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Abstract

We consider existence and uniqueness issues for the initial value problem of parabolic
equations d;u = divAVwu on the upper half space, with initial data in LP spaces. The
coeflicient matrix A is assumed to be uniformly elliptic, but merely bounded measurable
in space and time. For real coefficients and a single equation, this is an old topic for
which a comprehensive theory is available, culminating in the work of Aronson. Much
less is understood for complex coefficients or systems of equations except for the work of
Lions, mainly because of the failure of maximum principles. In this paper, we come back
to this topic with new methods that do not rely on maximum principles. This allows
us to treat systems in this generality when p > 2, or under certain assumptions such
as bounded variation in the time variable (a much weaker assumption that the usual
Hélder continuity assumption) when p < 2. We reobtain results for real coefficients,
and also complement them. For instance, we obtain uniqueness for arbitrary LP data,
1 < p < oo, in the class L*°(0,T; LP(R™)). Our approach to the existence problem relies
on a careful construction of propagators for an appropriate energy space, encompass-
ing previous constructions. Our approach to the uniqueness problem, the most novel
aspect here, relies on a parabolic version of the Kenig-Pipher maximal function, used
in the context of elliptic equations on non-smooth domains. We also prove comparison
estimates involving conical square functions of Lusin type and prove some Fatou type
results about non-tangential convergence of solutions. Recent results on maximal regu-
larity operators in tent spaces that do not require pointwise heat kernel bounds are key
tools in this study.
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Introduction

We consider the problem

Owu(t,z) = div (A(t, z)Vu(t,z)), t>0,z€R"

where A € L*°((0,00) x R™, #,(C))) satisfies uniform ellipticity estimates:

JA > 0 such that V&, n € C™, |[(A(t,2)€,n)| < Al€||n| for a.e. ¢ > 0 and x € R™;
3\ > 0 such that V¢ € C*, Re((A(t, 2)E,€)) > MEJ? for ae. t >0 and z € R™.
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The divergence and gradient are taken with respect to the x variables only. We mention right
away that our results extend to systems of parabolic equations with ellipticity (1.2) replaced
by a Garding inequality on R™ uniformly with respect to t. For the sake of simplicity, we
only consider one equation, but complex valued coefficients. We also restrict to ¢ > 0 since
we are interested in the initial value problem with data at ¢ = 0. More precisely, we shall
study three problems.

1) Construct weak solutions for general L? initial data and prove sharp estimates.

2) Show when a weak solution has a trace at ¢ = 0 and is uniquely determined by it.

3) Establish well-posedness as a consequence.

These problems have been studied in [30, 3]; see also [28] and the references therein.
Here, we obtain striking results for systems and LP data, as well as new results (e.g.,
concerning well-posedness classes) for the case of a real equation. For example, we prove
uniqueness results for arbitrary LP data, an issue left unresolved by Aronson. Furthermore,
even in the case of a real equation, our methods are technically innovative: they have to
be so to circumvent the loss of maximum principles. In particular, we do not rely on the
local regularity theory for solutions which culminated in [32, 31], and do not require a priori
knowledge of boundedness or regularity properties of solutions in our approach.

Recall the meaning of a weak solution.

Definition 1.1. Let 0 < a < b < o0, 2 be an open subset of R” and Q = (a,b) x Q. A
weak solution of (1.1) on @ is a (complex-valued) function u € L2 (a,b; HL (€)) such that

// (t, x)Opp(t, z) dz dt = / A(t,z)Vu(t,z) - Vo(t, z) dz dt (1.3)
for all ¢ € €°(Q). For 0 < a < b < oo and 2 = R", we say that u is a local (in time)
solution on (a,b), and when @ = R := (0,00) x R" we say that u is a global weak
solution.

Recall that well-posedness for the Cauchy problem consists in proving existence and
uniqueness for global (or local) weak solutions of (1.1) w in some solution space X, converg-
ing, as t tends to 0, to an initial data f in a space of initial data Y, in some appropriate
sense. In this case, X is said to be a well-posedness class for (1.1) for Y data.

This problem is well-understood for global solutions of the heat equation when Y =
LP(R™) and X = L*°((0,00); LP(R™)), for p € [1, oc].

First, the heat extension of f € Y is easily seen to belong to X. Conversely, use of the
maximum principle and form methods allow one to prove that all weak solutions (which
are, in fact, classical solutions) in X have a trace in Y and are given by the semigroup. The
most efficient arguments seem to be the ones designed for Riemannian manifolds, because
they do not rely on any explicit formula for the heat kernel. Strichartz, in [35], proves
this result for 1 < p < oo, even for global solutions with [u(%, )|/ zr®n) possibly growing as
t — oo (but not faster than exponentially). For p = 1, we refer to [29] for a neat proof,
and another argument for 1 < p < oo. For p = oo, see [18] for a uniqueness result under a
continuity assumption.

Back to the Euclidean case for the non-autonomous problem (1.1), it was Aronson [3]
who obtained the most complete results for real equations in divergence form. He considers
the energy space L>(0,T; L*(R"))N L%(0,T; H'(R™)). He proves that all solutions u in this
space have a trace ug in L?(R"), and are uniquely determined by this trace. It follows that
this class is a uniqueness class. Aronson also obtains existence given an L? initial data,



hence defines a propagator I" such that u(¢,-) = I'(¢,0)ug for t > 0. The same strategy, with
a slightly different energy space, was employed by Lions [30] earlier for complex equations,
and it yields the same solution. For real equations, however, Aronson also proved pointwise
Gaussian decay of the propagator in [2]. This allows one to define weak solutions by the
integral representation

u(t,x) = /n E(t,0,z,y)uo(y) dy

for ug in various spaces of initial conditions. For solutions satisfying an integral condition

T
[Jull? 3:/ / e_“lgc‘zu(t,;v)2 dtdr < oo
0o Jrn

for some a > 0, Aronson proves uniqueness in this class, and existence given ug € L2(6_7|“*’ |2d:1:)
(with an assumption linking v > 0, 7' > 0 and a). This covers ug € LP(dz) with 2 < p < oo,
but note that ||u||g is not comparable to ||ug|/z». Aronson’s class may thus not be optimal
for uniqueness (one could look for a larger one). We are not mentioning here the results for
non-negative solutions as they are clearly outside the scope of the present article, since we
want to address complex equations.

Let us come back to the heat equation and consider solutions given by u(t, z) = e'® f(x)
for, say, f € L?. In harmonic analysis, there are other well-known estimates for such solu-
tions given in terms of the non-tangential maximal function and the Lusin area functionals:

[z ~ IVullpez, 1<p<oo. (1.4)

Here TP2 denotes the tent space of Coifman-Meyer-Stein. See Section 2.1 for its definition.

We denote by u* the non-tangential maximal function z — sup |u(t,y)|. A key feature
—z|<Vt

of these estimates is that they hold also for some p < 1, alfyld |play a fundamental role in

Hardy space theory.

For example, ||u*|Lr < oo characterises the real Hardy space HP as shown in [20].
When 1 < p < oo, an implicit argument (it is done for harmonic functions but the same
idea applies to caloric functions) in [20], using Fatou type results (based on the maximum
principle), shows that all weak solutions of the heat equation satisfying ||u*||r < oo are
given by the semigroup, and thus are uniquely determined by their traces in LP at ¢ = 0.
As we have comparability of norms, uniqueness in such a class is an optimal result for L?
data. It is not known to us whether the condition ||Vu||zs2 < oo with u vanishing at oo
yields uniqueness (recall that V is only with respect to x) except when p = 2.

Our approach to (1.1) starts as in Aronson ([3]) or Lions ([30]), by considering energy
solutions. If w is either one’s solution (it turns out that they are the same) for a data
ug € L?(R™), one obtains the energy equality

T
luol|2s = 2?)?6/0 . A(s,2)Vu(s,x) - Vu(s, z) dsdz + [|u(T)]|3..

By taking the limit as T' — oo, provided that u is a global weak solution and that
|u(T)||L2 — 0, one obtains

[ uol|22 = 25}36/0 /n A(s,2)Vu(s,z) - Vu(s,z) dsdz.
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This equality suggests that it should be possible to work directly in the largest possible en-
ergy space to begin with, consisting of global weak solutions with Vu € L2(}erfl) = L*(L?).
We prove that this is indeed the case, and establish well-posedness of the Cauchy problem
for L2(R™) data in this energy space. We also show that such solutions are continuous from
[0,00) into L?(R™), norm decreasing in time with limit 0 at oo, and satisfying this energy
equality, of course, together with

luollL> = llull oo (z2) ~ [[Vull2(L2).-

This is to be expected but note that the lack of a priori control on the L?(R™) norm in our
energy space is a difficulty which we overcome thanks to a structural lemma for this space.
As a consequence, we recover, by restriction to finite intervals (0,7"), the Aronson/Lions
solutions. This gives rise to a propagator I'(¢, s) that sends a data at time s to the solution
at time ¢. The only available estimates for this propagator in full generality are Gaffney
type estimates, which are localized L? Gaussian bounds. The same holds for the backward
in time adjoint equation. Using properties of this adjoint propagator to create test functions
for (1.1), our main result towards uniqueness is an interior reproducing formula for local
weak solutions under a certain control.

Theorem 1.2. Let u be a local weak solution of (1.1) on (a,b) x R™. Assume

b 1
M = (/ / lu(t,y)[? dydt) 2o 4z < 0o
R Na JB(z,vb)

for some 0 < v < ~v(a,b,\,A). Then u(t,-) = T'(t,s)u(s,-) for every a < s <t <b, in the
following sense:

/ u(s,x) T(t, s)*h(z) dz :/ u(t,z) h(z)dx Vh € €.(R").
Note that the control is in terms of local L? estimates on w. This is the only available
information. Also the presence of the square root in the control turns out to be very useful.
Once this is proved the matter reduces to controlling u near the boundary t = 0 to be
able to take a limit as s tends to 0 in u(¢,-) = I'(¢, s)u(s, ).
We thus need to work with solution spaces for which the hypothesis of this result can
be checked. A natural choice is to use a modification of the maximal function u*, adapting
the one introduced by Kenig-Pipher [27] in the context of elliptic equations:

0 1
N(F)(z) = su ][][ F(t,y)|>dydt)>.
(F)(a) 5;3(3 o FE0P )

However, note that the space of all measurable functions with || N (F)||z» < co does not seem
to have a trace space at ¢ = 0, even allowing limits in the weakest possible sense. Hence,
finding the initial value relies on the equation as well, using the interior representation
above. When 2 < p < oo, we prove well-posedness of global weak solutions of (1.1) in the
class X? = {u € L} (RT") ; |N(u)|zr < co} with arbitrary data in LP. In particular,
when p = oo, we establish the conservation property

T(t,0)1 =1

in L%OC(R”), for all £ > 0. This seems to be new under the sole ellipticity assumption.



For p = 2, we also establish, via a different argument, that both L>°(L?) and X? are well-
posedness classes for L? data. The corresponding solutions agree with the energy solutions.
In particular, for any given global weak solution, we have the a priori equivalences

lall oo 2y ~ 1Vl g2 z2y ~ N ()] 2.

The above results can also be considered for local solutions or for global solutions with
growth when ¢ — co. Combining this with the interior representation, we obtain a repre-
sentation for classes containing global weak solutions having arbitrary growth as ¢ — oo
(but still controlled as |z| — oo). This is quite new as well.

Imposing more properties on the propagators, such as uniform LP boundedness in some
range of p, allows us to consider the classes L>°(LP) as above when p # 2. This is true for
small perturbations of autonomous equations (coefficients independent of ¢) or when the
coefficients are of bounded variation in time. This is far less demanding than the usual
Holder regularity assumption. We expect that this will give substantial improvements to
maximal regularity results for the associated inhomogeneous non-autonomous problem.

Another consequence is that a pointwise upper Gaussian bound condition on the prop-
agator kernel (as obtained by Aronson for real equations) yields unique determination of
weak solutions from their traces at t = 0 in the classes L*°(LP), when 1 < p < oo. Note
that this pointwise upper Gaussian bound condition has been characterized in [21] in terms
of local L? — L® estimates of weak solutions of (1.1) and of the dual backward equation.
For p = 1, we obtain, under this assumption, two criteria to decide whether or not a weak
solution in L>°(L') is determined by its trace in L' or in the space of Radon measures. This
requires some further regularity on the propagators.

Our work also includes a non-autonomous analog of the Fefferman-Stein equivalence
(1.4). Namely we prove that, for all weak solutions of (1.1) of the form w(t,-) = I'(¢,0)f
with f € L? N LP, we have the a priori comparison

IN@)llze ~ IVulrpe, 1<p< oo, (1.5)

In fact, the control of |[Vul|zs2 by || N(u)|[r» is valid for any global weak solution and
0 < p < oo and it is only for the converse that we use the form of the solution.

