Articulation in a bilingual speaker: Preliminary models and phonemic comparisons

Thomas Sawallis, Pierre Badin, Laurent Lamalle

To cite this version:

Thomas Sawallis, Pierre Badin, Laurent Lamalle. Articulation in a bilingual speaker: Preliminary models and phonemic comparisons. 2015 Annual Meeting of the Linguistic Society of America (LSA 2015), Jan 2015, Portland, United States. <hal-01228920>
Articulation in a bilingual speaker: Preliminary models and phonemic comparisons

Purpose
MRI investigation of articulatory strategies of bilinguals - overall strategies, not single articulator - articulatory modeling and comparison across models - L1 v. L2 comparisons of individual phones & groups of phones
Themes: - dynamics of L2 articulator development - intra-individual comparisons of articulatory phonetics

General methodology
Subject: 1 so far; L1 Am. English, skilled late learner of L2 French
More language pairs and more skill levels planned
Corpora: Isolated Vs and CV combinations for (nearly) all phonemes
CVCs and words when warranted
MRI: Static mid-sagittal MRIs of all targeted phones
Efforts underway to obtain dynamic MRI capabilities
Curves: Outlines of articulators extracted manually, oriented to bony articulators
Modeling: Linear models of articulatory components derived from target sub-corpora:
Comparisons: L1 vs L2 for phonemes, phonemic classes, articulator models

Subject
Male, born mid-1950s, raised in FL
Parents and friends monolingual American English speakers
French from 7th through 10th grades (~12 - 16 years). ALM method.
French minor in college, literature emphasis, no communicative competence
6 years of residence in Grenoble, France, in academic situations - ages 24-27 for MA, 34-36 for dissertation research, 56-57 as visiting instructor

Corpora
English L1
French L2

Target Phoneme Inventories

<table>
<thead>
<tr>
<th>L1</th>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>k</td>
</tr>
<tr>
<td>k</td>
<td>i</td>
</tr>
<tr>
<td>i</td>
<td>ou</td>
</tr>
<tr>
<td>f</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>s</td>
</tr>
<tr>
<td>m</td>
<td>n</td>
</tr>
<tr>
<td>n</td>
<td>&</td>
</tr>
<tr>
<td>e</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>x</td>
</tr>
<tr>
<td>w</td>
<td>j</td>
</tr>
<tr>
<td>j</td>
<td>ɹ</td>
</tr>
</tbody>
</table>

MRI Images
All Vs in isolation
\((\text{i, a, e, o, u}) \times 10 \) s, i.e., [oi, ih, ... ou, ip]
\(V_{\text{all}} \) in CVs: (m t) \times 10 \ s, i.e., [mm, tm, ... m, tm]
\(V_{\text{all}} \) in CVs: (m t) \times 10 \ s, i.e., [mm, tm, ... m, tm]

Models
Articulation is modeled by linear combination of basic components:
Each component has a mean and standard deviation of location.
Each component gives a weighted contribution to a full articulation.

Comparisons
Through contours and models, three kinds of comparisons can be made:
Phone to phone:
- Specific images representing targeted phones can be compared across languages.
Group to group:
- Different interesting subsets of the two languages can be compared.
Nomograms:
- Modeling can compare overall articulatory strategies through nomograms.

Nomograms
To model each basic component:
- the mean and standard deviation is calculated from an input set of curves, and
- those results can be illustrated as ‘nomograms’, so
- using appropriately different sets of curves as input:
Nomograms can illustrate contrasting patterns in different categories of articulation, e.g.,
- Three banks of paired comparisons of lip and tongue model components, based on:
 Top Row: Vowels only; Middle row: “analogous” Consonants; Bottom row: full corpus

Conclusion
Evidence suggests subject has two distinct articulatory systems for L1 English and L2 French:
- Some phones are very near matches in AE and FR, but
- Group comparisons show different differences of pattern, and
- Nomograms show model extracts different patterns of articulatory gestures.
Needs:
- Method for quantifying difference between two phones, within and/or across languages.
- Possibly via calculation of area functions?
- Synthesis by model, then panel judgments, to relate articulation and perception?