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Abstract—This paper showcases the use of Bayesian models
for real-time strategy (RTS) games AI in three distinct core-
components: micro-management (units control), tactics (army
moves and positions), and strategy (economy, technology, produc-
tion, army types). The strength of having end-to-end probabilistic
models is that distributions on specific variables can be used to
inter-connect different models at different levels of abstraction.
We applied this modeling to StarCraft, and evaluated each
model independently. Along the way, we produced and released
a comprehensive dataset for RTS machine learning.

Index Terms—Bayesian modeling, RTS AI, real-time strategy,
video games, StarCraft, tactics, micro-management

I. INTRODUCTION

Research on video games rests in between research on
real-world robotics and research on simulations or theoreti-
cal games. Indeed, artificial intelligences (AIs) evolve in a
simulated world (no sensors and actuators problems) that is
also populated with human-controlled agents and/or other AI
agents on which we often have no control. Thus, video-
games constitutes a good middle-ground for experimenting
with robotic-inspired and cognitively-inspired techniques and
models. Moreover, the gigantic complexity of RTS AI pushes
researchers to try different approaches than for strategic board
games (Chess, Go...).

We will first show how the complexity of game AI (and
particularly RTS AI) is several order of magnitudes larger than
those of board games. Thus, abstractions and simplifications
are necessary to work on the complete problem. We will then
explain how building abstractions with Bayesian modeling is
one possible framework to deal with game AI’s complexity
by dealing efficiently with uncertainty and abstraction. Then,
we will successively present our three hierarchical abstraction
levels of interconnected models: micro-management, tactical,
and strategic Bayesian models. We will see how to do reactive
units control, and how to take objectives from a tactical model.
Then we will show how to infer the opponent’s tactics using
knowledge of our strategic prediction. Finally, we will do a
detailed analysis of an army composition model.

II. RTS AI PROBLEM

A. Difficulty

RTS is a sub-genre of strategy games where players need
to build an economy (gathering resources and building a
base) and military power (training units and researching
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technologies) in order to defeat their opponents (destroying
their army and base). From a theoretical point of view, the
main differences between RTS games and traditional board
games are that RTS have simultaneous moves (all players
can move at the same time and as much units as wanted),
durative actions (taking some time to complete), incomplete
information (due to the “fog-of-war”: the player can only see
the dynamic state of the world/map where they have units),
sometimes non-deterministic (only slightly for StarCraft), and
the players need to act in “real-time” (24 game frames per
second for StarCraft). As a metaphor, RTS games are like
playing simultaneous moves Chess while playing the piano
to move pieces around the board. More information about
StarCraft gameplay can be found in [1] and in pp.59-69 of
[2].

Traditional (non-video) game AI takes roots in solving
board strategy games. In those games, the complexity of the
game can be captured by the computational complexity of the
tree search in a “min-max like” algorithm, which is defined by
the branching factor b and the depth d of the tree. For instance
for Chess [3]: b ≈ 35, d ≈ 80. Table I gives an overview of
such a complexity (first column) for several games and game
genres. For video games, we estimate the human difficulty
from the players choices and actions (except for RTS for which
we do both the strict computational complexity and the human
difficulty): b is the number of possible actions each time the
player takes an action, and d/min is the average number
of (discrete, not counting mouse movements as continuous
trajectories) actions per minute (APM). Table I also shows
a qualitative analysis of the amount of partial information,
randomness, hierarchical continuity (how much an abstract de-
cision constrains the player’s actions), and temporal continuity
(how much previous actions constrain the next actions).

B. Method

We operate two kinds of simplifications of this very complex
problem of full-game real-time strategy AI. On the one hand,
we simplify decisions by taking into account their sequential-
ity. We consider that a decision taken at a previous time t− 1
(softly) “prunes” the search of potential actions at time t, for
a given level of reasoning (given level of abstraction). This
corresponds to doing a Markovian hypothesis in probabilistic
modeling. For instance, as shown (in red, left-to-right arrows)
on Fig. 1, a tactical decision to attack from the front (F)
is more likely followed by a hit-and-run (H) than an attack
from the back (B) or a sneaky infiltration (I). On the other
hand, we decide of hierarchical levels of abstractions at which
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TABLE I: Computational complexity of different game genres

quantization in increasing order: no, negligible, few, some, moderate, much
Game Combinatory Partial information Randomness Hierarchical continuity Temporal continuity
Chess b ≈ 35; d ≈ 80 no no some few
Go b ≈ 30− 300; d ≈ 150− 200 no no some moderate
Limit Poker b ≈ 3; d/hour ∈ [20 . . . 240] much much moderate few
Time Racing b ≈ 50− 1, 000; d/min ≈ 60+ no no much much
Team FPS b ≈ 100− 2, 000; d/min ≈ 100 some some some moderate
FFPS duel b ≈ 200− 5, 000; d/min ≈ 100 some negligible some much
MMORPG b ≈ 50− 100; d/min ≈ 60 few moderate moderate much
RTS d/min(=APM) ≈ 300 much negligible moderate some

human b ≈ 200; d ≈ 7, 500
full complexity b ≈ 3060 ; d ≈ 36, 000

Fig. 1: Sequential (horizontal, red) and hierarchical (vertical,
blue) decision constraints. At the strategic level: A, D, C, H
respectively stand for attack, defend, collect, hide ; while at
the tactical level: F, B, H, I respectively stand for front, back,
hit-and-run, infiltrate. The squares correspond to actionable
(low level) decisions, like moving a unit or making it attack
a target.

we should take decisions that impact the level below, pruning
the hierarchical decisions according to what is possible. For
instance, as shown (in blue, top-down arrows) on Fig. 1, if our
strategic decision distribution is more in favor of attacking
(A) instead of defending (D), collecting (C) or hiding (H),
this constrains the subsequent tactics too. We will see that
these levels of abstractions are easily recoverable from the
rules/structure of the game.

So, we decided to decompose RTS AI in the three lev-
els which are used by the gamers to describe the game:
strategy, tactics, micro-management. These levels are shown
from left to right in the information-centric decomposition
of our StarCraft bot in Fig. 2. Parts of the map not in the
sight range of the player’s units are under fog-of-war, so the
player has only partial information about the enemy buildings,
technologies and army (units positions). The way by which we
expand the tech tree, the specific units composing the army,
and the general stance (aggressive or defensive) constitute
what we call strategy (left part of Fig. 2). At the lower level
(bottom right in Fig. 2), the actions performed by the player
(human or not) to optimize the effectiveness of its units is
called micro-management. In between lies tactics: where to

attack, and how. A good human player takes much data in
consideration when choosing: are there flaws in the defense?
Which spot is more worthy to attack? How much am I
vulnerable for attacking here? Is the terrain (height, chokes) to
my advantage? The concept of strategy is a little more abstract:
at the beginning of the game, it is closely tied to the build
order and the intention of the first few moves and is called
the opening, as in Chess. Then, the long term strategy can
be partially summed up by a few indicators: initiative (is the
player leading or adapting) and the “technology advancement
vs. army production vs. economical growth” distribution of
resources.