Finally, we prove Fatou type result on non-tangential almost everywhere convergence at
the boundary. To do so, since solutions may not be locally bounded, we replace pointwise
values by averages on Whitney regions.

The paper is organised as follows. In Section 2, we recall the definitions of various
function spaces and operators used in this article. We also recall results from [5, 10] that
play a key role here.

In Section 3, we develop a new approach to the L? theory, including well-posedness
in the largest possible energy space and, as a consequence, the existence of a contraction
operator L?(R"), called propagator, that maps the data h to our solution u at time ¢. By
restriction, this propagator gives both Lions’ energy solution and Aronson’s energy solution.

In Section 4, we prove the fundamental a priori estimates for weak solutions (either
general weak solutions or energy solutions given by the propagator), including reverse Holder
estimates, and appropriate integrated off-diagonal bounds. The latter are a replacement for
the pointwise heat kernel bounds available in the case of real coefficients.

In Section 5, we prove our existence and uniqueness results. This includes the key
interior representation result, Theorem 1.2, well-posedness in L>°(L?) and in X? for p > 2,



and the conservation property. Under an additional assumption on the LP behaviour of the
propagators, we prove well posedness in L>°(LP) for all p € (1, o).

In Section 6, we show that this additional assumption is satisfied for a range of values
of p in two important situations: when A is a small L perturbation of a t-independent
matrix, and when A is of bounded variation in time. We also show a local result when the
dependency with respect to t is continuous.

In Section 7, we complete the picture by showing an LP analogue, for p € (1, 00), of the
norm estimates available for energy solutions when p = 2. This is an analogue of Fefferman-
Stein’s equivalence of maximal function norms and square function norms in Hardy space
theory.

In Section 8, we show non-tangential convergence results to the initial data for our weak
solutions.

In Section 9, we focus on p = 1, assuming that our propagators have pointwise kernel
bounds (as in the case of real coefficients). We then get a complete theory for Radon mea-
sures as data and solutions in L>(L'), or L' data and solutions in a subspace of L>(L).

Finally, in Section 10, we mention an easy extension of our results: similar well-posedness
results hold for global weak solutions u such that norms (in the corresponding solution space)
of (¢,z) = Wy 1) (t)u(t, =) can grow as T' tends to co. A posteriori, we show that this growth
is bounded.
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2 Preliminaries

2.1 Function spaces
Vector valued spaces

When dealing with function spaces over (a, b) x R, we write LP(X) for the Bochner space of
X (R™) valued LP functions LP(a,b; X (R™)) or LP(a,b; X (R™;C")) (as long as no confusion
can occur).

We denote by 2 the space €>°((0,00) x R™) and by 2’ the space of distributions on
(0,00) x R™. We denote by 6(LP) the space of LP(R")-valued continuous functions on
[0,00) that tend to 0 at infinity.



The homogeneous Sobolev spaces H'(R")

There are many ways to define the homogeneous space H L(R™). We depart a little bit from
tradition of having this space as a space of distributions modulo constants, as this simplifies
its use in (1.1).

We denote by H*(R"™) the standard inhomogeneous Sobolev space for s € R, and we
equip L?(R"™;C*) with the standard complex inner product, which we denote by (-,-) or
L? <'7 '>L2 : .

We set H'(R") = {u € Z'(R") ; Vu € L?*(R™;C")}, and equip this space with the
seminorm u +— ||Vu|| 2. With this definition, the following properties hold:

1. HY(R") ¢ HY(R™) c L2 (R™) (set inclusions).

loc

2. 2(R") is dense in H'(R"): for all u € H'(R") there exists a sequence (¢;)jen of
functions in Z(R™) such that |[V¢; — Vu|ls —— 0.
J—00
3. H'(R")/C is a Banach space equipped with its quotient norm.
4. H'(R™) C .#/(R™) (set inclusion).

5. The dual of H'(R") can be identified with the dual of H'(R")/C, and with A~ (R") =
{divg ; g € L*(R";C")} equipped with the norm f — | f||z-1 = inf{|lgllz2 ; f =
divg}. Moreover, for all u € HI(R”), all g € L?(R",C"), and f = div g, we have that

H*1<f’ U>H1 = _L2<g7 Vu)ps = H71<fv [UDHl/C'

In particular, H—(R") C Hil(R”) c .'(R") (embeddings), and, if v € H*(R®) N
L?(R") = HY(R") and f € H~1(R") N L?(R") then

porlfoi = [ f@u@) A = (i

These properties are well known. We shall often write ;1 (u, f) ;-1 to mean i (f,u) -
Having this in hand, we have that, for A satisfying (1.2) and almost every ¢ > 0,

L(t) = —div A(¢t, )V

defines a bounded operator from HY(R"™) to H~'(R™), which is onto and has C as its
null space (if one uses H L(R™)/C, we thus have an isomorphism). More precisely, for all
u,v € H'(R™), i1 (L(t)u,v) g1 = 2(A(t,.)Vu, Vo) 2, and

Mullgr < TL@)ull g < Alfull -

Now assume that A is constant in ¢, and set L = —div AV and D(L) = {u € H' ; Lu € L*}.
Then L is the maximal accretive operator on L?(R") associated with the form (u,v)
12(AVu, Vo)2 on HY(R"™). In particular, it is sectorial and —L generates an analytic
semigroup of contractions (e *");~¢. Also, the solution of Kato’s square root conjecture in
[8] implies that

sup [ Ve ul 2 S sup ILze a2 S |[L2ul 2 S |Vull2 Vu e HY(R™Y),
> >



Therefore, as e ‘L1 = 1 in L (see [5, §2.5]), we have that {e7t; t > 0} extends to
a uniformly bounded family of bounded operators on H'(R™). Finally, we use the space

. 1
L?(a,b; HY(R™)) for —0co < a < b < 400, endowed with the seminorm u + (fab [Vu(t,.)||F2 dt)2.
It follows from the above discussion that ¢°°((a,b) x R") is dense in L?(a,b; H'(R™)), that
L?(a,b; HY(R™)) C L%*(a,b; L2 _(R™) N .'(R™)), and that its dual can be identified with

loc

L?(a,b; H~'(R™)) through the pairing

b
LQ(a,b;H—1)<f’ u>L2(a,b;H1) = / H-1 <f(t7 ')’ u(t7 )>H1 de
b
=~ [ a0, Tult, s,
for any 1) € L?(a,b; L2(R™)) such that f = dive), and u € L%(a, b; H(R™)).

Homogeneous Lions spaces W (0, c0)

We define the following spaces that are variants of the solution spaces used by Lions in [30,
spaces &7 () and Z(Q) p. 147] (see also [16, Chap. XVIII]).

W(0,00) := {ue P'ue L*(H') and dyu € LZ(H*I)}
and
W (0, 00) := W(0,00) N Go(L?),

and the corresponding spaces on a time interval (a,b), 0 < a < b < o0
W(a,b) := {ue (€((a,b) x R"));u € L*(a, b; H') and dyu € L?(a, b; H_l)},

and W (a,b) = W(a,b) N €([a,b]; L?). An important result of Lions [30, Proposition 3.1]
states that inhomogeneous versions of these spaces (replacing H'and H ' by H' and H -1
embed into € ([a,b]; L?), (see also [16, Chap. XVIII]), that is, into W (a,b). With quite a
different proof, we prove, in Section 3.1, a version of this result for W(O, 00).

Tent spaces TP?

The tent spaces introduced by Coifman, Meyer, and Stein in [15] play a key role in our
work. For p € (0,c], the (parabolic) tent space TP is the set of measurable functions u
on RTFI such that

00 1
z (/ ][ lu(t, y)[2 dy dt) 2 ¢ [P(RM), if p < oo,
0 JB@v

r% 1
xn—>sup</ ][ ]u(t,y)\Qdydt>2 € L=(R"), if p = o0,
B>x O B
+1
loc (Ri )
As shown in [15], these spaces are Banach spaces when 1 < p < oo, reflexive when p €
(1,00), and the dual of TP is T?"2 for the duality given by Jgrner f(t,y)g(t,y) dy dt. Their
+
importance for us has two origins. One is elliptic boundary value problems including the
Laplace equation, where tent spaces, along with closely related objects such as Hardy spaces

where we denote by 7 the radius of a ball B. Note that 77?2 is contained in L?



and Carleson measures, are already used extensively. Since we consider equation (1.1)
weakly in space and time, it is natural to use such norms rather than the L°°(LP) norms
which would correspond to treating (1.1) as an (non-autonomous) evolution equation in
LP. The other reason why tent spaces are so important in our work comes from the recent
extension of Calderén-Zygmund theory to rough settings, i.e. the application of Calderén-
Zygmund ideas to operators such as et with L = —div AV, A € L®(R"; .#,,(C)) satifying
(1.2), that do not, in general, have Calderén-Zygmund kernels (see [5] and the references
therein). In such a setting, integral operators such as

t
fe {(t, x) |—>/0 Ve =9 div f(s,-)(x)ds

are often unbounded on Bochner spaces LP(L%) but bounded on TP2. This is the subject
of our paper [10]. The results we use here are recalled in Section 2.2. Keeping in mind that
T%2 = L?(L?), we then use the condition Vu € TP? (here, we mean that each component
of Vu is in TP?2; in general, we shall not distinguish the notation as this will be clear
from the context) as a replacement for the condition Vu € L?(L?) to attack LP theory.
For uniqueness, however, maximal function estimates on solutions are more suitable than
square function estimates.

Kenig-Pipher modified TP7*° space X?

Coifman-Meyer-Stein’s tent space theory also includes maximal function estimates via the
tent spaces TP defined as spaces of continuous functions on (0, 00) x R™ with u* € LP and
with non-tangential limit, where u* is the non-tangential maximal function defined by

*

s sup lu(t, y)|.
(t:y)€(0,00) xR™
lz—y|<Vt

This maximal function, however, is not appropriate for us because of the lack of pointwise
bounds on our solutions. We thus use a modified version of the non-tangential maximal
function, introduced by Kenig and Pipher for elliptic equations in [27], and used extensively
in [7] (see also [22, 11] and further development in the theory of Hardy spaces associated
with operators without Gaussian bounds).

Definition 2.1. For F' € L2 (R/"), we define the following maximal function N(F) by

N(F)(x) := sup ][][ ty|2dydt> , VaxeR".

6>0
The corresponding modification of TP*° is defined as follows.

Definition 2.2. Let 0 < p < co. The space XP is the subspace of functions F' € LlOC(R’}fl)
such that )
[F||lxp == [[N(F)]p < oo.

This space has been defined in [27]. For 1 < p < oo, it is a Banach space. Duality and
interpolation is studied in [24, 23].

Note that, given a parameter 5 > 1, the maximal function N (F) in the definitions above
can be replaced by

8252 1
NaP)@) =swp(f, f  [FaPayd)’, vaere,
52 JB(,80)

6>0
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since a simple covering argument yields [|[Ng(F)|p, ~ || F| x».

A difficulty with this norm compared to the one with u* is the lack of stability by
translation: one can check that if 7,F'(t,z) = F(t+s,x), then there is neither pointwise nor
LP control of N(F,) by N(F) for any p. The same difficulty appears with the tent spaces
TP2 above except when p = 2.

Slice spaces Ej

While integral operators such as
t
f |ty e / Ve 0-9Ldiv f(s,)(x) ds
0

act on TP? (see Section 2.2), their (operator-valued) kernels Ve *div (for a fixed ¢t > 0)
do not act, in general, on LP(R™). Appropriate substitutes for LP(R™) are the following
spaces.

Definition 2.3. Let p € [1,00] and § > 0. The (parabolic) slice space Ej is the subspace
of functions g € L? (R™) such that

loc

||9||E6P = (/Rn (7{3(17\/5) |g(y)|2dy>% da:)ll) < 00.

This space can also be seen as one of Wiener amalgam spaces, which have been studied
for a long time. However, [12, §3] points out that these spaces are retracts of tent spaces, and

thus inherit many of their key properties: (E%)" = Ef;/ with HEH( ) 4|l

r, with implicit
EP E

constants uniform in ¢ > 0, for all p € [1,00) under the duality pairing [o, f(z)g(x)dz. In
particular, slice spaces are reflexive Banach spaces when p € (1,00). The following result is

12, Lemma 3.5] and compares the norms in EY and in E%, for §' # 6.
5 o

Lemma 2.4. Let p € [1,00] and 6,0’ > 0. For all f € E%,, one has f € EY and
; &\ 3(5-%) < < &y 3(5-%)
min{ 1, (5) 2 fllg, S 1l < max{1, (5)2F 7 il

2.2 Maximal regularity operators

Given A € L>(R"; 4, (C)) satisfying (1.2), recall that L = —div AV denotes the maximal
accretive operator with domain D(L) = {u € H'(R") ; AVu € D(div)}. Recall also that
(Lu,v) = (AVu, Vo) for all u € D(L) and v € H'(R"). See [5, 34], for more background
on the operator theory of divergence form elliptic operators.

