains why
there are few existence results in the literatures.

Recalling that in [1] (see also [20] for a similar transformation), under the mono-
tonic assumption dyu > 0, we divide the Prandtl equations by dyu and then take
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derivative with respect to y, to obtain an equation of the new unknown function

u

f= ( 3 u) . In the new equation, the term v disappears by using the divergence
vy

m
o'

Oyu

free condition. Here a little different from [1], we use g, = ( ) , where m
y

stands for the highest derivative with 2. From [20], we can observe that we only
need to worry about the highest derivative with z. This is why we only define g,,.
In order to prove the existence of solutions, following the idea of Masmoudi-
Wong ([20]), we will construct an approximate scheme and study the parabolic
regularized Prandtl equation (3.1), which preserves the nonlinear structure of the
original Prandlt equation (1.1), as well as the nonlinear cancellation properties.
Then by uniform energy estimates of the approximate solutions, the existence of
solutions to the original Prandlt equation (1.1) follows. This energy estimate also
implies the uniqueness and the stability. The uniform energy estimate for the
approximate solutions is the main duty of this paper.
Analysis of shear flow. We write the solution (u,v) of system (1.1) as

u(t, z,y) = u’(t,y) +alt, z,y), v(t,z,y) = 0(t, z,y),
where u®(t,y) is the solution of the following heat equation
Opu’® — agus =0,
s —_-nN = O 1. s t - 1
U |y—0 ,yig}oou ( 7y) ) (21)
u®lt=0 = u(y).
Then (1.1) can be written as
O+ (u® + )0, + 0(uf + 0yu) = Op,
i + 0,7 = 0,

u|y:0 = U|y:0 = 07 ygg{loou = Oa

(2.2)

i|i=0 = To(z,y) -
We first study the shear flow,

Lemma 2.1. Assume that the initial date u§ satisfy (1.2), then for any T > 0,
there exist ¢y, Ca,¢3 > 0 such that the solution u®(t,y) of the initial boundary value
problem (2.1) satisfies

{al<y>-’f < 9,u(t,y) < Ely) ™, V(ty) € [0,T] x Ry,

- 2.3
O (6. 9)] < ) F P Y (L) € 0. T) xRy, 1<p<mtd, )
where ¢1,Co, 3 depend on T'.

Proof. Firstly, the solution of (2.1) can be written as

+o0
u(t,y) = #ﬁ/o (e

- ( /_+j e~ Ul (2VIE + y)dé — /to e up(2vEE - y)dg),

_ =92 _ wtp?
4t

— T i (5)dg

Nz

which gives
+oo

o) == ( [ | 6 Oup)aviE + pag

7t Y
2Vt
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+oo
- [, g @upevie - ).

-
By using (827u§)(0) = 0 for 0 < 2j < m + 4, it follows
1 oo 2
o () =7( e (Opus) (Vg + y)de
Vi

+oo
H et [ e opuevic - )
2Vt

v / e (e ) @) (),

forall 1 <p<m+4.
For p = 1, we have,

+oo 5
o (ty) == ( [ e @upevie e
T 2Vi
+oo 5
+ / e 0up) (2 — y)d)
2Vt
2 _ (- y)2 te (y+y)2 ) (a ’U,O)(g)dg '

Thanks to the monotonic assumptlon (1 2), we have that

Dy, /+°° _woi? +e—(yﬁf)2)<~>_kd~
Y) 2\/— Y Y

(y+y) —k g~
dy .
~ 3 r—-][ (§)""dy

Recalling now Peetre’s inequality, for any A € R
o y+a) N <@ <@ WMy + M,
then for A = —k, we get the first estimate of (2.3) with

L3
2

& =cico(l+ T)_g, Co = C2€Cy Y1417)2.
For the second estimate of (2.3), (2.4) implies
—+oo

c2 _w=-9? ENCES DL N NI R
oPu®(t,y)| < —— (e T e @ ) ptlg
Oyt )l < o= ; () ]
—+o0 .2
C2 _ (w9 ~\—k—p+1 g~
< —— £ Py .
= 2wt @ Y
Using now Peetre’s inequality, with A = —k — p + 1, we get

|8pu (t,y)] < 28y (1 +T)
[O,T] X ]RJ,_.

= (y) R

for any (¢,y) €

O

Compatibility conditions and reduction of boundary data. We give now
the precise version of the compatibility condition for the nonlinear system (2.2) and

the reduction properties of boundary data.
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Proposition 2.2. Let m > 6 be an even integer, and assume that u is a smooth
solution of the system (2.2), then the initial data Uy have to satisfy the following
compatibility conditions up to order m + 2:

o(2,0) =0, (920)(x,0) = 0, ¥z € R,

(0470) (,0) = (By13(0) + (By o) (z,0)) (8, i), 0), ¥ € R,

and for 4 < 2p < m,

(2.6)

p q
(3§(p+1)ﬁ0>(337 0) = Z Z Cos H 9% 85j+1 (ug + o) ‘y:O, Ve e R, (2.7)

=2 (a,B)ENq Jj=1

where

Aq :{(a7ﬁ) = (041,--- 7aq;617"' 7ﬁq) € N7 x Nq;

q
aj+Bi<2p-1, 1<j<q > 3a;+8=2p+1; (2.8)
j=1
q q
> B <2p-2, 0<Zaj§p—1}.
j=1 j=1

Remark that for a; > 0, we have 8§j85j+1 (us + &) = 82”6?“11. So the

q
condition 0 < > «; implies that, for each terms of (2.7), there is at last one factor
j=1

like 927 95 .

Proof. By the assumption of this Proposition, @ is a smooth solution. If we need
the existence of the trace of 8;”*211 on y = 0, then we at least need to assume that

@ € L=([0, T]; Hy 2, (RY).
Recalling the boundary condition in (2.2):

a(t,z,0) =0, o(t,2z,0)=0, (t,2)€[0,T] xR,
then the following is obvious:
(O 0ru)(t,z,0) =0, (0 000)(t,x,0) =0, (t,z)€[0,T]xR,0<n<m.

Thus the first result of (2.6) is exactly the compatibility of the solution with the
initial data at ¢ = 0. For the second result of (2.6), using the equation of (2.2), we
find that, fro0 <n <m

(02070)(t,,0) =0, (9:0;001)(t,x,0)=0, (t,z)€[0,T]xR.
Derivating the equation of (2.2) with y,
D0y + 0y (v + 0)0yt) + Oy (0(uf + Oyi)) = O,

observing

(ay ((u® + )0, @) + 9y <ﬁ(u; + aya)))

y=0
then we get

(0:8y))ly=0 = (9 e)|y=o-
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8

Derivating again the equation of (2.2) with y,
00+ 0, ((us + a)&m) + 0, (f;(u; + 8ya))

= dta,

using Leibniz formula
o ((us + ﬁ)&ﬂ) + 0, (ﬁ(u; + aya))
= (02(u® + @) 02 + (020) (uj + 0y11)

+ (u® + @), 0yt + DO (us, + Dy ti)
+2(0y (u® + @)) 0y 0x i + 2(0,0) Oy (uy + Oyt),

thus,
(8;*11)(15,35,0) = <u§(t,0) + (8yﬁ)(t,:z:,0)) (0y0,0)(t, x,0),

and
( ewmrn)

+ <8§u5(t,0) + (8311)(15,3;,0)) ((8yazﬁ)(t,x,0)>.

For p = 2, we have
8t8§ﬂ + 8;‘ ((us + a)ama> + 8;‘ (f;(uz + &ﬂ)) — 84,

using Leibniz formula

a’ ((us + a)aza) + o <a(u; + aya)>
(O (u® + @) Duit + (20) (ul, + Dylt) + (u® + WDy + DO (us, + Dy )

+ > ¢ ((@Z(us + )0 Oy + (090)0% 7 (us + aya)) ,
1<5<3

thus, by (2.9)

(Oga)(t, z,0) = (9,0,a)(t, x,0) — (95 0zu)(uy + 8ya)(t, x,0)
+ > Cf ((@f)(us + @) 0y Dt + (090)0, 7 (ul + aya)> (t,,0)
1<5<3
(2.10)

<3§’us(t, 0) + (92a)(t, =, 0)) <(ayama> (t, z, 0))
+ > Cf <(ag (u® +@))0) 7 Dptt — (921D, ) 07 (uf) + aya)) (t,z,0).

1<5<3
Taking the values at ¢ = 0, we have proven (2.7) for p = 2. The case of p > 3 is
O

then by induction.
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Remark 2.3. By the similar methods, we can prove that if u is a smooth solution
of the system (2.2), then we have

a(t,x,0) =0, (02a)(t,z,0) =0, V(t,z) € [0,T] x R,
(Oga)(t,2,0) = (us(t,0) + (9yu)(t,x,0))(9y0,4)(t, x,0),V(t,z) € [0,T] X R,

and for 4 < 2p < m,

p q
(@27 D a)(t,2,0) = Cap [T 000574 (w2, 0) + alt,2,0)),  (211)

=2 (a,B)ENq Jj=1

for all (t,z) € [0,T] x R, where Ay is defined in (2.8).
See Lemma 5.9 of [20] and Lemma 4 of [7] for the similar results.

q
Remark that the condition 0 < )" «; implies that, for each terms of (2.11),
j=1

there is at last one factor like 0y’ 85j+1ﬂ(t, z,0).

3. THE APPROXIMATE SOLUTIONS

To prove the existence of solution of the Prandtl equation, we study a parabolic
regularized equation for which we can get the existence by using the classical energy
method.

Nonlinear regularized Prandtl equation. We study the following nonlinear
regularized Prandtl equation, for 0 < e <1,

Oyt + (u® + Ue)Dplic + ve(uf + Oyiic) = D2tc + €D,
Oplic + Oyve =0,

Ue|y=0 = Ve|y=0 =0, lim u. =0
e|y 0 €|y 0 7y—>+oo € )

Uelt=0 = Up,e = Uo + €Ll

(3.1)

where we choose the corrector ey such that @g + ep. satisfies the compatibility
condition up to order m + 2 for the regularized system (3.1).

We study now the boundary data of the solution for the regularized nonlinear
system (3.1) which give also the precise version of the compatibility condition for
the system (3.1), see [2, 3] for the Prandtl equation with non-compatible data.