C. Bayesian programming

Probability is used as an alternative to classical logic and
we transform incompleteness (in the experiences, observations
or the model) into uncertainty [4]. We now present Bayesian
programs (BP), a formalism that can be used to describe
entirely any kind of Bayesian model, subsuming Bayesian
networks and Bayesian maps, equivalent to probabilistic factor
graphs [5]. There are mainly two parts in a BP, the description
of how to compute the joint distribution, and the question(s)
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Fig. 2: Information-centric view of the architecture of our
StarCraft bot’s major components. Arrows are labeled with
the information or orders they convey: dotted arrows are con-
veying constraints, double lined arrows convey distributions,
plain and simple arrows convey direct information or orders.
The gray parts perform game actions (as the physical actions
of the player on the keyboard and mouse).

that it will be asked.
The description consists in extracting the relevant variables

{X1, . . . , Xn} and explaining their dependencies by decom-
posing the joint distribution P(X1 . . . Xn|δ, π) with existing
preliminary knowledge π and data δ. The forms of each term
of the product specify how to compute their distributions:
either parametric forms (laws or probability tables, with free
parameters that can be learned from data δ) or recursive
questions to other Bayesian programs.

Answering a question is computing the distribution
P(Searched|Known), with Searched and Known two dis-
joint subsets of the variables.

P(Searched|Known)

=

∑
Free

P(Searched, Free, Known)

P(Known)

=
1
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×
∑
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Bayesian programming originated in robotics [6] and evolved
to all sensory-motor systems [7]. For its use in cognitive mod-
eling, see [8], and for its first use in first-person shooters, see
[9], for Massively Multi-Player Online Role-Playing Games,
see [10].

III. MICRO-MANAGEMENT

The problem at hand is the optimal control of units in a
(real-time) huge adversarial actions space (collisions, acceler-
ations, terrain, damages, areas of effects, foes, goals...). Our

approach is related to potential fields for navigation [11], and
influence maps for maneuvering [12]. We treat the problem
in a decentralized fashion, to be able to specify or learn a
policy for each agent, e.g. like in CLASSQL [13]. By opposition
to (Monte Carlo) tree search (MCTS) approaches [14], our
approach does not search for an optimal battle control. There
is little doubt that “UCT considering durations” [14] with a
good evaluation function would win against our bot in small
scale flat-terrain battles. Nevertheless, the goal of our approach
is to be robust to all the cases of real (cliffs, ramps, clutter)
and large in-game battles, while making it simple to plug the
higher level (tactical) order in our units control. A more in-
depth study of previous works on this problem can be found
in [1] or in pp.74-76 of [2]. More details about this section
can also be found in [15].

A. Model

For micro-management, the magic word is “focus fire”. The
quicker you destroy enemy units, the less they will have time
to damage your army. For that, we use a heuristic based
ordering of the target for each unit. This can be achieved
by using a data structure (a bidirectional map), shared by
all our units engaged in the battle, that stores the damages
corresponding to future allied attacks for each enemy units.
Whenever a unit will fire on a enemy unit, it registers there
the future damages on the enemy unit. As attacks are not all
instantaneous and there are reload times we can move our units
effectively to avoid damage or close-in on their targets during
the downtime. Except for this sharing of information and for
collision maps, we decided to control our units independently.

Based on this targeting heuristic, we design a very simple
finite-state machine (FSM) based unit: when the unit is not
firing, it will either flee damages if it has taken too much
damages and/or if the differential of damages is too strong, or
move to be better positioned in the fight (which may include
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staying where it is). In this simple unit, the flee() function
just tries to move the unit in the direction of the biggest
damages gradient (towards lower potential damages zones).
The fightMove() function tries to position the units better: in
range of its priority target, so that if the priority target is out
of reach, the behavior will look like: “try to fire on target
in range, if it cannot (reloading or no target in range), move
towards priority target”. As everything is driven by the firing
heuristic (that we will also use for our Bayesian unit), we call
this AI the Heuristic Only AI (HOAI).

The difference between a simple “HOAI” presented above
and Bayesian units are in flee() and fightMove() functions.
These functions are performed by deciding where to go
according to a Bayesian program, shown in Fig. 3. The main
random variables of this model are:
• Diri∈J1...nK ∈ {True, False}: at least one variable for each

atomic direction the unit can go to. P(Diri = True) = 1
means that the unit will certainly go in direction i (⇔ ~di).
For example, in StarCraft we use the 24 atomic directions
(48 for the smallest and fast units as we use a proportional
scale) plus the current unit position (stay where it is) as
shown in Fig. 4.

• Obji∈J1...nK ∈ {True, False}: adequacy of direction i with
the objective (given by the tactical model described in the
next section). In our StarCraft AI, we use the scalar product
between the direction i and the objective vector (output of
the pathfinding) with a minimum value (0.3 in move mode
for instance) so that the probability to go in a given direction
is proportional to its alignment with the objective.
– For flee(), the objective is set in the direction which flees

the potential damages gradient (corresponding to the unit
type: ground or air).

– For fightMove(), the objective is set by the units group
either to retreat, to fight freely or to march aggressively
towards the goal.

• Dmgi∈J1...nK ∈ {no, low,medium, high}: potential dam-
age value in direction i, relative to the unit base health
points, in direction i. In our StarCraft AI, this is directly
drawn from two constantly updated potential damage maps
(air, ground).

• Ai∈J1...nK ∈ {free, small, big}: occupation of the direction
i by an allied unit. The model can effectively use many
values (other than “occupied/free”) because directions may
be multi-scale (for instance we indexed the scale on the size
of the unit) and, in the end, small and/or fast units have a
much smaller footprint, collision wise, than big and/or slow.
In our AI, instead of direct positions of allied units, we
used their linear interpolation at “dist(unit, ~di)

unit.speed ” frames later
(i.e. the time it takes the unit to go to ~di).

• Ei∈J1...nK ∈ {free, small, big}: occupation of the direction
i by an enemy unit. As above.

• Occi∈J1...nK ∈ {free, building, staticterrain}: Occupied,
repulsive effect of buildings and terrain (cliffs, water, walls).
The P(XY Zi|Diri) probability tables in Fig. 3 were hand

specified to be linearly or quadratically repulsive or attractive
dependent on the case. We kept it simple and evaluated them
like that, because that is what we used in our bot. However,
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Fig. 3: Bayesian program of the flee() and fightMove() behav-
iors. This is mainly a Bayesian sensors fusion model.

these tables could be learned so that we use much more
tailored policies. One way to learn them would be to use
(hierarchical) reinforcement learning as in [16] (on Wargus)
or [17] (on StarCraft), but we would have to learn different
parameters for different battle scenarios (that [17] started to
do for small-scale combats). More about the learning step can
be found in pp.89-92 of [2].