We consider the associated maximal regularity operator M initially defined as a
bounded operator from L'(D(L)) to L (L?) by

loc

Mpf(t,z) = /0 Le =9 (s, ) (x) ds (2.1)

for almost every (t,z) € (0,00) x R® and all f € L'(D(L)). A classical result by De Simon
[17] states that M, extends to a bounded operator on L?(L?).

De Simon’s result can be extended in several directions, including LP(L?) boundedness,
LP(R™; L?(0, 00)) boundedness, and TP? boundedness.

11



The LP(LP) extension is the most well-known. Lutz Weis proved in [37] that the maximal
regularity operator My, belongs to .Z(LP(LP)) if and only if (e7*F);>¢ is R-analytic in
LP(R™). This holds in a range (p—(L),p+(L)) around 2 as shown in [5, Theorem 5.1] (com-
bined with [26, Theorem 5.3]). Note that, for p outside of [p_(L),p+(L)], —L does not
generate a 6p-semigroup on LP.

The LP(R™; L%(0,00)) extension has recently been considered in [36]. Again My €
ZL(LP(R"; L?(0,00))) when p € (p_(L),p+(L)) by a combination of [5, Theorem 5.1] and
[36, Theorem 3.3].

The TP2 extension is the subject of our work [10]. In [10, Proposition 1.6], we prove
that My, € £ (TP?) for a range of values of p that can be strictly larger than (p_ (L), p+ (L))
(recall that, for all € > 0, there exists —L that does not generate a semigroup on LP(R™)

fOI'p<m—€)

In this paper, however, we need to use a variant My, of M, for which the 7?2 bound-
edness has still a large range of exponents while the LP(L?) theory would hold on an even
smaller range than for Mj,.

Proposition 2.5. The integral

My f(t, / Ve ) div f(s, ) ds (2.2)

defines a bounded operator from L'(H?), where H?> = H?*(R";C")), to L{®

p(L?). This
operator extends to a bounded operator on L*(L?).

Proof. To see that M, is well defined, remark that, for all 7 > 0 and all g € H?,
Ve ™ divglz S [Vdivgle S llgllge-

Next, we turn to the extension. Remark that for such g, h = L_%divg € D(L). First,
g € L*(R™;C") and by the solution of the Kato square root problem [8], h € L?(R").

Secondly, Lh = L%divg € L>(R") as divg € H' = D(L%) by [8]. Using L? boundedness of
VL 3, 8], we have the equality in L?

Ve "ldivg = VL 2Le ™“L 2divg
for all such g and all 7 > 0. It follows
Myf=VL ML 2div f
for all f € L'(H?) and that M, extends by density to a bounded operator on L?(L?). [
The adjoint M} € Z(L*(L?)) is given as follows.
Lemma 2.6. For all f,g € 9,
/(MLf(t,'),g(t,-)> dt = / / V(e *E)*div g(t + s, )d8> dt.
R
Proof. Let f,g € 2. We have that

/(MLf( dt_// (0,00) (t = 8) (Ve =9 div f(s, ), g(t,-)) ds dt
://u(o,oo)(axf(s,-),V(e—UL)*divg(Hs,-)>dads
RJR

where we have made the change of variables s =sand o =t — s on R x R. O

12



Remark 2.7. The operator, initially defined for g € 2 by
Mig(s,x) = / V(e B)*divg(o + s,-)(z)do, (s,z) € (0,00) x R"
0

thus extends to a bounded linear operator on L*(L?).

Proposition 2.8. Let q € [1,2) be such that sup;, H\/fVe_tL*Hg(Ls) < oo for all s €

[2,¢'). Then My, extends to a bounded operator on TP2 for all p € (p.,oc] where p. =
2

max{nJrq’ nJrn;] }

Proof. We first recall, from [5, Section 3.4], that there exist an exponent ¢ as above (denoted

by g+ (L*)" in [5]), and another one p_(L) > 1 with p_(L) < max{1, ;%L } such that

sup le™ | z(zry < 00, V1€ (p-(L),2): (2.3)

To prove the result for p < 2, we apply [10, Theorem 3.1] with m = 2,5 = 0. To do so, we
only have to show that

suth 3G~ %)Ve*

)<oo
t>0

for all § € (¢,2] and compute the exponents. Indeed, this estimate and L? — L? off diagonal
estimates imply the L™ — L? decay with r € (¢,2). See for example [5, Proposition 3.2].
Write

14362 thdiv = A, B,C)

with A; = t%Ve sk , By = t2( 2)6 3land ) = t2e~sLdiv. Observe that Cy is uniformly
bounded on L4 using § > ¢ and duality. Next, B; is uniformly bounded from L4 to L? by
[5, Proposition 3.9] and (2.3). Finally A; is uniformly bounded on L2. For p > 2, we apply
[10, Proposition 4.2] with m =2, 5 =0 and ¢ = 2. O

Remark 2.9. If we were to use maximal regularity results in LP(LP) or LP(R™; L?(0,)) as
in [36] instead of this result, we would need the family {Ve~**div ; t > 0} to be R-bounded
on LP(R™). As shown in [5], this is false for p < ¢, and ¢ can be arbitrarily close to 2. In

the above proposition, however, we allow, at least, p € [-2 T3, 00] (see [5, 9]).

Remark 2.10. If ¢’ > n, then p. = n+ < 1. When ¢ < n, p. = n+q Actually, we have
learned from Yi Huang (personal communlcatlon) that in this case, the exponent p. can be
taken to be the smaller value %, using an improved version of [10, Theorem 3.1]. This
value is in agreement with the number p_(L) above.

Remark 2.11. We remark that given the ellipticity constants A, A, there is ¢(A, A) € (0, o0]
such that ¢ (L*) > 2 + e(\,A) whenever A satisfies (1.2). This implies that p_(L) <
max{1, 73—]:2 —¢&/(X\,A,n)} for such L. See again [5, Section 3.4].

We also consider the integral operator R, initially defined as a bounded operator from
LY(HY), with H' = HY(R™;C"), to L (L?) by

loc
Rof(t,z) = / e =9div f(s,)(z) ds. (2.4)

0
Note that %C(Riﬂ;@”), the space of compactly supported continuous functions on ]Ri“
into C" is contained in L'(H') and is dense in T?? (of C"-valued functions) for all p €

(0, 00).
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Proposition 2.12. Let p € (0,00]. The operator Ry, extends to a bounded operator from
P2 to XP.

In the proof below, and throughout the paper, we use dyadic annuli defined as follows.
For z € R™, r > 0, set Sy (x,r) = B(z,2r), and S;(z,r) = B(z,27 ")\ B(z,2/r) for j > 2.

Proof. Let f € CKC(RTFI; C™). We have that, for almost every (¢, x) € Rfﬁ“,

[e.e]

Rof(tr) = e 02 MKy ke ),

k=0

where Kpf(t,z) = [ie =9Ldiv f(s,-)(z)ds. Fix z € R and k € N\ {0}. Since
2
{e7t : t > 0} satisfies Gaffney-Davies estimates (see [5, §2.3]), we have that for any

5 >0,
g :
7[ ][ SORE L )P dy dt)
1
7[ 7{9@ O Ko@) ) dy )
n , .
¢ JB(2,29+1V5)
o 2ks! B ) :
n _ea .
e 5’>0 fm’ ][B(g; 2it1+5 /57 (KL f(27"y)" dy dt)
n &’ %
2256—6 sup 7[ ][ ’KLf(t y)|2 dydt)
6’>0 $23+1+2f
Note that this estimate also holds for k = 0. Now with ¢’ > 0, and j > 1, we have that
&’ %
Kpf(t,y)P dydt
<][52’ fB(m72j+1+§W) ’ Lf(t,y)|"dy )
00 5! . . %
< (=)D 1
a ;(fg ][B(m,2j+1+§ﬁ) t ¢ div (1 Se(z, 21+1+§\F)f( Ny )ds‘ dy dt)

For {=1,and t € (%/,5’), we have that

t t
1
—(t=s)L3; .
‘/ R RN (COLE N / N NG P

and thus

6/
(][52/ ][ (« 2j+1+§\/>

<

IA A
'M8 EM

<
Il
—

<
Il
-

1

t 2
e~ (79l diy (HS (@, 2j+1+§\/67)f(3> N(Y) ds’ dy dt) ’

=

. 2
In 2]+1+2f)_fﬂB(xngrQJr%\/&j)f(S")HQdS) dt)2.
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By Schur’s Lemma, we thus have that

5/
(][52’ ][ z2j+1+§\ﬁ
1
2 2 2
/ ][ o MO0Paa) < ([T oy

Let us now consider ¢ > 2. We have that

6/
(][‘52’ ]{B(x,zf+1+%\/y)
& t _
]- 1 4£+J2k5/ ) 9
< (/ (/ — obn,—c =5 ][ s, 29 §d3> dt)
~ s\ VT VE=s ( el g £ (s, 9)I dy)
. & )
<9%e “‘4““2k</ ][ 24 d)Q.
~ % B(@QHHH%W) |f(s,y)"dyds

For p = oo, summing in j, k, ¢, and using the change of angle lemma [6] in 772, we have
G+Hn c j
IRLflxr S D277 e 37 o

that
b 3
2
Gkt </0 ][B(z721+2+é+§\/§) |f(s,y)]" dy L

< 32 E AT f 1y S | v,
7,k

1
e*(t—s)Ldiv(]lsl(aﬂﬁH? ORI )ds‘ dydt)2

2 1
e~ =)L iy (1 Y) ds) dy dt) 2

Sg(:c,2j+1+§\/67’)f(s’ ))(

N[

the number 7 depending on n and p. This suffices to sum. For p = oo, we argue similarly.
We note that the proof applies directly to any f € 7°? and gives a meaning to Ry f. [

The operators Ry, and M, are related in the following way.

Proposition 2.13. Let p € (p.,00) as in Proposition 2.8 and f € TP2. Then VRLf € TP?
and VRLf = Mpf in TP2.

Proof. Given Propositions 2.8 and 2.12, we only have to show that, for f € 2, VRLf =
Mypfin 2'. Let g € 2. As in the proof of Lemma 2.6, we have that (where (-, -) is the L?
inner product)

/R<MLf( ))dt = // (0,00)(t = 8)(Ve™ E=)Ldiv f(s,-), g(t,-)) dsdt
_ / / 00 (£ — 8) (e~ =iy f(s, ), div g(t, ) ds dt
RJR
= [(Rus . divg(e e = [ (FRLfE gt ) d O
R R

3 L’-theory and energy solutions

3.1 The space W (0, c0)

We start with a structural lemma about distributions u € W (0,00). Note that it is not
restricted to solutions of our problem.
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Lemma 3.1. For all u € W(0,00) there exist a unique v € W(0,00) N €y(L*(R™)) and
c € C such that u = v + c¢. Moreover,

[l oo 2y < \/2Hu||L2(H1)HatuHLQ(H*l) :

Proof. Set w = Oyu + Au, and let g € L?(L?) be such that w = divg. Given t > 0, we
denote by 7;g the time translation of g defined by 7 g(s,.) = g(s + t,.) for all s > 0. We
now set, for all t > 0,

v(t) = — /too e(s_t)Aw(s) ds = — /OOO eSAdiv(Ttg)(s) ds,

where the integral is defined weakly as shown below. Indeed, for f € L?(R") and t > 0, we
have that

/o [(1eg(s), Ve*2 ) ds < Imgllze(z2) | (s, @) = Ve f(@)]| 22y < % I7egll 22yl fll 22,

where the last inequality follows from a simple Fourier multiplier estimate. The argument
also gives
lo(t) = v)llz2 < J5 g = Tegllreey VT >0,

and therefore v € €([0,00); L?) as well as lim [[v(t)||z2 = 0 as ||7g]|;2(2) —— 0 for all
t—o0 T—+00

g € L*(L?). We now prove that u — v is equal to a constant. By Remark 2.7 we have that
HVUHL2(L2) = HMtAgHLQ(LQ) S HgHL2(L2)7

hence  [[Av|[ 2 -1y < IVl 222y S ll9llLz(r2)-

Moreover, dyv € L>(H™1) and 8w + Av = w in L?>(H1). Indeed, for all ¢ € 2 we have
that

(Byv, ¢) = —(v,Byp) = h /Ooe(s_t)Aw(s)ds,8t¢(t)>dt
t

A
_ /0 Oo<w(s), /0 el DB 9,6(1) t) ds

- /0 Oo<w(s), /0 ) [0, (5 7929(1)) + D2 A(1)] dt> ds
=(w, ¢) — (v, Ag).