Proposition 3.1. Let m > 6 be an even integer 1 < k,0 < { < % and k+ € > %,
and assume that o satisfies the compatibility conditions (2.6) and (2.7) for the
system (2.2), and pe € H]'"%P (R for some 3 < £/ < {+ L such that @iy + epue
satisfies the compatibility conditions up to order m + 2 for the regularized system
(3.1). If 4. € L([0,T); H;"L*(R%)) N Lip([0, T); H;" ' (R2)) is a solution of the
system (3.1), then we have

ic(t,2,0) = 0, (82d.)(t,2,0) = 0, ¥(t,2) € [0,T] x R,
(03 (t, 2,0) = (ul(£,0) + (Byiie) (£, 2, 0)) (D, Duii) (¢, 7, 0), (t,z) € [0,T] x R,



10 C.-J. XU AND X. ZHANG

and for 4 < 2p < m,

—

p
(6§(p+1)ﬂ6)(t,$,0) :Z el Z Cazﬁl

Q

—21=0 (al gl)eAl
a 0 (af,8h)eA] (3.2)
kl ol 5l~+1
x [ om0, (w'(t,0) + ic(t, ,0)),
j=1
for all (t,z) € [0,T] x R, where
Af] :{(aaﬁ) = (alu' o 7ap;617" . 76}7) € N7 x qu
q
aj+B;<2-1,, 1<j<q Y 30;+p;=2p+4l+1;
j=1
q q
Zﬂj <2p-—2l-2, O<Zaj §p+21—1}.
Jj=1 j=1
Remark 3.2. .
q
1. Remark that the condition 0 < 3 aé— implies that, for each terms of (3.2),
j=1
. al B4
there are at last one factor like 0z 0y’ ue(t, x,0).

2. Here we change the notation for the wighted index of function space, in
fact, using the notations of Theorem 1.1, we have

l=v—-§+1, '=v+1.

Proof. Firstly, for p < %, we have 2Pt € L>®([0,T]; Hy 4y 9,,1(RY)). So the

trace of 9220, exists on y = 0.
Using the boundary condition of (3.1), we have, for 0 <n < m+ 2,

O uc(t,z,0) =0, ONve(t,x,0)=0, (t,z)€[0,T]xR,
and for 0 <n <m
(007 Ue)(t, x,0) =0, (005ve)(t,x,0) =0, (t,x)€[0,T]xR.
From the equation of (3.1), we get also
(0207 1) (t,2,0) =0, (9,0, tc)(t,x,0) =0, (t,x)€[0,T] xR, (3.3)
On the other hand,
Dy 0ytic 4 Oy ((u® + 1) Drtic) + Oy (ve(uf + Byiic)) = 83115 + €020y,

observing
[37;((“5 + ﬂe)azﬁe) + 9y <v€(u; T 8y115))] ‘yIO =90,

we get
(0:8ye)ly=0 = (Fyic) ly=o + €(D2Dyic) ly=o-

We have also

0,0 1ie + 0 ((u® + 1) Dy lic) + O (ve(uf) + Dyiic)) = Oyylic + 0705,
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using Leibniz formula
07 ((u® + i1e)Dric) + OF (ve (uf) + Dyiic))
= (02(u® + @) ) Oplic + (v ) (u + Oy iic)
+ (U + 1ic)0; Oy lic + veO; (U + Oyfic)
+ 2(0y (u® + 1)) Oy Oz e + 2(9yve) 0y (uy, + Oytic),
thus,
(@) (t,,0) = (uS(t,0) + (Byic) (1, ,0)) (9,0510c) (¢, 2, 0). (3.4)
Applying 0, to (3.4), we have
(0,020 (¢, 2,0) = (93u®(t,0) + (930c) (1, 2, 0) + (820 i) (t, 7,0)) (8,0t (t, x,0)
+ (ug (,0) + (Oyie) (t, 2,0)) ((950,1c)(t, x,0) + €(D20y i) (t, x,0)) .
On the other hand, we have
80k + 02 ((u° + )0, tic) + 02 (ve(ul + Byii)) = 80t + €20 e,
using Leibniz formula
83 ((us + ﬂé)azﬁe) + 8;1 (vE (uZ + 8yﬁ€))
= (0 (u® + 1)) Ol + (Dyve)(uf + Oy i)
+ (U + @) OEDy e + 0O (ul + Dy
+ > CH(@(u® + 1)) Dy I Dt + (DJve) Dy (uly + Dyiie)),

1<5<3
thus,
(Opiie)(t,x,0) = (0:0y i) (t, x,0) — (9 0puc) (uf, + dyiic)(t, x,0)
+ > CHOI(u + 1)) 0y Dyl + (ve) Dy~ (g + Dyic)] (£, ,0)

1<5<3
— €020, (t, x,0).

Using (3.4), we get then
(Opiie)(t,x,0) = (3u(t,0) + Oite(t, x,0)) yDpiic(t, ,0)
— 26,0y (t, 7,0)(0y 021, ) (t, 7, 0)
+ > CH(O(u® + 1)) Dy~ Dy — B3 Opitcdly I (u + Byiic)] (£, @, 0),

1<j<3

(3.5)

Compared to (2.10), the underlined term is the new term.
This is the Proposition 3.1 for p = 2. We can complete the proof of Proposition
3.1 by induction. (I

The proof of the above Proposition implies also the following result.

Corollary 3.3. Let m > 6 be an even integer, assume that tg satisfies the com-

patibility conditions (2.6) - (2.7) for the system (2.2) and 0yt € H,ZI;?(R?,_), then

there exists €9 > 0, and for any 0 < € < €y there exists i € H,?r;,g_l(Ri) such that
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Uy + €pe satisfies the compatibility condition up to order m + 2 for the reqularized
system (3.1). Moreover, for any m <m <m + 2

3 -
(R2) = §Hayu0HH’ﬁ (R2):

10y o,ell e

k+e/
and
lim [10y @o.c = dytio w3 = O

Proof. We use the proof of the Proposition 3.1.
Taking the values at ¢ = 0 for (3.3), then (2.6) implies that the function g
satisfies
(02 1) (x,0) = 0, (Bjague)(x,O) =0, ze€R.
Taking ¢t = 0 for (3.4), we have
(8yi0)(x, 0) + €(Fype) (z,0)) =[dyu5 (0) + (D
X [(ayazﬂo
using (2.6), we have that u. satisfies
(8;1#6)(13, 0)) =(0yug(0) + (8ytio)(x,0)) (DyDupuc)(, 0)
+ (Oype)(z,0)(0y0xio) (2, 0)
+ €(0y Oz pic) (,0)(Oy Oz pic) (, 0).

yaO)(xa 0) + E(ayﬂe)(xa 0)}
)(2,0) + €(9ydupuc)(,0)],

We have also

(0:0;11c)(0, z,0) =(Du(0) + (9511e) (0, 2,0) + €(920y 1) (0, z,0))

X ((030x1)(0,2,0) + €(830,1.) (0, z,0)).

Taking the values at t = 0 for (3.5), we obtain a restraint condition for (95 s.)(z,0),
Oy pe(w,0) = ((Oyup + i)y Or pre) ly=0 + Dy 11Oy riinly—o + €0y h1c0y Oz prcly—o

— 20,0,ti0(, 0)(9,0200) (,0) — 2€0,0yTio(z,0)(0y 02 ) (t, x,0)

— 20,0y 1 (t, ,0)(9, 0210 (, 2, 0) — 262050y pre(,0)(9y 2 p1e ) (x, 0)

+ Z C; 103 (u§ + 110) 0y 7 Op e + 03110y, Oyliq + €0} 0y~ Oy | ‘y:o

1<5<3

= Y OOy duiiod I+ 0 Do Dy D],
1<5<3

= Y GO 00y (Dyuf + Dyiio)]
1<5<3

thus
O pe(x,0) = — 20,070 (x, 0)(9, 02 o) (x, 0)

+ Z Cal,ﬁﬁazﬁzaglayﬁl—‘rl(u(s)+ﬂ0)aglagl+lﬂe(‘r70)
a1,B13a2,82
D Corbien s30T ued 0 e, 0),
a1,B1sa2,B2
where the summation is for the index as + B2 < 3; a1 + f1 + as + 2 < 3. The
underlined term in the above equality is deduced from the underlined term in
(3.5). All these underlined terms are from the added regularizing term €92 in the

(3.6)
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equation (3.1). This means that the regularizing term €92 has an affect on the
boundary. This is why we add a corrector term.
More generally, for 6 < 2p < m, we have that (85(17“)#6)(:6, 0) is a linear com-

bination of the terms of the form
q1

11 (aﬁ o0 (ug + ﬁ0)>

q2

(e

)

j=1 y=0 =1 y=0
and

q1 ol ,81-1-1 q2 o2 ,82-1-1

H (81137/ (u§ + a0)> X H (aziayi ,Ue) ,

j=1 y=0 i=1 y=0

where the coefficients of the combination can be depends on € but with a non-
negative power. We have also aé + ﬁé +1<2p,l=1,2, thus (Bj(p“)ue)(x,O) is
determined by the low order derivatives of p. and these of .
We now construct a polynomial function i, on y by the following Taylor expan-
sion,
g+l 2%
hy — 2P Yy
fie(z,y) 1;3 @) i
where
ﬁf(:c) = _2(8Iayﬂ0)(x7 0)(81}35’&0)(,@, 0)7
and 27 (z) will give successively by (0294c)(z,0) with (979 pc)(x,0) = 0, =
0,-+-,m, and it is then determined by (959)tio)|y—o. Finally we take p1e = x(y)fie
with x € C([0,+o0]); x(y) = 1,0 <y < 1; x(y) = 0, y > 2. Thus we complete
the proof of the Corollary. O

Remark 3.4. Suppose that ugy satisfies the compatibility conditions up to order
m+ 2 for the system (2.2) with m > 4, then for the reqularized system (3.1), if we
want to obtain the smooth solution w., we have to add a non-trivial corrector p. to
the initial data such that g + eue satisfies the compatibility conditions up to order
m+ 2 for the system (3.1). In fact, if we take p. with

(@ pe)(x,0) =0, 0<j<5,
then (3.6) implies
(05 p1e) (2, 0) = =2(8,0y 110 ) (, 0)(8, D2 1i0 ) (, 0),

which is not equal to 0. So added a corrector is necessary for the initial data of the
reqularized system.