From there, the unit can either go in the most probable Diri
or sample through them. We describe the effect of this choice
in the next section. A simple Bayesian fusion from 3 sensory
inputs is shown in Fig. 4, in which the final distribution on
Dir peaks at places avoiding damages and collisions while
pointing towards the goal.

A U A UA U A U

Repulsive Attractive

Damage map influence Allied collision map influence Objective influence Total fusion

Repulsive

Fig. 4: Simple example of Bayesian fusion from 3 sensory
inputs (damages, collisions avoidance, and goal attraction).
The grid pattern represents statically occupied terrain, the unit
we control is in U, an allied unit is in A. Red represents the
highest probabilities, white the lowest. The result is displayed
on the rightmost image, where our unit should try and go to
the red square.

B. Results

We produced three different AI to run experiments with,
along with the original AI (OAI) from StarCraft:

• Heuristic only AI (HOAI), as described above: this AI shares
the target selection heuristic with our Bayesian AI models
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and will be used as a baseline reference to avoid the bias
due to the target selection heuristic.

• Bayesian AI picking best (BAIPB): this AI follows the
model of section and selects the most probable Diri as
movement.

• Bayesian AI sampling (BAIS): this AI follows the model of
section and samples through Diri according to their prob-
ability (i.e. it samples a direction in the Dir distribution).

The experiments consisted in having the AIs fight against
each others on a micro-management scenario with mirror
matches of 12 and 36 ranged ground units (Dragoons). In the
12 units setup, the units movements during the battle are easier
(less collision probability) than in the 36 units setup. In these
special maps, we instantiate only one units group manager
and as many Bayesian units as there are units to control. The
results are presented in Table II.

12 units OAI HOAI BAIPB BAIS
OAI (50%)
HOAI 59% (50%)
BAIPB 93% 97% (50%)
BAIS 93% 95% 76% (50%)
36 units OAI HOAI BAIPB BAIS
OAI (50%)
HOAI 46% (50%)
BAIPB 91% 89% (50%)
BAIS 97% 94% 97% (50%)

TABLE II: Win ratios over at least 200 battles of OAI, HOAI,
BAIPB and BAIS in two mirror setups: 12 and 36 ranged
units. Top: 12 units (12 vs 12) setup. Bottom: 36 units (36 vs
36) setup. Read line vs column: for instance HOAI won 59%
of its matches against OAI in the 12 units setup.

These results show that our heuristic (HAOI) is comparable
to the original AI (OAI), perhaps a little better, but induces
more collisions as we can see its performance diminish a lot
in the 36 units setup vs OAI. For Bayesian units, the “pick
best” (BAIPB) direction policy is very effective when battling
with few units (and few movements because of static enemy
units) as proved against OAI and HOAI, but its effectiveness
decreases when the number of units increases: all units are
competing for the best directions (to flee() or fightMove())
and they collide. The sampling policy (BAIS) has way better
results in large armies, and significantly better results in the
12 units vs BAIPB. BAIPB may lead our units to move inside
the “enemy zone” a lot more to chase priority targets (in
fightMove()) and collide with enemy units or get kill. Sampling
entails that the competition for the best directions is distributed
among all the “good enough” positions, from the units point
of view.

As for our Bayesian units in practice within the bot, they
were able to deal with most situations efficiently. For instance,
we easily obtained a “kiting” (hit-and-run) behavior with fast
and ranged units, as in [18], when the Objective set by the
tactical level was not to retreat or to go/pass through the
opponent’s army.

IV. TACTICS

The problem is to predict where, when, and how the op-
ponent can attack us, and, similarly, predict where, when and
how we should attack them. Our approach is built on terrain
analysis methods, in particular [19] that extracted choke points
and regions of StarCraft maps for a pruned Voronoi diagram.
Tactical analysis often uses particle filtering to track opponent
units, as in [20], or [21] more specifically for StarCraft. We
took a slightly different approach by evaluating and tracking
forces at the level of discrete regions, and making our model
symmetrical so that we use it to take decisions. A more in-
depth study of previous works on this problem can be found
in [1] or in pp.96-97 of [2]. More details about this section
can be found in [22] and [23].

A. Model

We used regions from [19] along with choke-centered sub-
regions (see [2] or [23] for details) as our basic spatial unit. We
considered 4 main types of attacks: ground attacks (most com-
mon), aerial attacks (units that can attack flying units are rare,
and flying units can cross all terrain), invisible attacks (which
cannot be defended without detection), and drops (using flying
transports, most often “backstabbing”). For each region, we
used tactical (relative distance to armies), economical (relative
distance to mining/production) and defense (against all type
of attacks: ground, air, invisible) scoring heuristics. With n
regions, we can extract the following random variables:
• A1:n ∈ {true, false}, Ai: attack in region i or not?
• E1:n ∈ {no, low, high}, Ei is the discretized economical

value of the region i for the defender. We choose 3 values:
no workers in the regions, low: a small amount of workers
(less than half the total) and high: more than half the total
of workers in this region i.

• T1:n ∈ discrete levels, Ti is the tactical value of the
region i for the defender. Basically, T is proportional to
the proximity to the defender’s army and the size1 of
the defender’s army. In benchmarks, discretization steps
are 0, 0.05, 0.1, 0.2, 0.4, 0.8 (log2 scale): basically from “no
military influence” to “very close to most the defender’s
army”.

• TA1:n ∈ discrete levels, TAi is the tactical value of the
region i for the attacker (as above but for the attacker instead
of the defender).

• B1:n ∈ {true, false}, Bi tells if the region belongs (or not)
to the defender. P(Bi = true) = 1 if the defender has a
base in region i and P(Bi = false) = 1 if the attacker
has one. Influence zones of the defender can be measured
(with uncertainty) by P(Bi = true) ≥ 0.5 and vice versa.
In fact, when uncertain, P(Bi = true) is proportional to
the distance from i to the closest defender’s base (and vice
versa).

• H1:n ∈ {ground, air, invisible, drop}, Hi: in predictive
mode: how we will be attacked; in decision-making: how to
attack, in region i.

1“size” as in the sum of the values of units, with v(unit) =
minerals value+ 4

3
gas value+50supply, see pp.98-99 of [2] for details.
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• GD1:n ∈ {no, low,med, high}: ground defense (relative to
the attacker power) in region i, result from a heuristic: no
defense if the defender’s army is ≥ 1/10th of the attacker’s,
low defense above that and under half the attacker’s army,
medium defense above that and under comparable sizes, high
if the defender’s army is bigger than the attacker.

• AD1:n ∈ {no, low,med, high}: same for air defense.
• ID1:n ∈ {no detector, one detector, several}: invisible

defense, equating to numbers of detectors.
• TT ∈ [∅, building1, building2, building1 ∧
building2, techtrees, . . . ]: all the possible technological
trees for the given race. For instance {pylon, gate} and
{pylon, gate, core} are two different T ech T rees, these
come from the strategic level explained in the next section.