Consider the distribution h :=u —wv € W (0,00); we have that 9;h + Ah = 0 in L>(H ™).
Since h € L2(H'), we have that h € L?(.'). We can thus take the partial Fourier transform
F, in the R" variable, and obtain that the distribution ¢ = F,h € L?(.#"’) satisfies

O —¢P¢=0 in 7

where m(t, £)T denotes the multiplication of T' € 2’ by the function m, here the polynomial
(t,€) ~— [€]%. Solving the first order differential equation away from ¢ = 0, there exists
a€ Z2'(R™\ {0}) such that

b =ea in 2'((0,00) x (R™\ {0})).
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Since £¢ € L%(L?) we have that Caellél ¢ L?(L*(R™ \ {0})). But for any compact set
K C R™\ {0}, Fubini’s theorem tells us that

/O h /K €a(€) 2 dedt = oo

unless o = 0 almost everywhere on K. Thus o = 0 in 2/(R™ \ {0}). This implies that ¢
is supported in (0,00) x {0}, and hence there exists ¢ € 2'(0,00) such that ¢ = ¢ ® dy.
But 0;¢ € L>(H ') so ¢ is constant. Taking the inverse partial Fourier transform, we have
shown that there exists a constant ¢ € C such that u = v + c.

To prove uniqueness, let vi,v2 € W(0,00) be such that there exists ¢1,co € C with u =
v1 + 1 = vy + c2 and define w = vy — va. We have that w € 6p(L?) and w = ¢ — c1.
Therefore, w = 0, hence ¢; = ¢2 and the decomposition is unique.

We now prove the norm estimate. We have already shown that

1 1

ilzlg @)l < 7 [wll 2 -1y < 72 (||3tUHL2(H—1) + HAU||L2(H—1))
1
< 72 (10eull Lo g1y + lull 2 71))-
We now apply the result to the scaled functions ug : (t,2) — a2 u(t, az), and obtain that
1 /1
sup 0012 < 75 (100l agarr) + allelzaginy )

for all @ > 0. Optimising in a gives that

sup ()12 < \/2 100l il 2 sy O

Remark 3.2. For each u € W(0,00), the above lemma gives the existence of the limit
%in’(l] u(t,-) in 2'(R™), equal to v(0) + c¢. We call this limit the trace of u, and denote it by
—)

Tr(u).
Remark 3.3. It is a well-known fact that for 0 < a < b < oo, and u,v € W(a, b) N

% (|a,b]; L?), we have that t — (u(t),v(t)) € Wh(a,b) and

(2 (), v()) 12) = goa (' ()0 g+ g (), 0 () g1 € L' (a,b)
See, e.g., [1, §14].
Remark 3.4. Lemma 3.1 is wrong if one replaces W (0, 00) by W (a, b) for some finite a < b.
To see this, take f € HY(R™) \ L?(R") and set u(t,x) = f(x) for all (¢,z) € (a,b) x R".
3.2 A priori energy estimates

As a corollary of Lemma 3.1, we obtain the following a priori energy estimate.

Corollary 3.5. Let u € 9’ be a global weak solution of (1.1) such that Vu € L?(L?).
Then there exists a constant ¢ € C such that v := u — ¢ € 6o(L?) and is norm decreasing,
Vv = Vu € L?(L?), v is a weak solution of (1.1) and

l(O)llz2 = ol peqze) < VER Vol 22y < /2 [0(0)] e,

where v(0) = v(0,.), and X\, A are the ellipticity constants from (1.2).
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Proof. Since dyu = div g in 2’ for g = AVu € L?(L?), we have that
(O, §)| < A Vullp2(r2) IVl r2(r2),

hence dyu € L2(H~'). Thus u € W (0, 00) and Lemma 3.1 imply that there exists a constant
¢ € C such that v :=u — ¢ € W(0,00) N6 (L?), and

[0l o 22y < /2105wl 21y IV ull L2122
(H=1)

< \/2 9l 22y I Vull po(rey < V2A[|Vul[ 22y = V2A [V 1212y

Moreover, as constants are trivial weak solutions of (1.1), so is v. Let b > a > 0. For all
U € L?(a,b; H'(R™)), we have that

/ab f-1(0sv(s, ), U(s, ) jp ds = — /ab/n A(s, z)Vo(s,z) - VU(s, z) dz ds.

For U = v, Remark 3.3 and ellipticity give that
b
ot = otb, 3 = =2Re [ (@u(s, ) s, D ds

b S —
=2 §Re/ A(s,z)Vu(s,x) - Vo(s,z)dzds
R”
> 2M IVl Z2 (o p12)-

This gives the norm decreasing property and letting a — 0 and b — oo, yields 2)\HV7}H%2( 2y <
[0(0,-)[|7. This completes the proof of Corollary 3.5. O

These a priori estimates can be localised. This is well-known, but we include an argu-
ment for the convenience of the reader, and to record some explicit constants for later
use.

Proposition 3.6. Let (a,b) C (0,00), z € R®, r > 0. Let u € L?*(a,b; H'(B(z,2r))) be a
local weak solution of (1.1) on (a,b) x B(z,2r). Then u € € ([a,b]; L>(B(z,7))) and there
exists k > 0 such that for all ¢ € (a,b], we have

4/<;2A2
( / (s, Mz o 2ry)

b 1 4&21\2
/ IVuls, Iz ey ds < Ne—a) (1 +(b—a) / lu(s: 2 (Be2m)

Proof. Let n € €°(R™) be a real-valued function supported in B(z, 2r), such that n(y) =1
for all y € B(x,7), [[n]lec <1, and [|V7[|e < £. We have that

IN

Hu(b7 ) ”%%B(a:,r’))

2K
IVl 22 (@) xrmy < == lull 2@y < Bory) + IVllz2((a)x B2 < o0

Therefore, nu € L*((a, b), H} (B(a;, 2r))). Note that this space is the closure of €°((a,b) x
B(z,2r)) in L?((a,b), H'(B(x,2r))). Let ¢ € €°((a,b) x B(x,2r)). Since u is a local weak
solution, we have

‘// u(t,y)org(t, y) dy dt| < Al|Vull L2 ((a,p)x Bz,2r) I VOl L2 ((a,8) x Ba,2r))-
(a,b)x B(z,2r)
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Using the known duality between Hg(Q) and H~1(2) for any open subset Q of R™, this
shows that dyu € L?((a,b), H 1 (B(z,2r))) and the same holds for d;(nu). Moreover, the
integral on the left is — 72 pr-1(B(2,2r))) (O, ) L2(a b0 (B(,2r)))- By Lions’ result [30,
Proposition 3.1], nu € €([a,b]; L*(B(x,2r))) (see also [16, Theorem 1, Chapter XVIII]).
Calculating for all a’ € (a,b):

b
(b, )72 — nula’,-)||7. = 2Re / H1 (B2 O (mu) (E, ), ults ) s (5 (a,ry) At

b
—2§Re/ H1(B(a2r) (Ot ), Pty ) s (B (wry) A
2R / / At y)Vult, ) - n(y)Vult, y) dy dt
:c27")

L 4Re / / M)Ay Vult.y) - ulE ) V(o) dydt

Therefore,

b
b )z +2 [ [nVuts, )3 ds

b 4H2A2
<lputal, e+ 3 [ (In9uts, D1 + 2 s, ) B ) 4

and thus

2 b 2 / 2 b 4k?A? 2
(b, )3 + A / nVu(s, )3 ds < Inu(@’s Y3+ | =gl Mo ds - (3:1)

Integrating in a’ between a and b gives the inequalities:

4/<52A2
ot Mooy < (g + 25 ) [ o My
b
o) [ IV, ey 05 <[ 5= V0 i O

4&21\2
< (1 +(b— / [[u(s, ||L2 (B(z,2r)) H

Remark 3.7. The above proof shows that whenever u is a weak solution on (a,b) x €
with u € L%(a,b; HY(Q)) then O € L%*(a,b; H1(2)). One can thus take any ¢ €
L%(a,b; H}(2)) as a test function in (1.1) and the integral [[ udyp can be reinterpreted
as — [(Bru(t,-), p(t,-)) dt, where the brackets correspond to the H~1(2), H}(Q)) duality.
Also u € €([a,b]; L*(Q)) for any Q' with O C Q.

Similar estimates hold for the backward equation up to a time 1" > 0:
0sP(s,x) = —div A(s,-)*Vo(s,z), 0<s<T, zeR" (3.2)

Again a weak solution to this equation on (a,b) x 2 is a function ¢ € L2 (a,b; HL _(2))
such that for all ¢ € €>°((a,b) x Q),

—/j/ﬂ(ﬁ(s,x)asw(s,x)dxds:/ab/QA(s,:U)*V¢>(S,x)-V@/J(s,:v)dxds. (3.3)
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Lemma 3.8. Let ¢ be a weak solution of (3.2) on (0,T) x Q. Thenu: (t,x) — ¢(T —t,x)
is a local weak solution on (0,T) x  of (1.1) in which the matrices A(t,z) are replaced by
AT —t,x)*, t €[0,T], x € Q.

Proof. Let ¢ € €°((0,T) x Q). Then ¥ : (t,x) — (T —t,z) € €°((0,T) x Q) and
Oup(t,z) = —(0w) (T — t,z) for all t € [0,T] and all = € Q. Therefore, we have

// (t, )Opp(t, x) da dt = //gb —t,2)0p(t, z) dz dt
—/0 /Qqﬁ(s,x)deds

:/OT/QA(S,:[;)*W(S,;U)-deds

T S —
= / / A(T —t,x)*Vu(t,z) - Vi(t,x) de dt
0o Jo
where we have made the change of variable s := T — ¢ twice and we have used (3.3). O

Proposition 3.9. Let ¢ € L?(a,b; HY(B(x,2r))) be a weak solution of (3.2) on (a,b) x
B(x,2r). Then ¢ € € ([a,b]; L?(B(x,r))) and there exists k > 0 such that for all d € [a,b),
we have

166 Wsny < (g + g [ 1605, Weoqataany

d 1 4&21\2
/ Hv¢<s,->uiz<3<x,mdssm(1+< =" [ 16t atany 4

Proof. Thanks to Lemma 3.8, we may apply the result of Proposition 3.6 to u(t,z) :=
¢la+b—t,x) fort e (a,b),zeR” and c:=a+b—d € (a,bl. O

3.3 Well-posedness of energy solutions
Definition 3.10. Let ug € L*(R"). The problem
dyu = div AVu, u € W(0,00), Tr(u)=ug

is said to be well-posed if there exists a unique u € W (0, c0) global weak solution of (1.1)
such that Tr(u) = uo.

Theorem 3.11. For all uy € L*>(R"), the problem
dyu = div AVu, u€ W(0,00), Tr(u)=mug

is well-posed. Moreover, u € €y([0,00); L?), ||u(t,-)||z2 is non increasing and

luollze = llull e ey < VERIVullz2zz) < /% llwoll .

With some care because we are dealing with an unbounded time interval, it is possible
to adapt the proof of Lions [30, Theorem 5.1] for the existence in order to construct a
solution in W(0,00). Nevertheless, we give a constructive approach to the L2-existence
theory, that plays a key role in the LP theory developed in later sections. The approach
relies on approximations of A and on taking weak* limits of the corresponding sequences of
approximate solutions. We thus need the following lemma.
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Lemma 3.12. Let Aj, € L™((0,00); L®(R"; .4, (C))) for k € N be such that (1.2) holds

uniformly in k and

Ag(t, z) — A(t,z) for almost every (t,z) € (0,00) x R™.
—00
Let uy be a global weak solution of Oyu = div AVu for oll k € N, and assume that

Sup(”ukHLoo(LQ) + HVukHLz) < 0.
keN

Then there exists a subsequence (uy,)jen such that (uy,)jen weak™ converges to u in L>(L?)
and (Vuy,)jen weak® converges in L*(L?). The limit u € L>(L?) is then a global weak
solution of (1.1) such that Vu € L*(L?).