We will prove the the existence of the approximate solutions of the system (3.1)
by using the following equation of vorticity w. = 9., it reads

e + (U + Tie)0pe + ve(us, + Oythe) = Obe + €D,
Oyte|y=0 =0, (3.7)
d)e|t:O - 'LDO,E - ﬁ)O + anu€7

where
+oo Y
Uc(t,z,y) = —/ We(t,x,§)dy, 0 (t,z,y) = —/ Optic(t, x,7)dy. (3.8)
y 0

We have the following theorem for the existence of approximate solutions
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Theorem 3.5. Let 0yt € H,Zfi_'f(Rﬁ_), and m > 6 be an even integer, k > 1,0 <
l< %, k+¢> %, assume that g satisfies the compatibility conditions of order m+2
for the system (2.2). Suppose that the shear flow satisfies

o0 s (ty)| < Cly) ™ P, (ty) €0, TA] xRy, 0<p<m+2.

Then, for any 0 < € < ey and 0 < (, there exits T. > 0 which depends on € and C,
such that if -
ol gtz gz y < G
then the system (3.7)-(3.8) admits a unique solution
we € L([0, T By (RY)),

which satisfies

oy, @2) < 2l|wollmp, m2)- (3.9)

_ 4.
”we|‘L°°([O,Te];H;12(Ri)) < §||w0,€| T

Remark 3.6. .

(1) Remark that T, depends on ¢ and , and T. — 0 as ¢ — 0. So this is not
a bounded estimate for the approzimate solution sequences {u® + ;0 <
e < eg} where €9 > 0 is given in Corollary 3.3. When the initial data g
is small enough, we observe that u® + u. preserves the monotonicity and
convezity of the shear flow on [0,T,].

(2) In this theorem, for the reqularized Prandtl equation, there are not constrain
conditions on the initial date, meaning that we don’t need the monotonicity
or convexcity of shear flow u®, and C is also arbitrary.

If w, is a solution of the system (3.7)-(3.8), then (A.1) with lim, oo @ = 0
imply
de € L(0, Tels H' 2, (RY)),
and
Be € L([0,T2); L®(Ry, s H™ ' (R,)).
Integrating the equation of (3.7) over [y, +oo[ imply that (4., ?.) is a solution of
the system (3.1), except the boundary condition to check:

+oo
de(t,2,0) = —/ We(t,z,i)dj =0, (t,z)€[0,T.] x R. (3.10)
0
In fact, noting f(¢t,z) = — 0+°O We(t, z,§)dy = Uc(t, x,0), a direct calculate give
. f = €0? t T.] x R;
Ouf + J0uf = 02, (t,2) €0, T x B; 1)
f|t:0 = 07

here we use

+o0 ']
/ Ve (U, + Oy )dy = [ve(u; + d)e)};m — / (Oyve) (uy + we)dy
0 0
_ / (05u)dy (u® + i) dy
0
= [@aud)w® + )] —/ (Do) (u® + i) dy
0

= —f0.f — /Ooo@we)(us + i) dy.
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Since f € L>([0,T.], H""%(R)), the uniqueness of solution for equation (3.11)
imply that f =0 on [0,T¢] x R. (3.10) imply also

+oo Y
ﬂ/e(tu z, y) = _/ we(tu z, g)dg = / we(t7x7g)dgu (tu z, y) € [07 Tﬁ] X R?I-
Y 0

We will prove Theorem 3.5 by the following three Propositions, where the first
one is devoted to the local existence of approximate solution w, of (3.7).

Proposition 3.7. Let W € H;’T;Q(Ri), m > 6 be an even integer, k > 1,0 <
l < %,k + 0> %, and satisfy the compatibility conditions up to order m + 2 for
(3.7). Suppose that the shear flow satisfies

05 (L y)l < CW) TP, (ty) €10, TA] xRy, 0<p<m+2.
Then, for any 0 < e <1 and ¢ > 0, there exits T. > 0 such that if
[@oell g2 g2y < ¢
then the system (3.7) admits a unique solution
e € L([0, ) Hyy* (RY))

Remark 3.8. If wy € H;Té%RQ ) is the initial data in Theorem 8.5, using Corol-
lary 3.3, there exists g > 0, and for any 0 < ¢ < €q, there exists p. € Hgfz?’(Ri)

such that Wo . = Wo + €0yt satisfies the compatibility conditions up to order m + 2
for the system (3.7), and

||w0 e||Hm+2(R2) H’LUQHHm+2(R2)

Then, using Proposition 3.7, we obtain also the existence of the approzimate solu-
tion under the assumption of Theorem 38.5.

The proof of this Proposition is standard since the equation in (3.7) is a para-

bolic type equation. Firstly, we establish the a priori estimate and then prove the
existence of solution by the standard iteration and weak convergence methods. Be-
cause we work in the weighted Sobolev space and the computation is not so trivial,
we give a detailed proof in the Appendix B, to make the paper self-contained. So
the rest of this section is devoted to proving the estimate (3.9).
Uniform estimate with loss of z-derivative In the proof of the Proposition
3.7 (see Lemma B.2), we already get the & priori estimate for w.. Now we try to
prove the estimate (3.9) in a new way, and our object is to establish an uniform
estimate with respect to € > 0. We first treat the easy part in this subsection.

We define the non-isotropic Sobolev norm,

A1 sz = > 1)+ 021052 fll 72 za ), (3.12)
|ar+az|<m,a1<m—1

where we don’t have the m-order derivative with respect to x-variable. Then

1117 = | fll5pmm—a Ryt 105" f1I72
kie  (

k+E(R2

k+£
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Proposition 3.9. Let m > 6 be an even integer, k > 1,0 < £ < 5 Lk+v > and
assume that w. € L>=([0,T]; Hﬁ_@%RQ )) is a solution to (3.7), then we have

am 7)

E”wEHHm m—1 R2 + || weHH;rl;n—l(Ri)

(3.13)
~ 2 - 12 ~m
 lOaTell -1 gz < O (”W”Hmmb + ||wf”Hm<Ri>>v
where Cy > 0 is independent of e.

Remark. The above estimate is uniform with respect to € > 0, but on the left
hand of (3.13), we missing the terms [|0}"wc||7. . This is because that we can’t
k+2¢

control the term
O 0 (t, 2, y) / oM (t, z,9)dy,

which is the major difficulty in the study of the Prandtl equation. We will study
this term in the next Proposition with a non-uniform estimate firstly, and then
focus on proving the uniform estimate in the rest part of this paper.

Proof. For |a| = a1 + as < m,a; <m — 1, we have
0401, — €020, — 8580‘81216
= —80‘((uS + ﬁe)amﬁ)é) - 0° (ﬁe(ufw + 8y121€)).

Multiplying the (3.14) with (y)2(k+¢+22)94,, and integrating over R2

(3.14)

/ (8,0%W,) ()2 F+O+202 9% dady — 6/ (D20%we) (y) 2 FTOF202 g dady
R2 R

—/ (858“12@( V2RO +202 gog daedy

R2

= —/ 0% ((u® + ) Dpbe — Ve(us), + Dyte)) (y) AktO+202 oy dady.
2

Remark that for w. € L*°([0,T.]; H, ﬂ?(Rﬂ)), all above integrations are in the clas-
sical sense. We deal with each term on the left hand respectively. After integration
by part, we have

/ (80 t0e) y)* WO D9 ddy = dﬁlla e |7
R2

it ttag (RY)?

N =

[0 5804 [e3 2 [05ed [0 50d
— 6/R2 (353 wé)<y>2(k+f)+2 2(R3) g Wedzdy = €]|0,0 w€||%i+e+a2(Ri)’

and

8580‘ ve(y >2(k+£ 2029005, dady

2
R

= ||ayaawé||ii+e+ as ( / %0y e k+e>+2a2) 0% wedzdy

- / (0% 0y 0™, ‘Uzodaz.
" :
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Cauchy-Schwarz inequality implies

|, 070y ((y) "0y 0% b dwdy
+

1 a,~ a,~
< 1—6”(91/8 w€||%i+e e (R2 +C||8 weHLz

R2)*
k+l+ao ( +)

We study now the term
/ (0%0yw0%we) |, _,dux.
R v=
Case : |a] < m — 1, using the trace Lemma A.2, we have
< ||(aaayd’e)lyZOHLz(R)||(8au~’e)|y:0||L2(R)

< C0°“07wel 12

k+l

‘ /R (0“0, 00", ) |y:Od;v

R2. ||8 9 we”LzH(R

< CH‘9 we”H"”" L(R2) | De |l gy

e (RY)

=2
< E ||ayw5||H;12n*1(R2

Ol e
Case : oy =m — 1,a3 = 1, using (3.3), we have
(aawe)lyZO = (aglasﬂE)lyZO =0,
thus
/ (0%0yWwe 0 We) |y=odx = 0.
R

Case : a1 = 0,as = m. Only in this case, we need to suppose that m is even.
Using again the trace Lemma A.2, we have

/(8m+1 0y we) |y=o0dz
R

<10y ) ly=oll L2y 19 @) [y=oll L2 (ry

<C||(am+2ae)|y:0||p 10y el e2 )

||3 welle gz + OO i) ly=oll72(m)

R2

Using Proposition 3.1 and the trace Lemma A.2, we can estimate the above last
term ||(8;”+2&6)|y:0||%2(R) by a finite summation of the following forms

p
ITT@ 0+ (w® + @) ly=ollZom) < €10y H (057 0 (u? +u6))||L2 ()

j=1 j=1

with 2 < p < B, a; +8; < m—1and {j;a; > 0} # 0. Then using Sobolev

inequality and m > 6, we get
_ 2
10520l 2y < Cllellfy: oo -
Case : 1 <a; <m—2,a; +ay = m,as even, using the same argument to the
precedent case, we have

/ (090,50, )|y —odz
R

<1095 02 e [y=ol| 2wy | (95 05> e ly=oll 2wy

/ (051002 1,021 002, ) | y—odix
R
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IN

1 ~ a1 Ho ~
Tg IOl )+ CI@g 052 i) ly=ol 2wy

2
ym—1
H T (RE

IN

1 ~ |12 ~ ||
1619 Pl )+ Olltelli, )

Case: 1 <a; <m—2,a1 +a2 =m,as odd, integration by part with respect
to x variable implies