• HP ∈ {ground, ground ∧ air, ground ∧ invis, ground ∧
air∧ invis, ground∧drop, ground∧air∧drop, ground∧
invis∧ drop, ground∧ air ∧ invis∧ drop}: how possible
types of attacks, directly mapped from TT information. This
variable serves the purpose of extracting all that we need
to know from TT and thus reducing the complexity of a
part of the model from n mappings from TT to Hi to
one mapping from TT to HP and n mapping from HP
to Hi. Without this variable, learning the co-occurrences
of TT and Hi is sparse in the dataset. In prediction, with
this variable, we make use of what we can infer on the
opponent’s strategy [24], [25], in decision-making, we know
our own possibilities (we know our tech tree as well as the
units we own).
We will not detail the full Bayesian model (see [22], pp.93-

117 of [2]), but we will explain how we can very easily
learn its main probability tables. For each battle in r we
had one observation for: P(er, tr, tar, br|A = true), and
#regions− 1 observations for the i regions which were not
attacked: P(ei 6=r, ti 6=r, tai 6=r, bi 6=r|A = false). For each bat-
tle of type t we had one observation for P(ad, gd, id|H = t)
and P(H = t|HP = hp). By learning with a Laplace’s law of
succession [4], we allow for unseen event to have a non-zero
probability. Note also that, due to the map-independence of
our model, we can learn the parameters using different maps,
and even do inference on maps which were never seen.

Following this, the probability to attack a region i (better
even if it is recomputed for every game starting from a flat
prior) is given by:

P(Ai = true) =
1 + nbattles(i)

2 +
∑

j∈regions nbattles(i)

The joint probability for a region to have a given economic
value, tactical values, belonging to the defender and being
attacked is given by:

P(E = e, T = t, TA = ta,B = b|A = True) =

1 + nbattles(e, t, ta, b)

|E| × |T | × |TA| × |B|+
∑

E,T,TA,B nbattles(E, T, TA,B)

While the joint probability of what are the aerial, ground
defense, and detectors when an attack of type h happens is
given by the co-occurrences:

P(AD = ad,GD = gd, ID = id|H = h) =

1 + nbattles(h, hp)

|H|+
∑

H nbattles(H,hp)

For a given region i, we can ask the probability to attack
(or be attacked) here:

P(Ai|ei, ti, tai, bi) ∝ P(ei, ti, tai, bi|ai)P(ai)

And we can ask how we think that will happen:

P(Hi|adi, gdi, idi) ∝∑
TT,HP

P(adi, gdi, idi|hi)P(hi|HP )P(HP |TT )P(TT )

Where P(HP |TT ) simply says if TT allows for HP = h (0
or 1), and TT comes from the tech tree predictive model of
the next section.

B. Results

We downloaded 7649 uncorrupted 1v1 replays from pro-
fessional gamers leagues and international tournaments of
StarCraft, from specialized websites. We then ran them using
BWAPI2 and dumped units’ positions, pathfinding and regions,
resources, orders, vision events, for attacks: types, positions,
outcomes. This yield out more than 177, 000 battles. Basically,
every BWAPI event, plus attacks, were recorded, the dataset
and its source code are freely available3. More information
about how this dataset was produced and what it contains can
be found in [26].

An in-depth analysis of the results of the learning (showing
that the model concur with human expertise) is provided in [2].
We show in Fig. 5 the probability of an attack happening in
a region depending on the defender’s tactical and economical
value of this region. This concurs with game experience: the
strategy is either to face the opponent’s army (and crush it) or
to undermine their economy and reinforcements.

To measure fairly the prediction performance of such a
model, we applied “leave-100-out” cross-validation from our
dataset: we set aside 100 games of each match-up for testing
(with more than 1 battle per match) and train our model on
the rest (see Table III). We look at the prediction 30 seconds
before the attack, because that is the average time it would
take to move a ground army from the middle of the map to
anywhere (on a big map, cross the map on a small one). It
also gives some time to build static defenses. We write match-
ups XvY with X and Y the first letters of the factions involved
(Protoss, Terran, Zerg). Note that mirror match-ups (PvP, TvT,
ZvZ) have fewer games but twice as many attacks from a given
faction (it is twice the same faction).

Raw results of predictions of positions and types of attacks
30 seconds before they happen are presented in Table III: for
instance the bold number (38.0) corresponds to the percentage
of good positions (regions) predictions (30 sec before event)
which were ranked 1st in the probabilities on A1:n for Protoss
attacks against Terran (PvT).
• The measures on where corresponds to the percentage of

good prediction and the mean probability for given ranks in

2http://code.google.com/p/bwapi/
3http://snippyhollow.github.com/bwrepdump/
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Fig. 5: P(A) for varying values of E and T , summed on the
other variables, for Terran in TvT. Zones with no economy are
in red bars, with a low economy in green and the principal
economy in blue. The main difference along this economical
axis comes at the lowest tactical values of regions (for the
defenser) at T < 0.05 (noted T = 0.0) and showcases sneaky
attacks to unprotected economical regions.

TABLE III: Results summary for multiple metrics at 30 seconds before attack, including the percentage of the time that it
is rightly what happened (% column). Note that most of the time there is a very high temporal continuity between what can
happen at time t+ 30sec and at time t+ 31sec. For the where question, we show the four most probable predictions, the “Pr”
column indicates the mean probability of the each bin of the distribution. For the how question, we show the four types of
attacks (Ground, Air, Invisible, Drop), their percentages of correctness in predictions (%) and the ratio of a given attack type
against the total numbers of attacks ( type

total ). The percentage of good predictions of ground type attacks in PvT is 98.1%, while
ground type attacks, in this match-up, constitute 54% (ratio of 0.54) of all the attacks. The where & how line corresponds to
the correct predictions of both where and how simultaneously (as most probables). NA (not available) is in cases for which
we do not have enough observations to conclude sufficient statistics.