Proof. Let k € N. Note first that u;, € W (0, 00) since it is a weak solution of dyu = div A, Vu
such that Vug € L?(L?). Since up € L*(L?), Lemma 3.1 gives us that u, € %o(L?).
Therefore (u(0,-))ren is uniformly bounded in L?(R"). Moreover (Vuy)rey is uniformly
bounded in L?(L?). We can thus extract a subsequence (uy;)jen using Banach-Alaoglu’s
theorem for which there exists v € L°°(L?) and ug € L*(R") with

ug, —— u weak* in L>(L?),
J—00
Vup, —— Vu  weak* in L?(L?),
J—00
ug; (0, ) ﬁ—oo> U weak* in L2

For all ¢ € Z(R™) and all t > 0, Remark 3.3 and the fact that u; € 6(L?) for all k € N
give that

| eniiay= [, owas— [ [ A6V () ToG ayas

Since the right hand side converges to [, uo(y)$(y) dy—f(f Jzn A(s,y)Vu(s,y)-Vo(y) dy ds,
the left hand side converges and its limit is equal to [p, u(t,y)¢(y) dy for almost every
t > 0. Modifying u for almost no t > 0, we can assume that the equality holds everywhere.
Differentiating in ¢ proves that dyu(t,-) = div A(t,-)Vu(t,-) in H~' for almost every ¢ > 0.
Therefore dyu = div AVu in L2(H~') and thus u is a weak solution of (1.1). O

Remark 3.13. It is even possible to show strong convergence if uy(0,-) are independent
of k.

Proof of Theorem 35.11. We start with the proof of existence of a solution u € W(0, c0)
satisfying (1.1) and w(0, ) = ug.

Step 0: We first consider A independent of t. We let L = —div AV and u(t) = e~*Fuy.
From semigroup theory, we know that u € 6y([0, 00); L2(R™))NE (0, 00; D(L)) is a (strong)
solution of dyu + Lu = 0. Moreover, Vu € L?(L?) and

2A[VullZ2(r2) < 23‘36/0 12(AVu(t), Vu(t)) 2 dt = —/0 (lu()l[72)" dt = [|uol|7z-

Finally, one easily checks that u is a global weak solution as well.
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Step 1: We next consider A of the form

N
%) = Z ]l[t’“’tkﬂ)(t)Ak(x) F Uty 400) (t)An+1()

for some N € N, (tx)o<k<n+1 an increasing sequence in [0, co) with ¢y = 0 and (Ag)o<k<n+1
satisfying (1.2) uniformly. It is convenient to set tyyo = o0o. For j = 0,.., N + 1, let
L; = —div A;V and define

Cu(t,s) = e Tt lig=(t—ti-)lior - o=(tini=s)Ls
for t € [tj,tj41) and s € [tj, tiy1). We define u : ¢t +— T'4(¢,0)ug,t > 0. That u €
%o([0,00); L?(R™)) is easily established using the properties of the semigroups (e‘tLJ’) >0
We proceed inductively on k to check the desired properties on u. Since —Lg generates an

analytic semigroup of contractions

H(t x) — H(O tl)FA(t O)UO < HuOHLz.

)| oo 12)
Therefore
H(twr) — ]l(O,t1)( )Vu t x HLQ(LQ < H(t,x) = H(O,h)(t)veit[@uo(m)HL2(L2) S Hu0||L27

Moreover Oyu(t,-) € L?(R") for all t € (0,t1) and 9(u(t,-)) = Lou(t,:) = L(t)u(t,-) in
L*(R") for all t € (0,¢1). Now let kK < N + 1 and assume that the following holds:

[(t, @) = Do,y (DT AL, 00 ()| oo 12y < ol 22,
1t 2) = Do) (DVTa(t, 0)0(@) | 122 S ol 22,
and  Owu(t,") = L(t)u(t,-) in L*(R") for all t € (0,t) \ {to,- ... th—1}-
Here, the implicit constants may depend on N but we are inducting on a finite number of
steps and we will get the dependence only on the ellipticity constants in (1.2) eventually.
We want to extend all this to tx11. For t € [ty, trx11) we have that
u(t,-) =T alt,s)u(s,-) = e*(t*t’“)L’“e*(t’“*S)L’“*u(s, )
for all s € (tx_1,tr). Therefore
H(tax) = H(O,tk+1)(t)u(ta:L')HLoo(Lz) < H(t,$) = H(O,tk)(t)u(taw)HLoo(Lz) < ||U0HL2'

Using u(t,-) = e~ =) Lry (4, -), we have

H(t’ ) = ]l(tlmtkﬂ)( )WVul(t,z HLQ(L2 S Hu(tk‘")HLQ < Juol| 2

We also have that dyu(t, ) = —Lygu(t,-) = —L(t)u(t,-) in LQ(R.") for all ¢ € (tg,tk+1). This
concludes the induction, which proves that u € L>(L?) N L?(H'), and that u satisfies

Opu(t,") = —L(t)u(t,") Vte (0,00)\ {tx; k € N}.
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We now show that u is a global weak solution of (1.1). Let ¢ € &, and pick M > txn41 such
that supp¢ C (0, M) x R™. For j =0,...,N+1, t — (u(t,-), ¢(t,-)) (where (-,-) denotes
the L? duality) is € on (t;,t;+1) and continuous on [t;,;4+1], hence

tit1 tjt1
/t- <U(t, ')7 8t¢(t7 )> dt = <u(tj+1a ')7 ¢(tj+1a ')>_<u(tj7 ')a qb(tja )>"|'/tv <Lju(t7 ')7 ¢(t7 )) dt.
Summing in j and using (Lju(t,-), ¢(t)) = —(A;Vu(t,-),Ve(t)) for all t € (t;,tj41), and
the fact that supp ¢ C (0, M) x R™, we have that

/ /u(t,ym@(uy)dydt: / At y)Vult,y) - Vot ) dy dt,
0 n 0 Rn

i.e. u is a weak solution of (1.1).
Therefore, by Corollary 3.5, ||[Vul[z2(z2) ~ [[uol|2 with constants depending only on A
and A from (1.2).

Step 2: We now consider A of the form

A : (t7:1:) = Z H[tk,tk+1)(t)Ak(x)
k=0

for some increasing sequence (tx)reny with to = 0 and klim tr = +oo and (Ag)ien satisfying
—00
(1.2) uniformly. Define

N

A () = > Wy e (D A(@) + Wiy o) (D AN (2)
k=0

for all N € N. Then An(t,x) Y A(t,x) for almost every (t,z) € (0,00) x R™. Let
—00

(un)nen be the corresponding sequence of weak solutions to dyu = div.AxVu obtained
in the previous step. By Lemma 3.12, there exists a subsequence (uy;)jen converging
to u € L*®°(L?) in the weak* topology, with u a weak solution of d;u = divAVu and
1wl oo 2y + VUl L2(z2) S [luol| 2 with constants depending only on the ellipticity constants.
Step 3: We now turn to the case where A € ([0, 00); L°(R"; .#,(C))). Approximating A
oo
almost everywhere by matrices of the form (¢, z) — Z 1

k=0
which satisfy (1.2) uniformly in k, we obtain from Step 2 a family of weak solutions (u;) e,

uniformly bounded in L>°(L?) and such that sup ||V, || r2(r2) < oo. Using Lemma 3.12 again
jeN

we obtain a weak solution u of (1.1) such that ||ul|zee(r2) + [Vull2(r2) S [luoll2-

Step 4: Finally, for a general A € L>((0,00); L>(R"™; .#,(C))) we can use the approxi-

mations

(t)Ag(z), with Ax, = A(tg, ),

trotks1)

(A e | " Aoy ) € (10,000 LX(R S A(C),

for 7 > 1 and use Step 3 together with Lemma 3.12 one more time.

Step 5: Let us now prove uniqueness of solutions. Let u,v € W (0, 00) be solutions of (1.1)
with Tr(u) = Tr(v) = ug. The function w := u — v € W(0,00) is a global weak solution
of (1.1) such that Tr(w) = 0. By Corollary 3.5, we have that there exists ¢ € C, and
W € 6p(L?) such that w = W + ¢. Since Tr(w) = 0, we have that ¢ = 0 and %im w(t,:) =0

—0

in L?(R™). Corollary 3.5 thus yields Wl poo 2y = |©] oo (z2) = 0. O]
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3.4 Propagators

Lemma 3.14. There exists a family of contractions {I'(t,s) ; 0 < s <t < oo} C L(L?)
such that

(1) I'(t,t) =1 Vt>D0.

(2) T'(t,s)T'(s,r) =T(t,r) VE>s>r>0.

(3) For all h € L*(R™), and s > 0, t = ['(t,s)h € 6([s, 00); L*(R™)).

(4) For all ug € L*(R™), (t,x) — [(t,0)ug(x) is a global weak solution of (1.1).

Proof. Let ug € L2(R™). Let u be the solution of the Cauchy problem in Theorem 3.11. We
have u € Go(L?)NL*(HY), with ||u(t, )| 12 < ||luol| 2 and we define T'(¢,0) as the contraction
on L? that maps ug to u(t,-). Similarly, we can start from any time s > 0 and from any data
h € L?, and obtain a unique solution v € W (s, o0) with u(s,-) = h. We define I'(, s) as
the operator mapping h to u(t,-) when ¢ > s. Then (1), (3) and (4) follow by construction,
while (2) follows from uniqueness. O

Definition 3.15. We call {I'(¢,s) ; 0 < s <t < oo} the family of propagators for (1.1).

The restriction s > 0 only comes from the fact that we work on (0,00) x R™. This
means that, provided that A is defined on R"*! and satisfies (1.2), one can define I'(t, s)
for —oo < s <t < 0o and we have the same properties on the full range of s and . One
works on (s,00) for arbitrary s and by uniqueness, any two families are consistent on the
common time intervals. There is a similar family for the backward equation (3.2).

Lemma 3.16. Let T > 0. There exists a family of contractions {T'(t,T) ; t € (—oo,T]} C
L (L?) such that

1. T(T,T)=1.

2. For all h € L*(R"), t — T(t,T)h € Go((—o0, T); L?).

3. Forallh € L*(R"), (t,z) — L(t,T)h(x) is a global weak solution of (3.2) on (—oo,T).
Proof. Define

Als.x) = AX(T — 3,?0) if (s,z) € (—o0,T] x R™,
A*(0,z) if (s,z) € (T,00) x R™.

Applying Theorem 3.11 on (0, o) with A replaced by A we get the conclusion of Lemma, 3.14.
Denoting the corresponding family of propagators by {T'(t,s) ; 0 < s <t < oo} C .Z(L?),

we define

I'(t,T):=T(T-1t0) Vte (—o0,T)

It is immediate that I satisfies points 1 and 2. By Lemma 3.8, we have that (t,z) —

I'(t,T)h(x) is a weak solution of (3.2) on (—oo,T) x R™, which proves point 3. O

Proposition 3.17. Let T' > 0. The families of propagators for (1.1) and (3.2) (up to time
T) are related by 3

[(t,T) =T(T,t)* Vtel[0,T].
In particular, for all h € L*(R"™), t — T(T,t)*h is strongly continuous from [0,T] into
L*(R™) and t + T(T,t)h is weakly continuous from [0,T)] into L*(R™).
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Proof. Let g,h € L*(R"), and 0 < t < s < T. Let u(s,z) = I'(s,T)h(x) = T(T — s,0)h(z),

and v(s,z) = (s, t)g(x) for all (s,z) € [t, T] x R". Since u,v € W (t, T), we have, for almost
every s € [t,T],

<8Su(57 ')7 U(Sv )> - <A*(Sv ')VU(S, ')7 V’U(S, )>
(u(s,),0sv(s,)) + (Vu(s,-), A(s, - )Vu(s,-))

We therefore have (see Remark 3.3):

9

0
0.

o_/ o 5, )y ds = (u(T, ), v(T,.)) — (ult, ), v(t, )
— (b, T(T,t)g) — (F(t, T)h,g). -

Remark 3.18. The restriction T' > 0 is irrelevant in the previous results and is only made
because we study (1.1) on (0,00). The adjoint formula is independent of the choice of the
extension of A*(T — t,z) for t > T to construct T' in Lemma 3.16. It follows from this
adjoint formula that any result we obtain for (1.1) involving the propagators I'(¢,s) has
its counterpart for the adjoint backward equation (3.2) globally on (—oo,T’) or locally on
(S,T), with the propagators I'(¢, s)*, provided the hypotheses made on the coefficients are
stable under taking adjoints.

A key property of I is that it satisfies the following L? — L? off-diagonal bounds.

Proposition 3.19. For all Borel sets E,F C R", all f € L>(R") and all 0 < s < t < 00,

)2
(P

with o = ﬁ, where A, X are the ellipticity constants from (1.2) and d(E, F) denotes the
Hausdorff distance between E and F with Euclidean norm.