/R(Z);“8y°‘2+1121€8;‘18y°‘2121€)|y:0dx

_ ‘ /R (001 o0e 1, 92 902, )|y —o
<1002 e ) y=oll L2 ) 1 (951 O 2 1e) ly=ol| L2 ()

1 ~ « « ~
< Tglldvedl; )+ ClE T og= ) [y=ollZa (g

m,m—1 2
Hk+£ (R+

IN

1 ~ 2 ~, Otg—l
76 10y el ) T Cllae]|

H;’fﬁnfl(Ri Hi (RE)”
Finally, we have proven
/ (010%We — 20" — D20 ) (y)*FH2) 9%, dwdy
R
1d

2 18%5. 112 o~ 2 R
2 g0 ey, .., 00l 10,00y,

1 ~ 112 ~ [|m
- ZHaywenH;nﬁn*l(Ri) - C”weHH&e(Ri)-
We estimate now the right hand of (3.14). For the first item, we need to split it
into two parts
—0%((u® + 1) 0pe) = — (U’ + @) 0 We + [(u° + e ), 0| Dy

Firstly, we have

ktetas

/ (4 + 5)0,0%.) (y)**02) 9%, dady < [Dpiel| e | 0%0c]22
R

then using (A.2), we get

~ ~ 20+ ~ ~ =12
/]R (0 + 50,0%0) )OO dwdy| < vl g0
7
For the commutator operator, in fact, it can be written as
(0 + ), 0%)0piie = Y CH O (u® +11)0° PO,
B<a,1<|B]
Then for |a] < m,m > 4, using the Sobolev inequality again and Lemma A.1,

Il(u® + @), 0%)0z e[ L < Clllwellag, , + el ,)-

k+ltag — k+2 k+e

Thus

/ <y>2(k+é+a2) ([(US + ae), 8(1]8111)5) . 8a111€d$d’y
RZ

+

< Oy, + Il ),

and

< Oy, + i),

[ 0 0 (w0 + 2)0,0)) 0wy
RZ

+
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where C' is independent of e.
For the next one, similar to the first term in (3.14), we have

o~ (ﬁe(u;y + Bydze)) = 0.0y 0% — [V, 0%]0yWe + 8a(ﬁ€u;y).
Then

/R2 5e<y>2(k+é+a2)(ayaawe) - 0%Wedrdy| < ||56||L°°(R2)||6y@6”H’" el

m
+ ke k+e

+

< 210yl 2y + Clldellbgy s )

=

where we have used

[0c]| oo 2y < CHawae||L°°(]RI;L2%+6(R%+))

<c / () (0,2 + 1020 dudy
R

2
so/
R

where 6 > 0 is small.
Noticing that

W) (Oae? + |00 ) dwdy < Clliells
2

2
+

[0, 00y = Y CF 9%5. 0°7P0, .
B<a,1<|8]
Since H;" is an algebra for m > 6, we only need to pay attention to the order of
derivative in the above formula. Firstly for || > 1, we have for |a — 8| + 1 < m,

y oPit+19B2—1g Ba>1
_9P5. — 9890 [ a ai—=J 9z Oy Ue 2=
070 =020, /0 ey { Jy 08 ady, =0,

Now using the hypothesis § < a,1 < |8] and 81 < a3 < m — 1, using Lemma A.1,
we get

[I[oe, 8%]0y el 1z

_ 2
2 oy = O||we||H;ng-

On the other hand, if ag = 0, using —1 4+ /¢ < —%, we can get

1057 (Dt )l 2

2, < c||a;”ae||m%+é<m>Ilu;ylngHmH < Cllwenﬂg+ .

S5
Similar computation for other cases, we can get, for as > 0,7 + as < m,

10 G, )iz, < Clivelmg,.

Combining the above estimates, we have finished the proof of the Proposition 3.9.
O

Smallness of approximate solutions. To close the energy estimate, we still
need to estimate the term 0)*w..

Proposition 3.10. Under the hypothesis of Theorem 3.5, and with the same no-
tations as in Proposition 3.9, we have

Ld om- 2 3¢ qmt1 2 3 m,~ |2
5%”8:5 wE||Li+E + ZH&E + w€||Li+£ + Z”ayaz we||Li+£
32

< Oy, + 15ely,) + = (el + 163y,

(3.15)
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Proof. We have
010, W — 858;”1176 — €M%, = —ay((us + ae)amwe) — o (176(81,1716 + “Zy))v
then the same computations as in Proposition 3.9 give
d m,~ m ~ 3 m,~
S O3y elor a2y |+ 10,00 aRs
~ 12 ~ 13
< C(||7~U€||H}g”‘+,Z + || @ell 7 ,) (3.16)

k4

+ / O (5e(By e + 115, )) () 250 95, dady |
R

2
+

where the boundary terms is more easy to control, since
(0y 0 e) (t,x,0) = (0,07 ie) (t, #,0) = 0, (t,x) € [0,T] x R.

The estimate of the last term on right hand is the main obstacle for the study of
the Prandtl equations.

O (0e(Dyhe +u3),)) = 007 Oytbe + (970 ) (Dy e + us),)
+ > ClLOLbO Iy
1<j<m-—1
For the first term
/ ﬁf(aglaywe)@y(k—i_é) (07" e )dxdy =
R

2
+

N | =

/ B ()2 K400, (05, ) 2dandy

—_

_1 / e 2 (y) 250 (045, ) 2ddy

[\

- é/5e<y>2(k+£)71(3;’%e)2diﬂdy
~ 13
< C||we||ngH7
where we have used ¥¢|y=o = 0, and

[ O chotnoro,m) w0 ora) dedy| < Claly,
R2

To1<j<m—1

Finally for the worst term, we have

/Rz (957 0) (Bye + iy, ) {y) >+ (O ) dly

+

< O070c|| L2y o @) |0y Wel oo (v, 12, m ) 10e| 7,
107 Veugy 2, w2)ll@ell -

On the other hand, observing
Yy
ortag) = [ ortia s
0

then using Sobolev inequality and Lemma A.1, for § > 0 small,

107 Vel L2 (R, Lo (R4 )) < C||<9;”+1ﬁ€||L2‘%M(R1) < Clla;”HwEIIL?%H(Ri),



21

PRANDTL EQUATION

we get
107" Bell L2 (ys Lo 1)) < Cllaﬁ“weIILz%M(Rir

Using the hypothesis for the shear flow v® and £ —1 < —3
107" (Ve )||L§+e R2) < ||a;n€)e||L2(Rm;L°°(R+))||uZy||L§H(]R+)
< O||8;n+1we||L2%+5(R2+)a

and for k + ¢ > %—i—é,
10 weHLOO(]Rm, L3, ,(Ry)) SC”ayweHHl(RI, L2, ,(Ry)) = CHwe”H}c’”‘+£ (R2)-

Thus, we have

/ (05" (0 Oy + uy)) (y)* 0 O bedardly
32 ) g (3.17)
< C”weHH;gfH +— (||we||H;ng + [l ||H;g”LH) ||5m ||L2
From (3.16) and (3.17), we have, if k + ¢ >
1d m o~ m ~ 3 m -~
2 dt”a E||L2 —||8 i e||L2 _”ayaz we”%iH
32 _
< Oy, + Neliy,) + 22 (el + el
(]

End of proof of Theorem 3.5. Combining (3.13) and (3.15), for m > 6,k >

k<€<%and0<e§1,weget
d, .o S = im
_|| || er[(Ri) S :(stHHm Z(Ri) + ||w€||Hf€n+[(R2+))7 (318)
with C' > 0 independent of ¢
From (3.18), by the nonlinear Gronwall’s inequality, we have
50552 e, < IOl 0<t<T
wé m = m k) < — €
D T em D — (5 = ) St (0)
where we choose T, > 0 such that
—1 m—2
m - 4
(efTe(zl) _ (ﬂ _ 1)QT€<m2> = <_> ) (3.19)
2 € 3

Finally, we get for any ||w, )||Hm < ¢, and 0 < € < ¢,
R2) <2||w0||HmE(R2) O<tST
O

) < 2O

L i~ A

e (D) g, 2

The rest of this paper is dedicated to improve the results of Proposition 3.10
and try to get an uniform estimate with respect to e. Of course, we have to recall

the assumption on the shear flow in the main Theorem 1.1
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4. FORMAL TRANSFORMATIONS

Since the estimate (3.13) is independent of €, we only need to treat (3.15) in
a new way to get an estimate which is also independent of e. To simplify the
notations, from now on, we drop the notation tilde and sub-index ¢, that is, with
no confusion, we take
U="TUe, V=70, W= We.
Let w e L>®([0,T]; H ,(R2),m >6,k>1,0<(< 3, + <l <l+3 k+(>3
be a classical solution of (3.7) which satisfies the following @ priori condltion

lwll Lo fo,7y; 117, (R2)) < C- (4.1)

k+l

Then (A.2) gives
1) ]l oo o,z ) SCUKYY2 (@) w)y | oo o, 732222 ))
+ 1) T () w)ay |l e (o.11:2222 )
< Cm”wHLoo([o,T] SH ,(R2)):
which implies
Oyult, z,y)| = lw(t,z,y)| < Crn C W)™ (tz,y) €[0,T] x B2,

We assume that ¢ is small enough such that

where C), is the above Sobolev embedding constant. Then we have for £ > 0,
c1, . _ R ~ _
R M < up 4 uy| <4é(y) 7" (ta,y) €0, T x R x R, (4.3)

The formal transformation of equations. Under the conditions (4.2) and (4.3),
in this subsection, we will introduce the following formal transformations of system
(3.1). Set,for0<n<m

o"u U us. +u
In = ( S z ) , = S i , N2 = UZ yy7 V(t,.’[: y) [O T] X ]R2
Uy, + Uy Uy, + Uy Uy + Uy

Formally, we will use the following notations

13

_ onu
9, Yon(t,z,y) = " (t,z,y), Oy 8 9n = gn, Y(t,2,y) €0, 7] x R
Uy, + Uy

Applying 92 to (3.1), we have
0r0zu + (u® + u)0, 05 u + (05 v) (uy, + Oyu)
= 8§8§u + €020mu + AL + A2,
where

Al = =0, (uf + u)]0pu = =Y CLobudy T M,

i=1

= —[07, (u + Oyu)lv chazwa" i
=1

Dividing (4.4) with (uy+uy) and performing 9, on the resulting equation, observing
0.0y u + 0y0, v = 0 (Ozu + Oyv) = 0,
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we have for j = 1,2,