%: good predictions Protoss Terran Zerg
Pr=mean probability P T Z P T Z P T Z

total # games 445 2408 2027 2408 461 2107 2027 2107 199
measure rank % Pr % Pr % Pr % Pr % Pr % Pr % Pr % Pr % Pr

1 40.9 .334 38.0 .329 34.5 .304 35.3 .299 34.4 .295 39.0 0.358 32.8 .31 39.8 .331 37.2 .324

w
he

re

2 14.6 .157 16.3 .149 13.0 .152 14.3 .148 14.7 .147 17.8 .174 15.4 .166 16.6 .148 16.9 .157
3 7.8 .089 8.9 .085 6.9 .092 9.8 .09 8.4 .087 10.0 .096 11.3 .099 7.6 .084 10.7 .100
4 7.6 .062 6.7 .059 7.9 .064 8.6 .071 6.9 .063 7.0 .062 8.9 .07 7.7 .064 8.6 .07

measure type % type
total % type

total % type
total % type

total % type
total % type

total % type
total % type

total % type
total

G 97.5 0.61 98.1 0.54 98.4 0.58 100 0.85 99.9 0.66 76.7 0.32 86.6 0.40 99.8 0.84 67.2 0.34

ho
w A 44.4 0.05 34.5 0.16 46.8 0.19 40 0.008 13.3 0.09 47.1 0.19 14.2 0.10 15.8 0.03 74.2 0.33

I 22.7 0.14 49.6 0.13 12.9 0.13 NA NA NA NA 36.8 0.15 32.6 0.15 NA NA NA NA
D 55.9 0.20 42.2 0.17 45.2 0.10 93.5 0.13 86 0.24 62.8 0.34 67.7 0.35 81.4 0.13 63.6 0.32

total 76.3 1.0 72.4 1.0 71.9 1.0 98.4 1.0 88.5 1.0 60.4 1.0 64.6 1.0 94.7 1.0 67.6 1.0
where & how (%) 32.8 23 23.8 27.1 23.6 30.2 23.3 30.9 26.4

P(A1:n) (to give a sense of the shape of the distribution):
in average, the first prediction is attacked more that 1 out of
3 times. If we take the top 2, the prediction is correct more
than half of the time.

• The measures on how corresponds to the percentage of good
predictions for the most probable P(Hattack) and the ratio
of such attack types in the test set for given attack types. We
particularly predict well ground attacks (trivial in the early
game, less in the end game) and, interestingly, Terran and
Zerg drop attacks (which are deadly). We think it is mainly
due to the specific tech trees they require, and because they

are quite frequent (so we have enough data to learn a robust
model from).

• The where & how row corresponds to the percentage of
good predictions for the maximal probability in the joint
P(A1:n, H1:n): considering only the most probable attack,
according to our model, we can predict where and how an
attack will occur in the next 30 seconds ≈ 1/4th of the time.

The mean number of regions by map is 19, so a random
where (attack destination) picking policy would have a cor-
rectness of 1/19 (5.23%), and even a random policy taking
the high frequency of ground attacks into account would at
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most be ≈ 1/(19*2) correct. For the location only (where
question), we also counted the mean number of different
regions which were attacked in a given game (between 3.97
and 4.86 for regions, depending on the match-up, and between
5.13 and 6.23 for choke-dependent regions). The ratio over
these means would give the prediction rate we could expect
from a baseline heuristic based solely on the location data:
a heuristic which knows totally in which regions we can get
attacked and then randomly select in them. These are attacks
that actually happened, so the number of regions a player have
to be worried about is at least this one (or more, for regions
which were not attacked during a game but were potential
targets). This baseline heuristic would yield (depending on
the match-up) prediction rates between 20.5 and 25.2% for
regions, versus our 32.8 to 40.9%.

To conclude about this tactical model, the results of the
attack types (how) prediction are very good, in part because
we make use of the technology prediction model (presented
in the next section) with the distribution on TT . Even though
it is better than a robust heuristic, the quality of the prediction
of the position (where) of the attack can still be improved. In
particular, we could track the opponent units (even under the
fog-of-war) using e.g. particle filtering as in [21], or at the
level of regions as pp.161-165 in [2].

V. STRATEGY

We now consider the part of strategy that infers the strategy
of the opponent. There are similar works on StarCraft’s
strategy prediction. [27] presented “a data mining approach to
strategy prediction” and performed supervised learning (from
buildings features) on labeled StarCraft replays. We worked
with the same dataset as they did, but we wanted to be able
to deal with incomplete information (due to the fog-of-war),
and to have building blocks (build trees / tech trees) for other
models. [28] used an HMM which states are extracted from
(unsupervised) maximum likelihood on the dataset. The HMM
parameters are learned from unit counts (both buildings and
military units) every 30 seconds and Viterbi inference is used
to predict the most likely next states from partial observa-
tions. [29] studied the impact of a realistic fog-of-war [30]
augmented the C4.5 decision tree and nearest neighbour with
generalized exemplars (also used by [27]) with a Bayesian
network on the buildings. Their results confirm ours: the
predictive power is strictly better and the resistance to noise
far greater than without encoding probabilistic estimations of
the build tree.

A. Technology Tree Model

We start by predicting the technologies available to the
opponent (the “tech tree”), to be able to feed this information
to the tactical model, and to adapt our own strategy and
technology. A major subpart of the tech tree is the build
tree, and all the technologies or units are produced from
buildings. The rules of the games are such that we cannot build
some advanced buildings without the previous level/layer of
technology/buildings. We will take advantage of that, showing

how the strategic rules of the game should be used to build
strategic abstractions.

The variables of this model are:
• BuildTree: BT ∈ {∅, {building1}, {building2},
{building1 ∧ building2}, . . . }: all the possible building
trees for the given race. For instance {pylon, gate} and
{pylon, gate, core} are two different BuildTrees.

• Observations: Oi∈J1...NK ∈ {0, 1}, Ok is 1/true if we have
seen (observed) the kth building (it can have been destroyed,
it will stay “seen”). Otherwise, it is 0/false.

• λ ∈ {0, 1}: coherence variable (restraining BuildTree to
possible values with regard to O1:N )

• Time: T ∈ J1 . . . P K, time in the game (1 second resolution).
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V ariables

T,BT,O1 . . . ON , λ

Decomposition

P(T,BT,O1 . . . ON , λ)

= P(λ|BT,OJ1...NK)P(T |BT )
∏N

i=1
P(Oi)P(BT )

Forms

P(λ|BT,OJ1...NK) = functional Dirac (coherence)

P(T |BT = bt) = discrete N (µbt, σ
2
bt)

Identification (by maximum likelihood)

(µbt, σbt) = arg maxµ,σ P(T |BT = bt;µ, σ2)

Question

P(BT |T = t, O1:N = o1:N , λ = 1) ∝ P(t|BT )P(BT )

P(λ|BT, o1:N )
∏N

i=1
P(oi)

Fig. 6: Bayesian program of the tech-tree prediction model.

Learning the model’s parameters is just a matter of counting
the co-occurrences of build-trees at their timings, to fit normal
distribution, as shown in Fig. 6.

B. Results (build tree prediction)

All the results presented in this section represent the nine
match-ups (races combinations) in 1 versus 1 (duel) of Star-
Craft. We worked with a dataset of 8806 replays (≈ 1000 per
match-up) of skilled human players, and we performed cross-
validation with 9/10th of the dataset used for learning and the
remaining 1/10th of the dataset used for evaluation.