HHEF t S) ]lFf HL2 < e_adqii

Proof. This result is already in [2]. The simple proof with this constant is taken from [21].
There, A was assumed to be smooth but this is not necessary. It also adapts to systems
with Garding inequality instead of pointwise lower bounds. We reproduce the argument for
the convenience of the reader. It is enough to assume s = 0 as one can translate the origin
of time to s. Let ¢ be a non negative, Lipschitz and bounded function on R” with |Vi| < ~.
For f € L2(R"), set ['¥(t,0)f = e¥T'(¢,0)(e"¥f) € L?(R") as v is bounded. Observe that
u(t) = e YTY(t,0)f = I'(t,0)(e~ ¥ f) is a global energy solution of (1.1). Using Remark 3.3,
we have the chain of equalities and inequalities for almost every t > 0:

CIre (00l = Slevus
—2Re ;1 (Oh(e? o>ﬂmmm
— 2Re ;1 (Oult), e <t>>H1

= —2Re 2 (A()Vu(t), V(™ u(t))) 2
—2Re 2(A(t)e?Vu(t), e¥Vu(t)) 2 — 4Re 12(At)e?Vu(t), e¥u(t)Vip) 2

< —2A||6¢Vu(t)lle + 40yl Vu(t)|| 2 [l e u(t)| 2
272
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AsT¥(t,0)f — f in L*(R™) as t — 0, we get
2 A2
1T 0)flle < € flle, m =5

Assume now that supp f C F and let ¢(z) = inf(yd(z, F'),N) for a large N > vd(E, F).
We obtain

Tt 0) fll 2y < e T¥(8,0) fl| 2 < e EF| £

d(E,F)
2Kt

Optimizing with v = completes the proof. O

3.5 Connection with earlier constructions

Suppose we have constructed I'(¢,s) for all —oo < s < ¢t < oo as explained above after
Definition 3.15.

Proposition 3.20. Fiz T > 0, let ug € L*(R") and u(t,-) = L'(¢,0)ug for t > 0. Then
u agrees with Aronson’s energy solution on (0,T) x R™ and with Lions’ energy solution on
(0,T) x R™ of (1.1). In particular, for 0 < s <t < T, I'(t,s) agrees with both Aronson’s
and Lions’ propagators.

Proof. We begin with Lions’s construction [30, Theorem 5.1] (see also [16, Chap. XVIII, §3]).
He proves well-posedness of (1.1) in the class W(0,T) with data uy. By our construction,
we have that u € W(0,00), hence its restriction to (0,7") belongs to W(0,7). Thus, u
agrees with Lions’s energy solution on (0,7).

We turn to Aronson’s construction [2]. This particular part of his article does not use the
specificity of real coefficients. He proves well-posedness in the class Ar = L*(0, T; L?(R"))N
L?(0,T; H'(R™)) with data ug. By our construction, we have that u € W (0, 00), hence its
restriction to (0,7") belongs to Ar. Thus, u agrees with Aronson’s energy solution on (0, 7).

The consequence for the propagator I'(t,0) is immediate. A translation of the origin of
time to s proves the result for I'(¢, s). O

It follows from this lemma that our propagators are universal for any local in time
problem. This is particularly noticeable for Aronson’s work with real coefficients as he
constructs the kernel of I'(¢,s) by using approximations by the propagators obtained by
the standard parametrix constructions for equations with smooth coefficients on bounded
cylinders. Our approach is totally opposite as we construct the “largest” possible object
and restrict it. It will be useful to have shown uniqueness in the largest possible energy
class W (0, 00) later on.

4 A priori estimates

We first prove a priori estimates for arbitrary weak solutions. We then turn to solutions of
the form (¢,z) — I'(¢,0) f(x) for f in an LP space.

4.1 Reverse Holder estimates and consequences

We consider the parabolic quasi-distance on (0,00) x R™ defined by
d((ta 15), (87 y)) = max{ V |t - S|7 ’ZE - y|}7 (t,IL’), (S7y) € (07 OO) x R"
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and denote by B((t,z),R) = [t — R?,t + R?] x B(z, R) the corresponding ball of radius
R. Remark that (0,00) x R™ with this parabolic quasi-distance and the Lebesgue measure
is a doubling quasi-metric measure space. The following lemma is a particular case of
well-known LP(L?) estimates for weak solutions. See [2].

Lemma 4.1. Let ¢ := 2 + %. There is a constant C' > 0 depending on dimension and
the ellipticity constants in (1.2), such that for all u global weak solution of (1.1), for all

(t,z) € (0,00) x R™, and all r € (0, %), we have

1 1
<][ \u(s,y)lqdyds>q < C(][ ]u(s,y)\zdyds>2. (4.1)
B((t,x),r) B((t,x),4r)

Proof. Let (t,z) € (0,00) x R™, and r € (0, %) Pick ¢ € €>°(R") supported in B(z,2r)
such that 0 < ¢ < 1, ¢ = 1 on B(x,r) and |Vl < L. Let o € [t — 2t +72]. By

re

Gagliardo-Nirenberg’s inequality (see [33, (2.2)]), we have that

/ u(, y)| dy < / (o, y)e(y)| dy S ||V (ulo,)e) 2 ulo, Yo 3
B(z,r)

= v (o) (

2
e, yFdy)”

(2:7

9 /1 t4r2 2
IVl (o, [ WPy’

t

where we have used Proposition 3.6 in the last step. Now let

A= / lu(s,y)|? dy ds.
B((t,x),4r)

We thus have that

[ ey
B((t,x),r)

AN 2 t+r2 ) 2 , 1
<(Z=)\" A
S()[) L [ wuewradss [0 ] o ayao]

q

t+1672

5(7{;)7% [% /t—167"2 /B(x,4r) [u(o,y)[* dy da} - (%)E’

where we have used Proposition 3.6 again and ¢ = 2 + %. This proves (4.1). ]

Observe that the proof applies to any ball B((t,z),r) provided ¢ — 1612 > 0. Hence
we may apply Gerhing’s lemma in the context of a space of homogeneous type. See for
example a proof in [14]. As the constant C' is independent of u and the radius of the ball,
we obtain an improvement of ¢ to some ¢ > ¢ that depends only on dimension and the
ellipticity constants. Also, the exponent 2 can be lowered. See [25, Theorem 2| for the
original euclidean proof, and [13, Theorem B1] for a proof valid in spaces of homogeneous
type.
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Corollary 4.2. There exist C > 0 and § > 2+%, depending on dimenston and the ellipticity
constants in (1.2), such that for all u global weak solution of (1.1), for all (t,z) € (0,00) X

R™, and all r € (0, %), we have, for all p € [1,2],
1 ~
(f  WoPayds) <(f  lulplidyds)”
B((t,z),r) B((t,x),r)

These reverse Holder inequalities are useful, among other things, to control the potential
growth of L2 . norms for solutions in L>(LP).

Q=
™=

S(f s yPdyds)”.
B((t,z),4r)
(4.2)

Proposition 4.3. Let p € [1,00]. Let u be a global weak solution of (1.1). Assume that
u € L®(LP). Then for allb>a >0, and all w € L¥ (R™),

/n// ty\Qdydt> w(z)dr < co.

Proof. We first remark that the case p = oo is trivial, and assume from now on that p < oo.
By Hélder inequality, since w € L¥’ (R™), we have

I::/n /b/ B |u(t,y)]2dydt>;w(m)dx
< /"//B(x\f) 1ty|2dydt)g )

If p < 2, then by Corollary 4.2, and a covering argument, we have the following for all
a’ € (0,a) and b € (b, 00):

1

bl
15 ([l ollpar)” < fuls,

If p > 2, then by Holder inequality

/ / u(t,y) \Qdydt / / u(t,y) \pdydt>
\/) \/)

We conclude as in the case where p < 2 to obtain I S ||u|feo(rr)- O

Proposition 4.4. Let p € [1,00] and u be a global weak solution of (1.1) such that N(u) €
LP(R™). Then for allb > a >0, and all w € LP (R"),

/n// ty|2dydt> w(z) dz < .

Proof. Given b > a > 0, there exists M € N such that b < 2M+1g < 2b, and there exists
N
NeNand {z; k=1,...,N} C B(0,Vb) such that B(0,vbd) C |J B(z,/a). Therefore,

k=1
for all z € R”,
N /
=1

2i+1,

/ / u(t,y \Qdydt) / u(t y)|2dydt>
I+Zk7

A
EMz?Mz



Since w € L¥ (R™), this gives

/n // ty|2dydt>

using the invariance by translation of the L? norm. O

Mz

(- + 20)[| ol < 1N @)llp,
k:

Remark 4.5. For p € [1, 00|, note that, if u is a global weak solution of (1.1) such that
esssup ||u(t,.)||zr = M, then sup ||u(t,.)||» = M. This follows from the continuity of ¢ —
>0 >0

u(t,-) in L2 (R™) and easy density arguments.

4.2 Estimates for the propagators

Lemma 4.6. Let p € (2, ).

(1) For all g € L*(R™) supported in a ball B(0, M), and all t € [0,00),

IT(E,0)"gll L Sz llgllze-

Consequently, for all h € LP(R™), T'(t,0)h can be defined in L2 (R™).

loc
(2) For all h € IP(RY), [[(t,) = (°(t, 0)h)(@) | x» ~ Ihll1s-
Proof. (1) Let t > 0 and g € L?(R™) supported in a ball B(0, M). Using Proposition 3.19,
for some ¢ > 0, we have
0o 00 o .
1000l < D s, 000 T (¢ 0) 0l Sar D257l 0,00 D(1,0) g

j=1 j=1

l,l
<t gl +Z2ﬂ” P e % gl Sare llglie.
7j=2

(2) Let 6 > 0, z € R™. Let h € LP(R"), and j > 1. Using Proposition 3.19 again, we have
that

1
v (W) dydt 2 <o%e 04] ][][ Qdydt
52%6_04] (MHL“L‘ )5(.%'),

where My denote the uncentered Hardy-Littlewood maximal function. Therefore,

1N ((t,2) = D& 0@ || S S 2% e || (Marr ) 2|, S 1Al
j>1

We next prove the reverse inequality. Fix z € R™. We first remark that the same reasoning
as above gives us

ff D(t,0)(Is, (o yh) () dy ) * < 25 e (M) (o),
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forall j > 1 and d € (0,1) and z € B(z,1). Moreover, by continuity of ¢ — T'(¢,0)(1s;(z,1)h)
in L?(R™) and Lebesgue’s differentiation theorem, we have that for all j > 1,

(f £ 00 o avar) 005 )]

for almost every x € B(z,1). As the right hand side is zero for j > 2 and = € B(z,1), we
deduce by summing that

][ ]i(x B) IT(t,0)(15(z,2)ch) (y )|2dy(jhs)é —0

almost everywhere for x € B(z,1) and by difference,

][ £ 0P ayar)* — hGo)

almost everywhere on B(z,1). Hence this holds on R" as z is arbitrary. Since (t,z) —
(T'(t,0)h)(x) € XP, we are done if p = oo, and, if p < oo, Fatou’s lemma gives us

1Pl S It ) = T2, 0)h(2) || xr- =

Lemma 4.7. (1) Letp € [1,00) and 6 > 0. We have that sup ||I'(t, O)||£(Ep < 00.
te(0,4]

(2) Letp € [1,00). For all 6 >0 and all f € EY, one has %in(l]l’(t,())f = f in E}.
—

For all't > 0, one also has liH(l) L(t,s)" f =T(t,0)"f in EY.
s—

(3) For all h € L*°(R™), we have that hm I‘(t 0)h = h in L?

loc

(R™).

Proof. (1) [12, Proposition 4.2] applies using Proposition 3.19.

(2) [12, Proposition 4.4] applies using Proposition 3.19 and the continuity results proven in
Proposition 3.17 and Proposition 3.14.

(3) Let h € L*°(R™), and M > 0. For ¢t > 0, as in Lemma 4.6 using Proposition 3.19, we
see that .~ Upo,a)(L(Z,0) — I)(1s;(0,n)h) converges in L2(R™) to U, (L(t,0) — I)h,
and moreover,

1

(/B(O,M>|<F(t’0)_”h(y)|2dy>2 Sar |0, 0) = D (Ls, 0.0 2) || 22 +Z s TS

for some constant ¢ > 0 depending on M. We conclude using that ||(T'(¢,0) — I)g||z2 P 0
—
for all g € L?(R™). O

Proposition 4.8. Let p € (2,00|. For all h € LP(R™), uy, : (t,z) — (I'(¢,0)h)(x) € XP is a
global weak solution of (1.1).