Oy (Lﬂ?zu ) + (u® 4+ u)0y ( 020 u )

ufl + uy ufl + uy
020" u + €020 u Al + A2
=9, | L—"" | +9, <7"+ ")
’ u; + uy ’ u; + Uy

We compute each term on the support of ,

n n Byuy + Oyus
9, (Laxu ) —9, <at—az“ +o7tg, v T My t”y)

Uy + Uy Uy, + Uy Uy + Uy
8tu5—|—(9tu
_ —1 y Yy
_atg”+a”(8y T )

(u® + u)d, <M) = (us_i_u){azay <ﬂ> +3y< 9iu > Uzy
UG + Uy ufj—i—uy uz—l—uy

S
uy—i—uy 7

) > (G}
Uy T Uy Y Uy T Uy

= (U +u)(Dsgn + gn 1 + 0, gn Oym),
D200

o 19) Uy, +U 1
: (Smu )+2(Syu ) msl yy_aguag(s ),
uy—l—uy uy—l—uy uy—i-uy uy—l—uy uy—l—uy

s s s 2
2 1 _ Uyy + Uy _ Uyyy + Uyyy Uyy Uy 1
8"1 s - 8y s 2 - s 2 +2 s s ’

I
<%

9y0;u u;y+uyy_< 95 u ) Uyy + Uyy 95 u <u1§y+“yy>2

Ug + Uy Uy + Uy Uy tuy ) Uy Uy us 4 uy \ (g + uy)
So
020" us o+
yz -1 2 -1 Yyyy yvy
= 2 —20 0, —_—
us + uy yGn + 2(gnn2 Y InM3) + y In < (u,vj ) ) )

('“);(’“);‘u 2 5
0y = Jygn + 2(8ygn)772 +2g,0yn2 — 49003

S
Uy, =+ Uy
S

— 80, L gm0 oy 0, g

Similarly, we have
920"y _ a2 anu i oru Ugy
us + uy BN uf +uy ) us 4 uy

_q u ( Ugy 2+ u Ugay
( )

S S
uy—l—uy uy—l—uy

020mu B
Y !
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2 -1 -1 Uzzy
—2gn17 — 40, gnmOym + Oy (6y 9n m) .

For the boundary condition, we only need to pay attention to j = 1. From (4.4)
and the boundary condition for (u,v) in (3.1), we observe

dyuly=0 =0, 3§3$U|y:o =0, (u; + uy)|y=0 # 0.

At the same time,

020"
=4 = 0yGnly=0 + 2(gnn2 — 2(0;  gn)n3)|y=
s+, o yInly=0 + 2(gnnz — 2(9, " gn)n2)ly=0
n ay—lgn (ufﬂﬂsl + i‘yyy> 7
) (uy + uy) y=0
and
Uy, + Uy . opu
772| =0 — ’9’57 :O; 8 gn(taxay” =0 — s (t,il?,y) :Oa
! Uy + Uy |,— Y Y Uy + Uy y=0
we get then
(Oygn)|y=0 =0, 0<n<m.
Finally, we have, for j = 1,2,
atgn + (us + u)awgn - a;.gn - eag%gn
—€2 (6may_1.gn)ay771 = M,, (45)
(Oygn)ly=0 =0,
gn|t:0 = 9n,0,
. 6 n
with M,, = ijl ME,
My = _(us + U)(anl + (3;1971)5;/771),
M3 = 2(0ygn)n2 + 29n(Bym2 — 205) — 8(9, ' gn) n20yn2,
M3 = €(2(0agn)m — 290107 — 40, gn)mOym),
u® + u)w, +v(w, +u’
g =0, a7, €00l )
Uy, + Uy
n Oz’ az . anJrlfi
M;:_&l(Zzﬂ n mu xT u>7
’ u; + Uy
7_17 Oz’ az '8n_i
Mg:_au<21_l nYz W T 1))7
’ u; + uy
where we have used the relation,
Oy, + Oty — (Uyyy + Uyyy) — EUaay = —(u® + w)wy +v(uy, + wy).

5. UNIFORM ESTIMATE

In the future application(see Lemma 6.3), we need that the weight of g,, big
then %, but from the definition, w € HIQTEQ(R?%) imply only g, € HZ(R2) with
0<l< % So the first step is to improve this weights if the weight of the initial
data is more big. We first have
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Lemma 5.1. Ifig € H'[P(R),m > 6,k>1,0<( <% L <l <l+3 k+0>3
which satisfies (4.1)-(4.2) with 0 < ¢ <1, then (gm)(0) € HZ,,(R3), and we have

[ (gm)(0 )HH2 (R2) < Clldo| gm-+2 (R2)"

k42"
Remark. In fact, observing

M 8,0 o
gm(O):< T )Z s T ),

S S S
Ug,y + Uo,y Uy +Uoy Uy, T Uy

then (4.3) implies
W) lgm (0)] < Cly)* |05 0| + C ()" 0} o,
which finishes the proof of this Lemma.

Proposition 5.2. Let w € L=([0,T]; H'?(R2)),m > 6,k > 1,0< £ < &, £/ >
LU —0<i k+0> 3, satisfy (4.1)-(4.2) with 0 < ( < 1. Assume that the shear
flow u® Uemﬁes the conclusion of Lemma 2.1, and g, satisfies the equation (4.5) for
1 < n <'m, then we have the following estimates, for t € [0,T]

d G 2 G 2 G 2
o Zl ||9n|\L§,(Ri) + Zl ||3y9n|\L§,(R3) ‘*'EZI ||3wgn||Lg,(R3)

m
<G> lgnllZe, 2 ) + Il , o2 ),

n=1

where Cy is independent of e.

Approach of the proof for the Proposition 5.2: We can’t prove (5.1) di-
rectly, since the approximate solution w, obtained in Theorem 3.5 is belongs to
L>([0,T.]; H,QT;Q(RQ )), which implies only g, € L>([0,T.]; H}(R%)). Then we
can’t use (y)2¢g, € L=([0,T.); H? ,,(R2)) as the test function to the equation
(4.5). To overcome this difficulty, we consider that (4.5) as a linear system for
gn,n =1,---  m with the coefficients and the source terms depends on w and their
derivatives up to order m, we will clarify this confirmation in the following proof of
the the Proposition 5.2. We prove now the estimate (5.1) by the following approach:
For the linear system (4.5), we prove firstly (5.1) as & priori estimate. Lemma 5.1
imply that g,(0) € HZ(R%),n = 1,---,m, then by using Hahn-Banach theorem,
this a priori estimate imply the existence of solutions

gn € L=([0,T); HZ(R2)), n=1,---,m.

Finally, by uniqueness, we can prove the estimate (5.1) by proving it as a priori
estimate. So that the proof of the Proposition 5.2 is reduced to the proof of the a
priori estimate (5.1).

Proof of the a priori estimate (5.1). Multiplying the linear system (4.5) by
() g, € L=([0,T7; H2 2,(R%)) and integrating over R x R*. We start to deal
with the left hand of (4.5) first, we have

p d
/815971 C gndady = aHgnHi?,(Ri)’

N =
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J

and

’ 1 ’
(0 + 0)0sgn () gudody =5 [ (u* + ) - 0,0 g2)dady

: "

1 2
< 5||uz||Loo(Ri)||9n||L§,(Ri)
< Cllwllazge)lgnlzz @2)-

Integrating by part, where the boundary value is vanish,

N /u@ 0 9n ()" gndady = 10ygnlZ2, g2 + /Rz Dy gn (1)) gndady
+ +

3
> 710ugnllZ2, 2y = 4ll9nll72(mz ),

and
—e/ 029n ()% gndady = €|10ugn72 (g2 -
R2 0 +
+
We have also

—€ / (920, gn) Dym (v)*" gndady
R

=€ 5;1971511771 <y>2é/amgndxdy
RE

te 8y_19n(6y8m771)<y>2é gnd;vdy
R%
- €
<e€llo, 1gnayn1”%?/(]}{i) + §||8mgn||i?/(R2+)
+ 6“(9‘7;19718‘7!81771“%2(]1@1) + €||gn||%5/(R2+)
So by (4.5) and 0 < € < 1, we obtain

d 2 2 2

i 19nllzz @2) + 10ygnllLz 2 ) + €llOwgnllLs ez
2 —1 2

< OHgnHL?,(Ri) + ||(ay gn)aymHL?,(Ri)

6
+ ||(8y_19n)8y8m771”2L2(Ri) + 22
j=1

/ M; ()" gndady|.
RZ
+
Then we can finish the proof of the & priori estimate (5.1) by the following four
Lemmas. (]
Lemma 5.3. Under the assumption of Proposition 5.2, we have
||8;1.g718y771||%?,(]1§i) + ||agjlgnayam771||%2(uai) < C||9n||%§,(Ri)-
where C is independent of e.
Proof. Notice that (4.1) and (4.2) imply
m| < Cly)™", 10.m| < Cly)~™",
Oym| < Cly)~1, [8,0um| < Cly)~ "



PRANDTL EQUATION
Then ¢/ > %,K’ -l < %, imply
Iy y - -~ 2
105 90 (9 0em)II 72, 2 SC/Rz () 1)(/0 gn(t,:v,y)dy) dady
T

< Clignlliz, @z
Similarly, we also obtain

||37]19n3y771||%3,(ug) < OHgn”%?/(Ri)-

Lemma 5.4. Under the assumption of Proposition 5.2, we have
! 1 €
“rn )\ 20 2 2
/R2 ZMj (¥)™" gndzdy Sg”‘aanHLg,(Ri) + g”amgnHLg,(Ri)
+ 7=0
A 2 2
+ CllgnlE may + 103, a2 ),
where C is independent of e.