The fully detailed analysis and results of this model can be
found in pp.133-138 of [2] or in [25]. More generally, across
all match-ups, without noise in the observations:
• the average distance from the most probable (“best”) build

tree to the real one is 0.535 building.
• the average distance from each value bt of the distribution

on BT , weighted by its own probability (P(bt)), to the real
one is 0.87 building.
The robustness to noise is measured by the distance of

the current estimation to the real build tree with increasing
levels of noise (random dropping of observations), as shown
at the top of Fig. 7. The predictive power of our model is
measured by the number of next buildings for which we have
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“good enough” prediction of future build trees. “Good enough”
being the maximum distance of the whole build tree that we
can tolerate between our prediction for the future and what
happens in practice, as shown at the bottom of Fig. 7.

Fig. 7: Evolution of our metrics with increasing noise, from
0 to 80%. The top graphic shows the increase in distance
between the predicted build tree, both most probable (“best”)
and marginal (“mean”) and the actual one. The bottom graphic
shows the decrease in predictive power: numbers of buildings
ahead (k) for which our model predict a build tree closer than
a fixed distance/error (d).

Overall, this model has proven itself to be a solid building
block for strategic reasoning, both in such specific studies of
its performance, and in the case of our StarCraft bot.

C. Openings

We can quite simply add “openings” (early game strategy
and tactics) to this tech tree model by adding an Op random
variable with discrete values (≈ 6 for per faction), and learn
their co-occurrences with BT as such:

P(BT = bt|Opt = op) =
1 + count(bt, op)

|BT |+ count(op)

For example for Terran, a possible discretization of the
openings could be (from [27]: “Bio” (aggressive rush),
“TwoFactory” (strong push), “VultureHarass” (hit-and-run

with invisible mines), “SiegeExpand” (economical advantage),
“Standard” (versatile), “FastDropship” (tactical drop sneaky
attack), and “Unknown” for all the edge cases. The full detail
of this model (and all the values that Op can take) is given in
[24] and pp.123-147 of [2].

D. Results (openings)

In Fig. 8, we show the evolution of the prediction of the
opening during a TvP game (thus with a Terran opponent),
with more and more buildings shown during the game.

Fig. 8: Evolution of P(Opening) with increasing observations
in a TvP match-up, with Weber’s labeling. The x-axis corre-
sponds to the construction of buildings.

This model gives very good results, over all match-ups
(details can be found pp.145 of [2]), depending on the metric
that we use, the prediction probabilities are:

• at 5 minutes, 62-68% correct with Weber’s labels,
63-67% with our labels.

• at 10 minutes, 73-78% correct with Weber’s labels,
63-75% with our labels.

• at 15 minutes, 69-77% correct with Weber’s labels,
63-75% with our labels.

We also proceeded to analyze the strengths and weaknesses
of openings against each others. For that, we learned the
P(Win = true|Optplayer1, Optplayer2) probability table with
Laplace’s rule of succession. In practice, not all openings are
used for one race in each of its 3 match-ups. Table IV shows
some parts of this P(Win = true|Optplayer1, Optplayer2)
ratios of wins for openings against each others. This analysis
can serve the purpose of choosing the right opening as soon
as the opponent’s opening was inferred.

We now want to push further this idea of comparing
the values of the distributions over strategic abstraction for
each of the player further than openings. Few models have
incorporated army compositions in their strategy abstractions,
except sparsely as an aggregate or boolean existence of unit
types. Most strategy abstractions are based on build trees (or
tech trees), although a given set of buildings can produce
different armies. What we will present here is complementary
to these strategic abstractions and should help the military
situation assessment.
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Zerg — Protoss TwoGates FastDT ReaverDrop Corsair DragoonsRanged
Speedlings 0.417 0.75 NED NED 0.5
Lurkers NED 0.493 NED 0.445 0.533
FastMutas NED 0.506 0.5 0.526 0.532

Terran — Protoss FastDT ReaverDrop Corsair DragoonsRanged
TwoFactories 0.552 0.477 NED 0.578
RaxExpand 0.579 0.478 0.364 0.584

TABLE IV: Opening/Strategies labels counted for victories
against each others for the PvZ (top, on 1408 games) and
PvT (bottom, on 1657 games) match-ups. NED stands for Not
Enough Data to conclude a preference/discrepancy towards
one opening. The results should be read as win rates of
columns openings vs lines openings, e.g. FastDT wins 75%
vs Speedlings.

E. Army Clustering Model

The idea behind armies clustering is to give one “compo-
sition” label for each army depending on its composing ratio
of the different unit types. Giving a “hard” (unique) label for
each army does not work well because armies contain different
components of unit types combinations. For instance, a Protoss
army can have only a “Zealots+Dragoons” component, but
it will often just be one of the components (sometimes the
backbone) of the army composition, augmented for instance
with “High Templars+Archons”.

Because a hard clustering is not an optimal solution, we
used a Gaussian mixture model (GMM), which assumes that
an army is a mixture (i.e. weighted sum) of several (Gaussian)
components. The variables are:
• C ∈ Jc1 . . . cKK, our army clusters/components (C). There

are K units clusters and K depends on the race (the mixture
components are not the same for Protoss/Terran/Zerg).

• U ∈ ([0, 1] . . . [0, 1]) (length N ), our N dimensional unit
types (U ) proportions, i.e. U ∈ [0, 1]N . N is dependent
on the race and is the total number of unit types. For
instance, an army with equal numbers of Zealots and
Dragoons (and nothing else) is represented as {UZealot =
0.5, UDragoon = 0.5,∀ut 6= Zealot|Dragoon Uut = 0.0},
i.e. U = (0.5, 0.5, 0, . . . , 0) if Zealots and Dragoons are
the first two components of the U vector. So

∑
i Ui = 1

whatever the composition of the army.
For the M battles, the armies compositions are independent

across battles, and the unit types proportions vector (army
composition) is generated by a mixture of Gaussian compo-
nents and thus Ui depends on Ci.

P(U1...M , C1...M ) =

M∏
i=1

P(Ui|Ci)P(Ci)

P(Ui|Ci = c) = N (µc, σ
2
c )

P(Ci) = Categorical(K, pC)

We learned the Gaussian mixture models (GMM) parame-
ters with the expectation-maximization (EM) algorithm on 5 to
15 mixtures with spherical, tied, diagonal and full co-variance
matrices. We kept the best scoring models (by varying the

number of mixtures) according to the Bayesian information
criterion (BIC) [31].

For the ith battle (one army with units u), we can infer the
distribution over the armies clusters with:

P(Ci|Ui = u) = P(Ci)P(Ui = u|Ci)

In a battle, there are two armies (one for each players), we
can thus apply this clustering to both the armies. If we have
K clusters and N unit types, the opponent has K ′ clusters
and N ′ unit types. We introduce EU and EC, respectively
with the same semantics as U and C but for the enemy. In
a given battle, we observe u and eu, respectively our army
composition and the enemy’s army composition. We can ask
P(C|U = u) and P(EC|EU = eu). As StarCraft unit types
have strengths and weaknesses against other types, we can
learn which clusters should beat other clusters (at equivalent
investment) as a probability table. We use Laplace’s law of
succession (“add-one smoothing”) by counting and weighting
according to battles results (c > ec means “c beats ec”, i.e. we
won against the enemy):

P(C = c|EC = ec) =
1 + P(c)P(ec)countbattles(c > ec)

K + P(ec)countbattles with(ec)

F. Results (army clustering)

We used the same dataset as for the tactical model to learn
all the parameters and perform the benchmarks (by setting
100 test matches aside and learning on the remaining of the
dataset). First, we analyze the posteriors of clustering only one
army and then we evaluated the clustering as a mean to predict
outcomes of battles.