Proof. Let h € LP(R"). We first show that Vu, € L2 (R?™'). Let a,b,M > 0. For
J =1, set hj =g 0mh € L?(R™) and consider the global weak solutions uj; of (1.1) with
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data h;. Applying Proposition 3.6 and Proposition 3.19, we obtain the following for some
constant 8 > 0:

(/ab/B(OM |V(P(t,0)hj)($)’2dxdt)§
a,boe, M //2/02M I'(t,0)h;)(x )\Zdwdt>

S e P HHB(O 2i+1 M) hllz2 S 2jn(§7 € ﬁ4j\|h||LP~ (4.3)

We easily obtain from this that » .., Vuy; converges to Vuy, € L?(a,b; B(0,M)). Also
> j>1 Un; converges to up, in L?(a/2,b; B(0,2M))

To show that uy, satisfies (1.1) in the sense of distributions, let ¢ € Z and pick a,b, M > 0
such that supp ¢ C [a,b] x B(0,M). For each j > 1,

_/ / uh].(%géd:cdt—l—/ AVuy, -V dzdt =0
0 n 0 R

and by the above L? convergences, one can sum in j > 1 and obtain the conclusion for wuy,.
This shows it is a global weak solution of (1.1). O
Lemma 4.9. Let q € [1,2) and assume that sup ||T'(t,s)|| ¢ ey < o0. Then, for all

0<s<t<o0
r € (q,2] there exists o > 0 such that for all E,F C R™ Borel sets, for all0 < s <t < 00

and all f € L"(R™),

(1 1

2
e [T P

Proof. Let f € L2(R") N L4(R"), z € R*, t > s > 0. By Proposition 3.6 we have that

By TP 0) 5 (f £, ot )’

Covering B(x,2v/t — s) by a finite collection of balls { B(xz;, %5 Vi —);j=1,...,M} with M
depending only on n and B(mj, a ) C B(z,4y/t —s) for all j =1,.. .,M, we can apply
Corollary 4.2 to obtain

(]{3(1 )\P(t,s)f(y)de)%g ][t][ o \P(a,s)f(y)!qdyfhf)‘ll

<(t—s) ][If\lqda = (t— 55| .

|LeD(t, s)Upf)| . S (t—s)"2

AWVt—s

Therefore, for all x € R, ¢t > s > 0 and h € LY(R")

_nel_1
Mg sy Dt )R] 12 S (t— )72 @2 |[A| 1. (4.4)

Let 6 = v/t —s. Consider the family of disjoint cubes %5 := {5[0,1[”—1—]{:5,/{: S Z”}. We
denote by cg the center of a cube Q € Zs. We have that

w3

(-

N

(t—s) MQD(t, s)1g € L(LY(R™), L2(R™))

31



with norm independent of t > s > 0 and Q, R € %5. Using Proposition 3.19 with Riesz-
Thorin interpolation, we have that, for all r € (g, 2], there exists a;,, > 0 such that for all
h e L"(R™)
n A(Q,R)?
QT (¢, ) (Urh)|| 1o S (¢ = )75 2™ T gl 1,

for all Q, R € %, for all t > s > 0. Therefore, there exists ¢/. > 0 such that

IP(E )l =( Y It s)hl3: )’

QEDs
1
S (X Mgt ) (gh)3: )
kezZ™ Qe
1
—c _n(l_1 2
Y e - TBOD (Y 1hl} )
kezZn QEDs

1
_n(l_1 r o \7 _n(l_1
St=s) B0 (3 ghl ) = (¢ = 9)7FC B ],
QeDs

where we have used that £, C £5 since r < 2. Therefore
I (t )l (orzey S (8 —)"5G72)

uniformly for 0 < s < ¢t < oo. Using Riesz-Thorin interpolation again to interpolate
this uniform bound with the L? — L? off diagonal bound from Proposition 3.19 gives the
result. O

Lemma 4.10. Let q € [1,2), and assume that sup |T'(t,s)|zpey < oo. Then, for all
0<s<t<o0

h € LYR"™), up, : (t,z) — (I'(¢,0)h)(x) is a global weak solution of (1.1).
Proof. By (4.4), we have that, for all t > 0, all h € LY(R"™), and all M > 0:
0,00 T'(2 0)hl| 2 Sare (|2 za

Applying Proposition 3.6, we obtain the following for all ¢ € (a,b) and M > 0:

b 1 b 1
([ [ vrwop@Pasa)’ < ([ poante0ml3d) < .
¢ JB(0,M) a

a,b,c, M

To show that wj, satisfies (1.1) in the sense of distributions, let ¢ > 0, and pick hy €
LY(R™) N L%(R") such that ||h — ho||rs < e. The function uy, is a global weak solution of
(1.1), and we thus have the following.

}—/ /uhat¢+/ /AVuh-ng‘

0 n 0 n

< / / o [106] + A / / Vet ||V
0 Rn 0 Rn

5 Huh—hOHLOO(LII) + ||v(uh—ho)HL2(supp(V¢)) S Hh’ - hOHLq <é.

This proves that uy, is a global weak solution of (1.1). O
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Lemma 4.11. Let q € (2,00] and assume that sup |I'(t,s)| ey < oo. Then, for all
0<s<t<o0

r € [2,q) there exists o > 0 such that for all E,F C R™ Borel sets, for all 0 < s <t < 0o
and all f € L*(R™),

2
S t= 5)_%(5_?)67“(?};) 05 ] -

| 1T (t, 5)(Urf)|

Proof. Using Proposition 3.19 we only have to show that

_n¢l 1
sup  [|(t—5) 2T T2 8) | g o) < 0.
0<s<t<o0

For 0 < s <t < 0o, we have by Proposition 3.17 and the proof of Lemma 3.16:

I'(t,s)" =T(s,t) =T (t—s,0),
where I is the propagator for equation (1.1) with A replaced by

A(s, 2) A*(t — s, x) if (s,z) € [0,t] x R™,
s,x) =
A*(0,z) otherwise.

Since A satisfies (1.2) with the same constants as A, Proposition 3.19 applies to I and the
result follows from interpolation between ¢’ and 2. O

Remark 4.12. For p € [1, ],

esssup [IT(¢,s)llgoy =M = sup |[D(t,8)llg@e =M.
0<s<t<oo 0<s<t<oo

This follows, using Proposition 3.14 and Proposition 3.17, from the continuity of ¢ —
(T(t,s)f,g) on [s,00) and of s — (I'(t,s)f,g) on [0,t] for all f,g € P (or f € L™, g€ L!
compactly supported), a simple measure theoretical argument and density arguments.

4.3 Propagators with kernel bounds

We say that the propagators I'(¢,s), 0 < s < t < 0o, have kernel bounds if their kernels
k(t,s,.,.) are measurable functions with

lz—yl|?

[kt s,,y)] < Ot — )" Fe T, (4.5)

for some C,c >0, all 0 < s <t < oo, and almost all x,y € R".
In this case, I'(, s) is an integral operator and one has the integral representation

D(t.s)f(a) = [ kit ) f()dy

for all f € L?(R™) and almost every x € R". Moreover, as the integral makes sense for
fe LP(R"),1<p < oo, one can extend I'(t, s) to a bounded operator on LP(R™), uniformly
in ¢t > s (recall that I'(s, s) = I).

As mentioned, Aronson’s proved kernel bounds for propagators of real equations. At
this point, it is worth pointing out that the following result, proven by Hofmann and Kim
in [21, Theorems 1.1 and 1.2], extends to our situation.
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Proposition 4.13. (1) The propagators I'(t,s), 0 < s < t < oo, have kernel bounds if

weak solutions in LIQOC(R?FH) of (1.1) and of (3.2) on IR{?FH satisfy scale invariant local

L?— L™ bounds of Moser type on parabolic cylinders. The constants C,c in (4.5) depend
on the ellipticity constants in (1.2) and the bounds in the local estimates.

(2) Conwversely, if the propagators I'(t,s), 0 < s < t < oo, have kernel bounds then global
weak solutions satisfy the scale invariant local L?> — L> bounds of Moser type on Whitney
parabolic cylinders.

The proof in [21] is done for smooth coefficients. In this case, one can use the classical
fundamental solution. However, once we have our notion of propagators, we can run the
argument mutatis mutandi. In particular, supremum is replaced by essential supremum (or
even supremum in time and essentiel supremum in z) in the local bounds. Also the argument
for the first part is done for the propagators on the full range —o0 < s < t < 00, but
inspection reveals that, to get the estimate for k(s, ¢, z,y), only local bounds on parabolic
cylinders contained in the strip [s,¢] x R™ are used. This explains our hypothesis on the
weak solutions in part (1).

The converse is stated in [21, Theorems 1.2] for the full range. The argument there does
not preserve strips [s,t] x R” (a modification of the argument could probably do it) but,
if we restrict to parabolic cylinders of Whitney type (as in the definition of the maximal
function N ), then the argument gives the desired local bounds.

5 Existence and uniqueness results

5.1 DMain result

Here, we prove interior representation from a weak control on solutions.

Theorem 5.1. Let u be a local weak solution of (1.1) on (a,b) x R™. Assume

b 1
M = (/ / |u(t,y)\2dydt) 2o 4z < 0o
R \a JB(z,Vb)
6]

for some v < gy where o is the constant in Proposition 3.19 (o = ﬁ) Then u(t,-) =

[(t, s)u(s,-) for every a < s <t < b, in the following sense:

/n u(s,x) T'(t, s)*h(z)dz = / u(t,z) h(z)dx Vh € €.(R").

n

Proof. Step 0: For h € €.(R"), its support being included in B(0, p) for some p > 0, we
have for all j > 1 and for all x € R™ that

_gu4i _gUzl=p)*
eIy, o vp hllze S (Wajzp + 777 gy, ) 1A 2 (5.1)

(recall that S;(x,v/b) denotes the annulus B(x,2/7'v/b) \ B(x,2/v/b) if j > 2 and the ball
B(z,2vb) if j = 1) and therefore, for v < %,

z|2 —p4I ‘
mseuﬂgl(e’yl PP g, oy hllz) S IBlle, Vi EN. (5:2)
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If || < p, then (5.1) is immediate. Let |z| > p H]lsj(w vphllz # 0 only if B(0,p) N
S;(w,v/b) # 0. Pick y € B(0,p) N Sj(x,v/b) and we have that

|z < |z —y| + |yl <27"'Vb+p, and then el =0 <4,

This implies (5.1). Now, for v < %, we have that
(l2]=p)? Bp?
sup (e”‘xpe*’b) " ) — P17 < 00 and sup (]l|1,‘< eel? ) = < 00,
reR™ rER"
which proves (5.2).
Step 1: Weshow that foralla < s <t < band allh € 6.(R"™), we have that u(s,-)['(¢,s)*h €
L' (R™).
Let p > 0 be such that supph C B(0, p). Using Proposition 3.6 and Proposition 3.19, we
have the following (with constants depending on ¢, s,b, p):

)N h@dr = [ (f s Ine s b)) ar

Rn

< Z/ ]i( u(s y)IQdy) ||llB($7§)P(t, 8)* (g (. )Pl 2 dz

_a b
< Z/ / / u(o, y) |2dyda> o=l )l 2 da

S Mh||z2 < oo.

[e.o]
where we have used, for any ¢ > 0, ap= 4”’ = 47 + B47, the fact that Z e~ < oo and (5.2)

Jj=1

with 8 = (bciba) —cand v < % in the last line.

Step 2: Some identities.

We fix h € 6.(R") and let a < ¢t < b. Define ¢(s,x) := I'(t,s)*h(x) for all s € [0,t] and
x € R™. By construction, the function ¢ is a weak solution of the backward equation (3.2)
with V¢ € L?(0,t; L?(R™)) and one has ¢ € €([0,t]; L2(R")). Let x € €°(R™R), and let
n € €°((a,t); R). Denote by 2 a bounded open set containing the support of x. Since w is
a weak solution of (1.1), we have that

L2(ab:H1(2)) (D5t OX*N) 20,533 () = / /A s,2)Vu(s,z) - V(§(s, z)x*(x)n(s)) dz ds.

Since ¢ is a weak solution of (3.2), Vu € L2 _and u € ¢([a,b], L},
have that

b
L2(a,b;H} () <uX277788¢>L2(a,b;H*1(Q)) :/ AV(U(37$)X2(x)n(3)) ’ A(S,{Z})*V(ZS(S,IE) dz ds.

Noting that

) by Proposition 3.6, we

121 (05w, X°0) 2ty + p20ey (X, 859) L2 (m-1y + X2 (@)uls, 2)¢(s, x)' () de ds




we get, adding the three equations above,

// )é(s, )1 (s) dz ds

:/ n(s) /Q(A(s,:n)Vu(s,x) . V(¢(S,$)X2(x)) — V(u(s,x)xQ(m)) -A(s,a:)*V(b(s,x)) dx ds.

Calculating, some terms cancel and we obtain

/ [ @huts. 30,2 (5) dw ds (53)

:/ n(s) /Q((A(s,a:)Vu(s, x) - VX2(:U))¢(S, x) —u(s, ) (VX2(m) - A(s, x)*V(s, 1:))) dz ds.