Proof. Recalling M{* = —(u® + u)(gnm + (By_lgn)aym), by Lemma 5.3,

/R (u® 4+ w)gnm (v)* gndady

2
+

| +w)(9;  gn) Oy ()™ gnldydz < CllwlFr, , + Cllgnll7z,

< Cllgnll?s, s,

J

Besides, we have

2
+

M7 ()* gndady

2 2
e < O(HQH”@,@Q) + ||w||H;(R2+))-

The estimates of M3 and M3 needs the following decay rate of 7s:
2] < Cly)™", |0ume] < Cly)~ 7,
[Oyn2l < Cly)™2, 18y 0u1a| < Cly) ™2,
Recall M3 = 20, gn,n2 + 29, (0yn2 — 2n3) — 887;1971 120y12. We have
/2 gn(ayTD - 775) <y>2é/gnd$dy

R

/R _ (Oygn)ne ()% gndady

< ClignllZz, a2

1
< O||9n||%§/(R2+) + g”%%”%ﬁ,(uﬁ),

2
2/2 0y gntt2 Oy (y)** gndady
R+

< Ol 720, gnllZ + llgnlls, w2y < ClignllZe, g2 )

All together, we conclude

M) g dady

1
2 2 2
- < C(”gnHL?,(Ri) + ”wHH;,(]Ri)) + §||aygn||L§/(R2+)v
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and exactly same computation gives also

M3 (y)? g dady

2
R

2 2 ¢ 2
< C(Hgn”Lg,(Ri) + ||w||H]7C‘+£(R2+)) + g”‘?zgnHLg,(Ri)-
Now using (4.1)-(4.2) and m > 6, with the same computation as above, we can get

M (y)? g dady

. < O (lgnllZ, ez + ol a2 -

which finishes the proof of Lemma 5.4. O

Lemma 5.5. Under the assumption of Proposition 5.2, we have

~ - 2 2
<cC <Z 1911722, ez ) + ”“’”H::MM)) )

p=1

M () gndady
®

where C is independent of e.

Proof. Recall,

Mp=> " Cigiop™ ut > Cldlugniii

i>4 1<i<3
+) CLoy  gn 0w + CoLwo, " :
nOy InOy n%Yz y  In+1—is
i>4 1<i<3

here if n < 3, we have only the last term. Then, for ||w||H,§”H <(<1,m>6,

ZCiHQz'aQH*iUHLg,(Ri)JF > 1051 gt 1-ill 22, g2 )

i>4 1<i<3

< Z sz”giHLf,(Ri) ||ag+1_iu||L°°(]R2+)
i>4

+ Y Crlldsull ez |1Gnr1-il 22 @2
1<i<3

< CY Cillgill iz, @) lwll grpvs—s

i>4

+C Y Cillwll gvs gasa—illiz e

1<i<3
n
< OZ lgill 2, -
i=1
Similarly, for the second line in M5, by Lemma 5.3, we have

Y Gy )08 w2z y < D0 Callw) T O, gl ez | () RO w1

i>4 i>4

<C Z ”ngL?,(R?

We have proven Lemma 5.5. [l
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Lemma 5.6. Under the assumption of Proposition 5.2, we have
Mg (y)*" gndady
=

1 - 2 ~ S 2 2
< sm Zl ||6ygp||L§,(R2+) +C (Zl ||9p||L§,(R2+) + ”wHHgH(Ri) )
p: p:

where C'is independents of €.

Proof. Recall

n n n
Mg =3 Chgmedy v+ Y Chgidi ™ u+ Y CLo,g:00 v
=1 i=1 i=1
+ >0, i (CLOR~ 00y m + CLOT " unp)
=1

In M, we just study the term 9,g107 'v as an example, the others terms are
similar,

/R2 0,919 0 ()* gn = —/R2 91027 0 (1)* Oy gn
2

+

4 / 01070 () gudedy,
R

2
+

2

_ / 1 _
/ 710; " 0 ()* Dygndady < o [10ygnlliz, + Cllord; "ol
R2 m 2 2
o 1pl2, < e 20’ 24 e d
19195 0ll7z, < sup ()™ gidy sup y
x 0

+
y
/ onudz
eR yeERL J —oco 0

+oo +oo
< (I 00 + W0un g ) [ | [ b

< 0ol ez, + 10251 2303, )

2
dy

2

+ee +oe k—0+1 k+0—1
x / / () ~F T ()R gz dy
—00 0
< (Il o) + loal o) + o,
+oe +oe k—/0+1 k+0—1 ?
x / / () ~F L ()R gz dy
—00 0

2
<Cy ||9i||i§, + CllwlFy -
i=1

k420
Here we have used Lemma 5.3 and

1
E+t—-1> 2, |wl|gm, <1

2 kte — 77
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and
0egi = gj41 — gim — Oy ' gn - Oym.
By the similar trick, we have completed the proof of this lemma. 0

6. EXISTENCE OF THE SOLUTION

Now, we can conclude the following energy estimate for the sequence of approx-
imate solutions.

Theorem 6.1. Assume u® satisﬁes Lemma 2.1. Let m > 6 be an even integer,
k+4> %,0 <l< %, Lev<ryd 5, , and g € Hﬁ_’;? (R ﬁ_) which satisfies the
compatibility conditions (2.6)-(2.7). Suppose that we € L>([0,T]; H(R%)) is a

solution to (3.7) such that

1Del oo (0,77; Hp R S C
with
c1
0<(<1, CmCSE,
where 0 < T < Ty and Ty is the lifespan of shear flow u® in the Lemma 2.1, Cp,
is the Sobolev embedding constant in (4.2). Then there exists Cp > 0,Cr > 0 such
that,

H@e||L°°([0,T];H,;1e(Ri)) < CT||710||H:+§}71(R1)7 (6.1)

where Cp > 0 is increasing with respect to 0 < T < Ty and independent of 0 < e < 1.

Firstly, we collect some results to be used from Section 3 - 5. We come back to
the notations with tilde and the sub-index e. Then g, kS, are the the functions
defined by 4. Under the hypothesis of Theorem 6.1, we have proven the estimates
(3.13) and (5.1)

-, mm 6 € 771 771
dtH ”H 1 ]R2 + H w HH 1(]R2) (62)
0y r ey < Callilg
dt Z HgnHLQ,(R? + Z ||a1lgnHL2 (R2) +e Z ”awgn”L? (R2)
n=1 n=1
(6.3)
< Cz(Zl |\9§|\%§,(Ri) + ||1De||§{,gl+£(uai)) ;

Lemma 6.2. For the inital date, we have

T€ ga Z ||gn HL?,(R ) + Hwe( )”ilﬁzn*l(ngi)

< C u m
= || 0||Hk ‘;} 1(R2)7
where C 18 indepe’ndent Of €.

Proof. Notice for any 1 < n < m,

n 3 > 0ry
g = ( O Ui _ 0z0yuc O n
- ~ - ~ ~ 3
" uy +Wwe Y uf W uy + e
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and @.(0) = o, then we deduce, for any 1 <n < m,
2
010y

u(s))y + W

4of =t
12, (82)

||9§(0)||%§,(R1) <2 12(0)

—2
tow 0 s )
~ 12 ~ 12 ~ 2
< C(||3;Layuo||Li+ ®) T ||a;lu0||Li+e/7l(Ri)) < C||U0||H]T+§}71(Rz+)-

0!

From (6.2) and (6.3), we have

lgrllZz, a2y + ||@e||§fg+,7—1(Rz+)
< CeC2t L Cury 2 Cot )7 |2 (64)
< Cue®! [ e i)y n 7+ Coe® ol
Lemma 6.3. We have also the following estimate :
107 |72 g2y < é||gfn||%§/-
where C is independent of €.

Proof. By the definition,
o ata) = (uj + ) | Yo (to)di, yE Ry,
Therefore,
o = (up, + (0),) [ gt ) — () + ) (13, 9), 5> 0,

and

y 2
m, ~ |12 < 20—2 € € 2
ozl , < [ 0 ([ gt 21z ) st + 195,012 o

< Cligrn®lZz g2 )

where we have used ¢ — 1 < —% and % < /.
O

End of proof of Theorem 6.1. Combining (6.4), Lemma 6.2 and Lemma 6.3,
we get, for any ¢ €]0, 71,

t
~ 2 ~ Cat —Ca1 ||, 2
(Ol o) <Cse [ e gy a1

)dT
A Cot| s (12
+ Cge 2 ||u0||H;1+2}71(R2+)’
with C’g, Co independent of 0 < € < 1. We have by Gronwell’s inequality that, for
any t €]0, T,

- 2 A (Ca+Cs)t||~ |12
IOy, w2y < Coe' O iolGmas s -

So it is enough to take
02 = CyelC=+CT (6.5)

which gives (6.1), and Cp is increasing with respect to T. We finish the proof of
Theorem 6.1. g
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Theorem 6.4. Assume u® satisfies Lemma 2.1, and let tg € Hﬂ_‘;? ((R2), m>6
be an even integer, k > 1,0 < { < % Lt <it+d 5 k+e>32 5, and

0<(¢<1 with cmggé,

where Cy, is the Sobolev embedding constant. If there exists 0 < (o small enough
such that,

||U0||H;'f£,1 (®2) < (o,

then, there exists eg > 0 and for any 0 < € < e, the system (3.7) admits a unique
solution w,. such that
1Del oo (0,74); Hp (®2)) S G

where T4 s the lifespan of shear flow u® in the Lemma 2.1.

Remark 6.5. Under the uniform monotonic assumption (1.2), some results of
above theorem holds for any fized T > 0. But (o decreases as T increases, according
to the (2.5).