1) Posterior analysis: Figure 9 shows a parallel plot of
army compositions. We removed the less frequent unit types
to keep only the 8 most important unit types of the PvP match-
up, and we display a 8 dimensional representation of the army
composition, each vertical axis represents one dimension. Each
line (trajectory in this 8 dimensional space) represents an army
composition (engaged in a battle) and gives the percentage
of each of the unit types. These lines (armies) are colored
with their most probable mixture component, which are shown
in the rightmost axis. We have 8 clusters (Gaussian mixtures
components): this is not related to the 8 unit types used as the
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number of mixtures was chosen by BIC score. Expert StarCraft
players will directly recognize the clusters of typical armies,
here are some of them:

• Light blue corresponds to the “Reaver Drop” tactical squads,
which aims are to transport (with the flying Shuttle) the slow
Reaver (zone damage artillery) inside the opponent’s base
to cause massive economical damages.

• Red corresponds to a typical army that is played in PvP
(lots of Dragoons, supported by Reaver and Shuttle).

• Green corresponds to a High Templar and Archon-heavy
army: the gas invested in such high tech units makes it
that there are less Dragoons, and thus proportionally more
Zealots (which cost no gas).

• Purple corresponds to Dark Templar (“sneaky”, as Dark
Templars are invisible) special tactics (and opening).

We also look at the clusters’ dynamics during the games:
Fig. 10 showcases the dynamics of clusters components:
P(ECt|ECt+1, for Zerg (vs Protoss) for ∆t of 2 minutes.
The diagonal components correspond to those which do not
change between t and t + 1 (⇔ t + 2minutes), and so it is
normal that they are very high. The other components show
the shift between clusters. For instance, the first line seventh
column (in (0,6)) square shows a brutal transition from the
first component (0) to the seventh (6). This is the switch in
production to Mutalisks (mid-level advanced flying units) from
a previously very low-tech army (Zerglings).

2) A soft rock-paper-scissors: We then used the learned
P(C|EC) table to estimate the outcome of the battle. For that,
we used battles with limited disparities (the maximum strength
ratio of one army over the other) of 1.1 to 1.5. Note that the
army which has the superior forces numbers has more than
a linear advantage over their opponent (because of focus
firing4), so a disparity of 1.5 is very high. For information,
there is an average of 5 battles per game at a 1.3 disparity
threshold, and the numbers of battles (used) per game increase
with the disparity threshold.

We also made up a baseline heuristic, which uses the sum
of the values of the units (as in the tactical model) to decide
which side should win. If we note v(unit) the value of a
unit, the heuristic computes

∑
unit v(unit) for each army and

predicts that the winner is the one with the biggest score. Of
course, we recall that a random predictor would predict the
result of the battle correctly 50% of the time.

A summary of the main metrics is shown in Table V, the
first line can be read as: for a forces disparity of 1.1, for
Protoss vs Protoss (first column),

• considering only military units
– the heuristic predicts the outcome of the battle correctly

63% of the time.
– the probability of a clusters mixture to win against another

(P(C|EC)) without taking the forces sizes into account,
predicts the outcome correctly 54% of the time.

– the probability of a clusters mixture to win against
another, taking also the forces sizes into account

4Efficiently micro-managed, an army 1.5 times superior to their opponents
can keep much more than one third of the units alive.

(P(C|EC) ×
∑

unit v(unit)), predicts the outcome cor-
rectly 61% of the time.

• considering only all units involved in the battle (military
units, plus static defenses and workers): same as above.

Results are given for all match-up (columns) and different
forces disparities (lines). The last column sums up the means
on all match-ups, with the whole army (military units plus
static defenses and workers involved), for the three metrics.

forces scores PvP PvT PvZ . . . mean
disparity in % m ws m ws m ws . . . ws

heuristic 63 63 58 58 58 58 . . . 61.7
1.1 just prob. 54 58 68 72 60 61 . . . 63.2

prob×heur. 61 63 69 72 59 61 . . . 67.0
heuristic 73 73 66 66 69 69 . . . 70.3

1.3 just prob. 56 57 65 66 54 55 . . . 59.5
prob×heuristic 72 73 70 70 66 66 . . . 71.0

heuristic 75 75 73 73 75 75 . . . 75.7
1.5 just prob. 52 55 61 61 54 54 . . . 58.2

prob×heur. 75 76 74 75 72 72 . . . 76.2

TABLE V: Winner prediction scores (in %) for the three
main metrics. For the left columns (“m”), we considered only
military units. For the right columns (“ws”) we also considered
static defense and workers. The “heuristic” metric is a baseline
heuristic for battle winner prediction for comparison using
army values, while “just prob.” only considers P(C|EC) to
predict the winner, and “prob×heuristic” weights the heuris-
tic’s predictions with

∑
C,EC P(C|EC)P(EC).

We can see that predicting battle outcomes (even with a
high disparity) with “just probabilities” of P(C|EC) (without
taking the forces into account) gives relevant results as they are
always above random predictions. Note that this is a very high
level (abstract) view of a battle, we do not consider tactical
positions, nor players’ attention, actions, etc. Also, it is better
(in average) to consider the heuristic with the composition
of the army (“prob×heuristic”) than to consider the heuristic
alone, even for high forces disparity. Our heuristic augmented
with the clustering seem to be the best indicator for battle
situation assessment. These prediction results with “just prob.”,
or the fact that heuristic with P(C|EC) tops the heuristic
alone, are a proof that the assimilation of armies compositions
as Gaussian mixtures of cluster works.

Secondly, and perhaps more importantly, we can view the
difference between “just prob.” results and random guessing
(50%) as the military efficiency improvement that we can
(at least) expect from having the right army composition.
Indeed, for small forces disparities (up to 1.1 for instance),
the prediction based only on army composition (“just prob.”:
63.2%) is better than the prediction with the baseline heuristic
(61.7%). It means that we can expect to win 63.2% of the time
(instead of 50%) with an (almost) equal investment if we have
the right composition. Also, when we predict 58.5% of the
time the accurate result of a battle with disparity up to 1.5
from “just prob.”, this success in prediction is independent of
the sizes of the armies. What we predicted is that the player
with the better army composition won (and not necessarily the
one with more or more expensive units).

More details can be found in pp.148-158 of [2]. In partic-
ular, there are explanations about how we can use these army
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Fig. 9: Parallel plot of a small dataset of Protoss (vs Protoss, i.e. in the PvP match-up) army clusters on most important unit
types (for the match-up). Each normalized vertical axis represents the percentage of the units of the given unit type in the
army composition (we didn’t remove outliers, so most top vertices (tip) represent 100%), except for the rightmost (framed)
which links to the most probable GMM component. Note that several traces can (and do) go through the same edge.

Fig. 10: Dynamics of clusters: P(ECt|ECt+1) for Zerg, with
∆t = 2 minutes

clusters to drive our production for army clusters that fit best
our strategy (our tech tree), the tactics we want to realize,
while countering the opponent’s army’s composition.

VI. DISCUSSION

A. About RTS AI

There are two hard problems when writing an AI of any
kind: estimating the state we are in (perception), and taking
decisions (action). For perception, most RTS AIs have to deal
with uncertainty, coming either from partial information (fog-
of-war), or stochasticity in the game rules (random action
effects). Additionally, any kind of abstraction is going to
have some incompleteness and thus introduce uncertainty.
Probabilistic models deal directly with uncertainty, but their
strength is in being able to easily build models that allow
for sharing statistical power through hierarchy (“vertical con-
tinuity” in Figure 1) and sequentiality (“horizontal continuity”
in Figure 1), by only dealing with probabilities distributions.
Moreover, Bayesian models allow for taking decisions with
access to the whole distribution instead of just point estimates,

this is useful in estimating risks (dealing with the incomplete-
ness of our own models). We can notice this in the micro-
management model, where “sampling” is a better policy than
“pick the best point estimate” whenever there more than half
a dozen units.

There are different levels of abstraction used to reason about
a game. Abstracting higher level cognitive functions (strategy
and tactics for instance) is an efficient way to break the
complexity barrier of writing game AI. Exploiting the vertical
continuity, i.e. the conditioning of higher level decisions on
lower level decisions or actions, is possible in a hierarchical
Bayesian model. For instance, that happens when we plug the
distribution on the technology trees TT in the tactical model
(through P(H|HP ) and P(HP |TT )), it conditions H only
on values that are possible with the given TT values.

Real-time games may use discrete time-steps (24Hz for
instance for StarCraft), but it does not prevent temporal
continuity in strategies, tactics, and actions. Once a decision
has been made at a given level, it may condition subse-
quent decisions at same level. With states S and observa-
tions O, filter models under the Markov assumption repre-
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sent the joint P(S0).P(O0|S0).
∏T

t=1[P(St|St−1).P(Ot|St)].
Thus, from partial informations, one can use more than just
the probability of observations knowing states to reconstruct
the state, but also the probability of states transitions (the
sequences). This way we can only consider transitions that
are probable according to the current state. For instance, that
happens when we infer P(Opt|Opt−1).

Let us explain the limits of our models for “RTS games
in general”. First, we must note that simpler RTS games are
subsumed by StarCraft, e.g. if a game does not have partial
information, it only makes our models faster to compute.
• Our micro-management model (section III) is very gen-

eral: in all RTS games there are units, damages, and very
often terrain obstacles (except for RTS games happening
in space). Moreover, it scales quite well (linearly) with the
number of units, and allows for tuning it to specificities
of one’s game easily, by adding other sensory inputs and
learning efficient policies.

• Our tactical model (section IV) is general in the model
decomposition, but some of the abstractions (the H
discrete variable) are specific to StarCraft tactics. These
tactics may differ for other RTS games. Still, the whole
approach and even model structure could still be used in
any RTS game.

• Our tech tree prediction model (sections V.A/B), at the
root of several of our models, are applicable to all games
which have a technology tree, which is almost all RTS
games. It will be more efficient (in predictive perfor-
mance) the more convoluted a tech tree is (e.g. more
efficient in the Age of Empire series than in the Total
Annihilation series).

• Our openings prediction model (subsections V.C/D) and
army composition model (subsections V.E/F) are specific
to StarCraft, only in the sense that the values of the
Op (openings) and of the C/EC variables are StarCraft-
specific. Both these sets of values were clustered from
replay data, so the exact same process and model could
be applied to other RTS games.

B. Conclusion

There are mainly two points we want to make in this
conclusion: good abstractions are crucial to RTS AI, and
dealing with incomplete information is compulsory. Both of
which are directly dealt with by Bayesian models.

As for abstractions, some of them are relatively easy to
come up with and to rely on. For instance with the tech tree
or the regions, because they are part (respectively) of the rules
of the game or of the game design (ramps close regions).
Other abstractions can come from players’ expertise (tactical
heuristics, openings), or from the data’s statistical regularities
(e.g. openings and armies clusters). In any case, their use is
not limited to probabilistic models, and they can be building
blocks of high level tree searchers. For instance, µRTS [32]
can be seen as an abstraction over a richer RTS game. This
gives an example about combinatorial multi-armed bandits
variants of MCTS [32] can be applied over abstractions. For
micro-management, tree search techniques, and in particular

MCTS [14], will become better and better, but only by using
better evaluation functions, and maybe learned policies with
good situation assessment, that is, better “abstractions”.

We would even drive the point of “incomplete information”
further by noting that the players cannot mind-read each
others. While that is fine in the case of Chess for instance,
where all the strategy can be inferred (even if it’s sometimes
difficult) from the state of the game, such a problem is so
much harder for RTS games. Consider a classic struggling
case for all competitive StarCraft bots of a small squad of
units running around the bot’s base. No current bot is able to
understand that this is not a committed attack, but a way to
delay the bot’s attack, while still scouting information. This
kind of situation involves a tactical move that comes from the
strategy (“delay the opponent while evolving tech or growing
economy”) and has a specific effect at the micro-management
level (annoy, but do not fight).

In a given match, and/or against a given opponent, players
tend to learn from their immediate mistakes, and they adapt
their strategies to each other. This can be seen as a continuous
learning problem. Human players call this the meta-game, as
they enter the “I think that he thinks that I think. . . ” game
until arriving at fixed points. In this case, for all strategic
models, a simple improvement would be to learn specific sets
of parameters against the opponent’s strategies (and consider
the more “global” learning as a prior). For instance, a naive ap-
proach would be to learn a Laplace’s law of succession directly
on the enemy’s tech tree: P (ETechTrees = ett|Player =

p) = 1+nbgames(ett,p)
#ETT+nbgames(p) , to skew our inference towards what

is specific to player p. The same approach can be done for
their armies clusters.

We presented our approach for building Bayesian mod-
els at the levels of units control, tactics, and strategy. We
showed how communication between the levels was done
each time by passing the distribution of a random variable.
Each of the models were evaluated separately. Several (micro-
management, tactical prediction, strategy prediction) were
successfully implemented in our StarCraft bot (free software5).
While there are multiple possible improvements and further
work possible, we think this showcases what it is possible
to do with a probabilistic mode, to directly deal with all the
sources of uncertainty and incompleteness inherent to RTS AI.
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