Proof. We fix 0 < € < 1, then for any w, € H,:rf (R3), Theorem 3.5 ensures that,
there exists €y > 0 and for any 0 < € < ¢, there exits T. > 0 such that the system
(3.7) admits a unique solution @, € L*([0, Tt]; H;"",?(R2 ) which satisfies

4
k2 < 51Ty

@) < 2llaoll g (ge)-

||w€||L°°( [0, T HI o (

Now choose ¢y such that
max{2, Cr, }¢p < %

On the other hand, taking w.(T:) as initial data for the system (3.7), Theorem 3.5
ensures that there exits 7/ > 0, which is defined by (3.19) with ¢ % such that
the system (3.7) admits a unique solution w, € L*([T., T. 4+ T/]; H}" ,(R%)) which
satisfies

7);

4.
R%)) < §||w€( My ,@2) < ¢

Now, we extend w, to [0,T, + T!] by @, then we get a solution w. € L>=([0,T. +
T!; H" ,(R?%)) which satisfies

10| Lo . v o

||w€||L°° ([0, Te4T!];Hy ,(R3)) =¢

So if T, + T! < Ty, we can apply Theorem 6.1 to w. with T' = T, 4+ T/, and use
(6.1), this gives
<6

||'LD€||L°°([O,T5+T'] H ,(R2)) = OT1||UOHH’"“ (R2) =9

Now taking w.(T.+T) as initial data for the system (3.7), applying again Theorem
3.5, for the same T > 0, the system (3.7) admits a unique solution @, € L*° ([T, +
T!.T. + 2T/, H", (R2 )) which satisfies

R) < ¢

Now, we extend w, to [0, T, + 2T/] by @, then we get a solution w, € L>([0, T, +
2T/]; H}"" ,(R?%)) which satisfies

D¢l oo (7,41, 212, H" ,(R2)) ||wE(T +T)||H,:"+£

||w€||L°°( 0, Te+2T!;Hy7, ,(R3)) <¢
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So if T, 4+ 2T! < Ty, we can apply Theorem 6.1 to w. with T' = T, + 27!, and use
(6.1), this gives again

1Dell oe t0, 721211077, 2)) < OG0l st ey < 5

Then by recurrence, we can extend the solution w, to [0,7}], and then the lifespan
of approximate solution is equal to that of shear flow if the initial date g is small
enough. O

We have obtained the following estimate, for m > 6 and 0 < € < ¢,

1)l 2y <€, te 0T,
By using the equation (3.7) and the Sobolev inequality, we get, for 0 < d < 1
[Del ip(o,m];020(r2 ) < M < +o00.
Then taking a subsequence, we have, for 0 < §’ < 4,
e — @ (€ — 0), locally strong in C°([0, Ty]; C** (R%)).,

and
Oy € L=([0,Th]; HY P (RY)), @ € L([0, Thl; HiY o(R3)),
with
10| o< (0, 74); 117, (B2 )) < C-

Then we have
i= 0, w e L0, Ty HY, o (B2)),

where we use the Hardy inequality (A.1), since

+oo
li u(t =— 1 o(t,x,7)dy = 0.
ICES R ’ (L, , §)dy
In fact, we also have
y
lim a(t, z,y) = lim w(t, z,g)dy = 0.

y—0 y—0 Jo

Using the condition k + ¢ —1 > %, we have also

st}

- / Vi df € L°((0,Ty); L (B ) H™ L (R,)).

We have proven that, @ is a classical solution to the following vorticity Prandtl
equation

O + (u® + w)Dpw + 00y (uf + W) = Db,

OyW|y=0 = 0,

W|¢=0 = o,
and (@, ) is a classical solution to (2.2). Finally, (u,v) = (u® + @, ) is a classical

solution to (1.1), and satisfies (6.6). In conclusion, we have proved the following
theorem which is the existence part of main Theorem 1.1.
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Theorem 6.6. Let m > 6 be an even integer, k > 1,0 < £ < %, % <l <

(+% k+0> 2, assume that u§ satisfies (1.2), the initial date g € H,::fz,g_l(Ri)
and @g satisfies the compatibility condition (2.6)-(2.7) up to order m + 2. Then
there exists T' > 0 such that if

||ﬁ0||Hl’c"+§}7l(Ri) < o,

for some 09 > 0 small enough, then the initial-boundary value problem (2.2) admits
a solution (u,0) with

ae L=([0,T); Hi'y_1(R%)), 9y € L=([0,T]; H ,(R2)).

Moreover, we have the following energy estimate,

- ~ 12
10y tll oo o, 1y; 177, (R2)) < C||U0HH;nﬁ;71(Ri)- (6.6)

7. UNIQUENESS AND STABILITY

Now, we study the stability of solutions which implies immediately the unique-
ness of solution.

Let @', %2 be two solutions obtained in Theorem 6.6 with respect to the initial
date 1}, @3 respectively. Denote @ = 4! — 4% and v = o' — ©%, then

O+ (u® + 1) 0yt 4 (uf + Un,y)0 = Ofth — D20y — (Dplia) i,
Dpi + 0yt = 0,
ﬂ|y:0 = ﬁlyZO =0,

= _ 1 ~2
Uli—0 = Uy — UG-
So it is a linear equation for u. We also have for the vorticity w = dyu,

v + (u® + 1)0, W + (s, + W1 ,y)0 = 051 — 20,w — (Dp2)u,
8y |0 = 0, (7.1)
Wi—o = Wh — W3-

Estimate with a loss of z-derivative. Firstly, for the vorticity w = dyu, we
deduce an energy estimate with a loss of z-derivative with the anisotropic norm
defined by (3.12).

Proposition 7.1. Let @', @2 be two solutions obtained in Theorem 6.6 with respect
to the initial date @}, U, then we have

d

10 nos g + 100 nn s ) € Cullilya, (72)

where the constant Cy depends on the norm of w',w* in L>([0,T]; H" ,(R%)).

Proof. The proof of this Proposition is similar to the proof of the Proposition 3.9,

and we need to use that m — 2 is even. We only give the calculation for the terms

which need a different argument. Moreover we also explain why we only get the

estimate on ||1I)H§{;T£2 but require the norm of @', @* in L>([0,T]; H" ,(R2)).

With out loss of the generality, we suppose that |[w| ym-2 < 1, leHHfJie <1 and
k42

12| ey, < 1.
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Derivating the equation of (7.1) with 0% = 0302, for |a| = a1+as <m—2,a; <
m — 3,

0,0°W — 9200 = —0° ((u* + 1) Dy D + T2y (7.3)

+ (’U,Zy + w0y y)’lj + (8 ’Lz}g)’a) '

Multiplying the above equation with (y)¥t¢+®294, the same computation as in
the proof of the Proposition 3.9, in particular, the reduction of the boundary-data
are the same, gives

/ (ataaw - a;aw) () 2k+tt02) 9o g dy
RQ

1 d
- 2 dt
As for the right hand of (7.3), for the first item, we split it into two parts

3
9%w —112 —112
S0 w3+ 210,01 nmea = Clolp s

-0 ((us + al)amw> = —(u® 4 11)0,0%0 + [(u® + uy), 0|0, w.
Firstly, we have

(6%
<l loval?s .

/ ((u® 4 01)0,0%w) (y)2Fo2) 9 dady
R2

For the commutator operator, we have,
I[(u® + 1), 0%)0p el 2

k+l+ao
Notice that for this term, we don’t have the loss of xz-derivative.
With the similar method for the terms 920,w, we get

= C||7~D1”H;’lf(Ri)Hw”H;’Zf’m*(Ri)-

/ 90y (y) 22 9% pdady
R2

< ||7“D2||H,Zn+}2(R2+)”wH?{;’EQ’m*S(Ri)'
For the next one, we have
aa(( + 0,1 )0 ) > 050 (uf, + 0,1)0 P,

B<a
and thus

S €507 (uy, + 0yin)0*

B<a,1<(8|<]al 18
k+l+ag

< Ol s e >||w||Hmf2,mfs<Rz .
On the other hand, using Lemma A.1 and s—k</? < 5
1% (s, + 0ydr)) o =07 ) + ||(5“5y@1) ol

Iz,
L k+Ll+4+ag

Iz:.,,.
< ONoll o, ey y) T Clotllay , @2) || ||Loo(R2+)

< C||Uz||L2 @)t Clwllag,, @) (||am||L21+é(Ri) + ||ﬁacac||L2 @)
2

<O+ Ilelle

e (RE )) ||7I’||H2 (Ri)

< COAH+ ol @2) | ’lIHz

Rre(R3)
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So this term requires the norms || ”Hﬁz(Ri))'

Moreover, if as # 0

s, +0yin)o®a],, = ||(us, + Byin)oo 0%

all 2
k+l+4+ag L

k+l+ao

< OQ A l[anll g w2 ) 10 g2 gz y 5

and also if as =0

|| (u;y + (9‘7411)1)8;‘117||LiH = H(uZy + (9‘7!11)1)8;18;‘1ﬁgg||LiH

~ ar1+1 —
S O A [lonl gt g2 ) o w||L2%+5(R2+) '
These two cases imply the loss of z-derivative.

Similar argument also gives

< Cllwsll gy,

/R (0% (Dutia)u) (y)*“+2) 0" wdwdy ro @) 100 2 g2 )

2
+

which finishes the proof of the Proposition 7.1. O

Estimate on the loss term. To close the estimate (6.6), we need to study the
terms ||8;”’21D||Li+£(Rz+) which is missing in the left hand side of (7.2).

Similar to the argument in Section 6, we will recover this term by the estimate
of functions

gn = (A) ) V(f,x,y)E[O,T]XRXR+.

P
Uy + Uty Y

Proposition 7.2. Let @', @2 be two solutions obtained in Theorem 6.6 with respect
to the initial date @}, U, then we have

d m—2 m—2
- 2 — 12
it Zl HgnHLf,(Ri) + Zl Haygn”Lﬁ/(lRi)
n= n=

m—2
< CZ(Z ”gnH%?/(Ri) + Hw”zglf)a
n=1

where the constant Cy depends on the norm of w*,w? in L>([0,T]; H", ,(R%)).

These Propositions can be proven by using exactly the same calculation as in
Section 5. The only difference is that when we use the Leibniz formula, for the
term where the order of derivatives is || = m — 2, it acts on the coefficient which
depends on @', @2. Therefore, we need their norm in the order of (m — 2) + 1. So
we omit the proof of this Proposition here.

With the similar argument to the proof of Theorem 6.1, we get

10l oo 0,732 2)) < Clltoll s g2,

which finishes the proof of Theorem 1.1.
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APPENDIX A. SOME INEQUALITIES

We will use the following Hardy type inequalities.

Lemma A.1. Let f: R xRT — R. Then
(i) if A > —3 and lim f(z,y) =0, then
y—00

H<y>)\f|‘L2(R2+) < C/\||<y>M1ayf||L2(Ri)§ (A1)
(i) if =1 <A< —3 and f(z,0) =0, then
1@ L) < Callig)™ 0, 1l o
Here C\ — 400, as A — —%.
We need the following trace theorem in the weighted Sobolev space.

Lemma A.2. Let A > %, then there exists C > 0 such that for any function f

defined on R? , if 0, f € L3(R?), it admits a trace on R, x {0}, and satisfies
o)l z2(r,) < CHanyLg(Ri)a
where yo(f)(x) = f(x,0) is the trace operator.

The proof of the above two Lemmas is elementary, so we leave it to the reader.
We use also the following Sobolev inequality and algebraic properties of H', , (Ri),

Lemma A.3. For the suitable functions f,g, we have:
1) If the function f satisfies f(x,0) = 0 or limy,_, 1o f(x,y) =0, then for any small
60 >0,

||f||L°°(Ri) < C(||fy||L2%+6(R2+) + HfﬂcyHLz%H(Ri))' (A,2)

2) For m > 6,k +( > %, and any o, B € N? with |a| + |3] < m, we have

1(0£)(9%9)ll .z

k+l+ao+B2

®) S C”f”H;nH(Ri)HQHH,?H(Riy (A.3)
3) For m > 6,k+ (¢ > %, and any o € N2, p € N with |a| +p < m, we have,
10" )20, i, co20 < Ol 2 oy o)

where 6;1 is the inverse of derivative 0,, meaning, By_lg = foy g(x,7)dy.

Proof. For (1), using f(z,0) = 0, we have

Yy

lamissy = | [ @D 03| <oy, o
0 Le=(R2) 3+

< 10,3, o2y + 10:0, 55 )

If limy 4 oo f(x,y) = 0, we use

fa) = [ 0, 7) di.
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For (2), firstly, m > 6 and |a| + |8] < m imply |a| < m —2 or |5] < m — 2,
without loss of generality, we suppose that |a| < m —2. Then, using the conclusion
of (1), we have

1(0£)(0%9)ll 2 2) < )22 (0% )l oo 2 1079l 2

< O ey |90

k+e+az+pa k+0+Bo (R+)

Rrers, (RL)

which give (A.3).
For (3), if |a| < m — 2, we have
R2

10 D@20y ez, )
< ||<y>k+£+a2 (0% f )||L2(Ry,+;L°°(RI))||a£(6;19)||L°°(]Ry,+;L2(]Rz))
< C||f||Hm;2(Ri)||3§9||L2%+6(R1)-
If p < m — 2, we have
10 F)(07 @0y " oez . 2)
< g+ (0% )l a1 9205 9)l| oo a2
< O||f||HLa+\e(R2+)||8£9||L00(R2;L2%+6(Ry,+))
< OHfHHLOﬁe(Ri)||g||H7%"+6(]Ri)-
We have completed the proof of the Lemma. O

APPENDIX B. THE EXISTENCE OF APPROXIMATE SOLUTIONS

Now, we prove the Proposition 3.7, the existence of solution to the vorticity
equation w. = Jyu. and suppose that m, k, £ and u*(t,y) satisfy the assumption of
Proposition 3.7,

Dybe + (u® + ) Oy + ve(us,, + Oybe) = Dot + €Dl
Oytely—o =0 (B.1)
we|t:0 - 11)0,67

where
+o0
Ue(t, x,y) = —/ We(t, z,9)dy, c(t,x,y) / Oz le(t, z,7)d
Y

We will use the following iteration process to prove the existence of solution, where

0o_ ~
w _wo,év

dw™ + (u® 4+ u" ") opw™ + (uf,, + Oyw" o™ = Pw" + edw",
yw" |y—0 =0 (B.2)
w"|i—o = Wo,e,

with

and
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Yy oo
= / / Opw" (t,x, z)dzdy.
0 Jy

Here for the boundary data, we have
Oy |y=0 = ((uy, +w"™1)dpw™)|y=0,
(agwn)(t, z,0)
= (Opus(t,0) + 2w (t,2,0) + e(Dow"")(t, 2, 0)) (Dpw™)(t,x,0)
+ (ufj(t, 0) + (w" M) (¢, z, O)) ((ajamw”)(t,x, 0) + e(agw”)(t, T, O))
— (0yOrw™) (uy, + w" (¢, z,0)
+ Z C;-l ((8;(115 + u"_l))(?;‘_jamu" — (8;‘15m&")8§_j (uy + w"_l)) (t,x,0)

1<;<3

e ( (S (2,0) + (™)1, 2,0)) (O™ (1,2, o>>.

and also for 3 < p < & +1, 8§p+1w”|y:0 is a linear combination of the terms of
the form:

q1

fl (o +.)

j=1

q2 _
X H <8§”851+1 (us + u"_i))

y=0 =1

y=0
where 2 < ¢; + g2 < p, 1 <i < min{n, p} and

aj+ B <2p—1,1<j<q; @+ <2p-1,1<1<qy
q1 q2

> Baj+B)+ Y (B +B) =2p+1;

j=1 1=1

q1 q2 B q1 q2 q1
Zﬂj—l—ZBl <2p-—2; Zaj—FZdl <p-—1, O<Zo¢j.
j=1 I=1 j=1 I=1 j=1

g1
Remark that the condition 0 < Y «; implies that, in (B.3), there are at last one

j=1
factor like 0y’ 85j+1u"(t, z,0).

For given w™ !, we have u" ! = By_lwn_l and v" = —0, Lu”. We will prove the
existence and boundness of the sequence {w",n € N} in L°°([O, T; ngf (R3)) to

the linear equation (B.2) firstly, then the existence of solution to (B.1) is guaranteed
by using the standard weak convergence methods.
Lemma B.1. Assume that w"~" € L>([0,T]; H"!?(R%)),1 <i < min{n, 2 + 1}
and Wy, satisfies the compatibility condition up to order m+2 for the system (B.1),
then the initial-boundary value problem (B.2) admit a unique solution w™ such that,
for any t € [0, T,

d n— n— n||m

EHU} ( )HHm+2 (R%) = B 1” ( )||Hm+2 (R%) D 1” ”HIgr2 R2)7 (B4)
where

min{n,m/2+1} .
Byl = C<1+ Z [0 | Lo 0, 7p: 10 t2 2 )

ke
i=1
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1 min{n,m/2+1}
L D DI i AP Hm“@Ri)))’

[
1=1 o
and
min{n,m/2+1}

n—1 __ n—1i||m+2
Dr=C E: o |ﬁwmmnﬂﬁ%W»
=1

Proof. Once we get a priori estimate for this linear problem, the existence of so-
lution is guaranteed by the Hahn-Banach theorem. So we only prove the a priori
estimate of the smooth solutions.

For any a € N2 |a] < m + 2, taking the equation (B.2) with derivative 9%,
multiplying the resulting equation by (y)2+2+2e29%™ and integrating by part
over Ri, one obtains that

o 10" ) + 007 By
Z / 2k+2€+2a28a((u 4t 1)3:,; n
o <2
— (0, ul) (g, + Oyw" ) 0% w" dady (B.5)
+ Z / ((y)2F 2202929 w9 0,w" drdy
laj<mt2” R

+ Z /(8a8yw"80‘8yw")‘uzodx,
o] <m—+2 R ‘

With similar analysis to Section 5, we have

/ <y>2k+26+2a2(us_'_unfl)axaawnaawndxdy
R2

1
_5 / <y>2k+22+2a28w(us _’_unfl)aawnaawndxdy
R2

and

/ <y>2k+22+2a2 [aa7 (’U,S + unfl)]awwnaawndxdy
R2

< C(l + ||wn 1||Hm+2 R2 )”’U} ||Hm+2(]R2)

For the second term on the right hand of (B.5), by using the Leibniz formula, we
need to pay more attention to the following two terms

/]R2 <y>2k+2€+20¢2 (aaay—lu;z) (u;y + aywn—l)aawndxdy

-1
<O+ [Jw” ||H;1§2(Ri))||3mw"||H,m2(Ri)||w"||H,m2(Ri)

C e
Hm+2 (R2) + :(1 + flw 1||H,’€"+*;Z2(R2 ) [Jw™ HH’"“(R?)
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and

/ <y>2k+22+2a2 n) (8aa ’UJ )80‘w”dazdy
R2

+

_ _/R2 ay(<y>2k+26+2a2 (a;lug)) (8awn71)8awnd$dy

+

_ / (<y>2k+25+2a2 (8;1u2)) (8aw"’1)8y8aw"dxdy,
RQ

here we have used v"|y—¢ = 0, thus

/ <y>2k:+2€+2a2,un) (aaaywn—l)aawndxdy
RQ

~1 2
< Cflw” ”H;’fﬁ(Ri)(||wn||H]zn++£2(R2+) + ||8ywn||Hgfe2(Ri)||wn||Hgﬂ2(Ri))-

For the boundary term, similar to the proof of Proposition 3.9, we can get

/R (00w 0Oy _da

|a\<m+2

4 O||wn71||m+2

, ” n||m+2
HP(RY)

< —||8 wn||Hm+2 Hm+2(R2

R2

We get finally

d n n
0 O+ 1900" () s ) + 00 (s

< By Hw"(1) + Dyl [k

”Hm“(JR2 H'P(RY)

O
Lemma B.2. Suppose that m, k, £ and u®(t,y) satisfy the assumption of Proposition
3.7, ¢ > 0, then for any 0 < € < 1, there exists T, > 0 such that for any Wy, €
H,m?(R?) with

(| o, e||Hm+2(R2) <,

the iteration equations (B.2) admit a sequence of solution {w™,n € N} such that,
for any t € [0,T],
4
3

[ Ol sz w2y < 300l gszge ), V€N

Remark. Here ( is aribitary.
Proof. Integrating (B.4) over [0,¢], for 0 < ¢ < T and T > 0 small,

||’LZ]0,E||EZEF+E2(R%F)

||w"(t)||Hm+2 2y = - m -
(R2) —mpri=ly  mpn—1lg,x
MO em el 3 Dr t”wo»f”H?ﬁ(Ri)

We prove the Lemma by induction. For n = 1, we have

1
0 __ ~ ~ 2
B9 = € (1+ ol psoges) + (1+ Dllinlypoes )

§0(1+<+(1+%)42),
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—1 ~ 2 ~ 2
Dy = Cllt el e ) < CC

Choose T, > 0 small such that

(e—%c(1+25+4(1+§)52)n . %C(QE)WFQTE(Q{“)’”) -1

Il
N
[SURITSN
N~
3

we get

4
1 ~
1w Ol sz @z ) < D0l sz ez )-

Now the induction hypothesis is: for 0 <t < T,

_ 4.
™= @)l ez < @0l iz ez

thanks to the choose of T, we have also

—2Br . M opn1p = m ! 4\"
(e 2 Br e ?DTe T5||w0,€||H;n++£2(Ri)) < <§)
for any t € [0, T¢], then we finish the proof of the Lemma B.2. O
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