Step 3: We now prove that

//n u(s, z) (s, x)n'(s) dz ds = 0. (5.4)

We choose x of the form z — w(%) for R > 0 and ¢ € €2°([0,00)) supported on [0, 2],
and equal to 1 on [0,1]. Note that x(y) = 1 for all y € B(0, R) and ||[Vx|lee < R™!. We
have already shown that u(s,-)¢(s,-) € LY(R") for every s € (a,t]. Thus the left hand side
of (5.3) goes to the left hand side of (5.4) as R goes to oo by dominated convergence. To
prove (5.4), it remains to show that ¢Vu € L!((c,d) x R") and that uV¢ € L!((c,d) x R?)
with @ < ¢ < d < t such that suppn C [c,d], so that dominated convergence applies as
well as R goes to co. Using Proposition 3.6 and Proposition 3.19, this is done as a simple
modification of the argument used in Step 0 and Step 1.

/d/n|vu(8,x)||f‘(t,s) |dxds—/ / 7[ o [V IRy ) s

1
< Z/n / ][ ‘VU s y)! dde / H]lB( )F(t s)* (ﬂSj(m,\/B)h)|’%2 d8>2d:p
_ab 4j

< Z/ / / S y ’2dyd8) e b_a4j”]lsj'(z7\/5)h”[z2 dx

We conclude by (5.2) with 8 < (b ) and this gives ¢Vu € L*((c,d) x R™). Using Proposi-
tion 3.9, instead of Proposition 3.6, and Proposition 3.19, and d < t¢:

/Cd /Rn lu(s, z)||VI(t, s)*h(x)|dx ds —/ /n ][ oD (s,9)||VI'(t,s)" (y)\dy) dzds

’ 1
n</a ]é(x ﬂ)‘ u(s,y) !2dyds / H]l VF(t S) <HS](m,\/E)h)H%2 d8>2dx

2

00 b 1 1
< s,y)*d ds ’ / J1 I'(t,s ds)? dz
S (L et u ()2 d5)
Z/ // sy|2dyds>

" B(z,Vb)

e}

w\»—a

l\)\»—l

o
*b=a ”HSJ'(JS,\/B)h||L2 dzx.
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By (5.2) with g <71 ) this gives uVe € L'((c,d) x R™). We have thus established (5.4).

Step 4: Choosmg a speciﬁc 7.

We now pick v € €°(—1, 3) such that le v(y)dy = 1. For e € (0,52 A 53%), we consider
n € €°(a,t) such that

0= £o(C57) - L) o

Remark that the support of 7’ is contained in [a + ¢, — £] and as it has mean value 0, the
same hold for n. From (5.4) (with s becoming o in the integral), we thus get that

L P e (s—e) )
2 ) ) / u(0,2)6(0.7) dz) do
L o (- 2) )
2 s U<T> (/n u(o, x)¢(o, x) dx) do,
and thus, changing variables:

/
-/

Recall that ¢(t,z) = h(x) and ¢(s,z) = I'(¢,s)*h(x). The result will be proven once we
have established that

[SIE

v(o) (/n u(s —e(1 —20),2)d(s — (1 — 20), ) dac) do

|—=

[T

v(o) (/n u(t —2e(1 —0),2)p(t — 2¢(1 — 0), ) dx) do.

SIS

1
2

gig[l) . v(o) /n u(t —2e(1 — o), 2)p(t —2¢(1 — 0),z)drdo = /n u(t,x)p(t,z)dxr (5.5)

and that
lim : v(o) /n u(s —e(1—20),2)p(s — (1 —20),z)dzdo = / u(s,r)¢(s,z)dz, (5.6)

e—0 J_1 n
2

Step 5: Proof of (5.5).
Set f(r,2) = u(t — 7,2)é(t — 7,2) for 7 € [0, — a] and g(1,7) = fB( Vi) f(r,y)dy. After
T,

averaging, we have to show that

lim/ / g9(2e(1 — o), da:da—/ / 9(0,z) dz do.
e—0 n _ 1 n

It follows from Proposition 3.6 and Proposition 3.9 that for all x € R", f € €([0,t —
al; LY(B(z, g)) Hence ¢g(2¢(1 — 0),x) — ¢(0,2) when ¢ — 0 for all (o, ).

For 7 = 2¢(1 — o), we have 7 € [0,3¢] C [0,t — a]. To apply dominated convergence,
we show that sup,¢jo¢—q) [9(7,2)| is integrable on R™. This is a variant of Step 1 to get
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uniformity. Indeed, for all x € R and 7 € [0, ¢ — a], by Proposition 3.6 and Proposition 3.19
with 7 <b-—a

IS SN LI RIOIEY

va)

<({, @@)’ u(t — )P dy) (Z 10, 5 Tt =) (U )22
// (o’ y|2dyda> (Ze bauus(x )hHLQ).

This estimate is uniform with respect to 7 and we get integrability as in Step 1 using Step 0.

Step 6: Proof of (5.6). B
The proof is exactly the same as that of (5.5) taking now f(7,z) = u(s —7,2)¢(s — 7, )
for 7 € [0, s — a] and using 7 = ¢(1 — 20). O

5.2 Results for p > 2

Our uniqueness results will be based on the following well-know fact. Let X be a Banach
space and Y its dual space. If (yx)ren is a sequence weakly* converging to y in Y, and
(zx)ren is a sequence strongly converging to x in X, then ((yx, zx))ren converges to (y,x).
Of course, when X is reflexive, weak® and weak convergence coincide.

We illustrate this principle by first proving that L>°(L?) is always a class of uniqueness
for L? data. Next we look at LP data for p > 2 using non-tangential maximal estimates.

Theorem 5.2. For u € 9', the following assertions are equivalent.
3 f € LA(R™) such that, for all t >0, u(t,-) = '(t,0)f in L*(R™); (5.7)
u is a global weak solution of (1.1) in L*°(L?).

—

Proof. Proposition 3.14 gives us that (5.7) implies (5.8). We now assume (5.8), and note
that sup ||u(t, )|/ 2 < oo by Remark 4.5. Let ¢ > 0, and pick (¢x)ren a decreasing sequence
t>0

of real numbers converging to 0, with tg = %, such that there exists f € L?(R") with
u(ty,") = f ask — oo, weakly in Lz(R”).

By Proposition 4.3, we can apply Theorem 5.1, and get that, for k € N and h € 6.(R"),

/ ult, x)h() dr = / i, )T ) ()

By the continuity results in Proposition 3.17, we have that ||I'(¢, tx)*h—T'(t,0)*h||2 P 0,
—00
and thus
u(t,-) =T(t,0)f in L*(R™).
This also implies that f = %iH(l) u(t, -) strongly in L?(R™), and proves the uniqueness of f. [
—
The following corollary is an immediate consequence of Theorem 5.2 and Theorem 3.11.

Recall from local estimates and Lions’ result that a global weak solution of (1.1) in L°°(L?)
is a priori in €([0, +00); L2 ).
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Corollary 5.3. For all ug € L?*(R™), the problem
O = div AVu, ue L¥(L*), u(0,.) = ug,

is well posed. Its solution u agrees with the energy solution, and, therefore, is such that

ol = l[ull e 22y < V2RIVl z2(z2y < /4 ol =
We now consider p > 2.

Theorem 5.4. Let p € (2,00|. Foru € 9', the following assertions are equivalent.

31 f € LP(R™) such that, for allt > 0, u(t,-) = T'(t,0)f in L (R"); (5.9)

loc

u is a global weak solution of (1.1) with N(u) € LP(R™). (5.10)

Proof. Lemma 4.6 and Proposition 4.8 give us that (5.9) = (5.10). We now consider the
other direction and assume that N(u) € LP(R™). Since p > 2, Lemma 2.4 and Proposi-
tion 3.6 yield, for all 0 < t < §:

ot Mg < el = ([ (f,, wo)P an)

T3
1

t P 1 .
S(L(f 1 sl ayas)” ds)” < [F @, = lulsr
R? N L JB(2,V1)

the constants being independent of ¢,4 (with the usual modification if p = o0). Fix § > 0,
and let fs € E¥, and (t;)ren be a decreasing sequence such that ﬁ 0, tp < 6 and
—00

k* .
u(ty, ) —=% f5 in EY.

For each j > 1, as Ef = EY with equivalent norm, the weak* convergence holds in Ef and

J J
1fsll e < ligninf lu(te, )l gz < llullxe, the constant being independent of j > 1 and ¢ > 0.
g —00 £

J J
Therefore

oo (f,, 16wPan) ] e ey vizn

Moreover )

(][ ‘fé(?/)‘Qdy) Y —— |fs(x)| for ae. xz € R
B(m,%) J—roo
by Lebesgue differentiation theorem. By Fatou’s lemma, f5 € LP(R™) and

1 f5llp < liminf || fs]lgr < [l xe-
j—roo g

By Proposition 4.4, we can apply Theorem 5.1 to obtain, for all £ € N and h € €.(R"),

/ ) T, G () dor = / u(t, ) 7(@) da.

n

Applying Lemma 4.7, we have that

(t,ty)*h — T(t,0*h in EY .
k—o0
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Therefore [p, u(t,z) h(x)de = [p. fs(x) L(t,0)*h(z)dz for all t > 0 and all h € €.(R"),
which gives us that u(t,-) = T'(¢,0)f5 in E}. This implies that f5 = hm u( -) strongly in

EY for p < oo and in L% for p = co by Lemma 4.7. Therefore, f5 = %gr(l) u(t, ) strongly in

L% in all cases and fs is independent of §. We write f = f5. This f is unique as }ir]% u(t, ")
—
in L ., and f € LP(R™) with || f]|, < ||N(u)]|, as proven above. O

The following corollary is now immediate.

Corollary 5.5. Let p € (2,00] and ug € LP(R™). There exists a unique global weak solution
w of (1.1) in XP such that }/in%u(t, ) =g in L .. Moreover, ||ul|x» ~ |luo| Lz
—

An interesting consequence of our result in X° is the following conservation property
of the propagators.

Corollary 5.6. Lett > s. Then
L(t,s)1 =1 in L} (R").

Similarly
L(t,s) 1 =1 in L (R").

Proof. We may assume s = 0 without loss of generality The constant function 1l on ]R""H

is a global weak solution of (1.1) and belongs to X*°. By Theorem 5.4, we have that, for

almost every (t,x) € ]R"'H, 1=TI(t0)f(z) for a unique f € L* such that f = }/m(l) F(t,O)f
—

in L (R"). Thus, f = 1 almost everywhere on R™ and we have shown the equality in
L C(R”“). As weak solutions are continuous in time with values in L2 (R"), the conclusion
follows. The formula for the adjoint is obtained similarly using that we get the same X°

result for the backward equation on (—oo,t). See Remark 3.18. O
We finish with a result valid in full generality, getting closer to LP estimates.

Proposition 5.7. Let ¢ > 2 + % be the exponent in the reverse Hélder estimates of Corol-
lary 4.2. Fizp € (2,4). For u € ', the following assertions are equivalent.

3l f € LP(R™) such that, for all t > 0, u(t,-) = ['(t,0)f in L} (R™); (5.11)
2a
u 18 a global weak solution of (1.1) with sup H][ t,)] dt‘ L < 00 (5.12)
a>0
2a
In this case, || f|[L» ~ sup H][ Ju( |dtH and f2a -)dt converges to f in LP(R™) a
a>0 a

a— 0.

Proof. For the direct part, let f € LP(R™) and u(t,-) = I'(¢,0) f. By Theorem 5.4, we know
that u is a global weak solution and that u € XP. Using the reverse Holder estimates of
Corollary 4.2, we see that we may replace the L? averages by LP averages in the definition of
N (u) (up to modifying slightly the parameters). Hence by Holder’s inequality and averaging

2a P 2a 5
| £ weorad) < [ 7 o ads S 18I,
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This proves the direct part. In addition, this implies that ff“ I'(¢,0) dt are bounded oper-
ators on LP(R™) uniformly with respect to a. This is true for all p € [2,G). At the same
time, they converge strongly in £(L?) to I when a — 0. By an interpolation argument (see
the proof of the next result, Theorem 5.9) this implies the strong continuity at 0 in Z(LP).
In particular, this yields the norm comparison in the statement.

Let us now prove the converse and assume that u is a global weak solution of (1.1) with

2a

M = sup H][ lu(t, -)]dtHL < oo. For all § > 0 and ¢ < ¢, using Lemma 2.4 with p > 2,
a>0 a P

Proposition 3.6 and the reverse Holder estimate of Corollary 4.2 again, we have

ot Mg % Ve, = ([ (f, o el a) )’

S, oo ) )
(L g s ) ae)
([ Fy o)
(/f - ]éium)rds) dyde)® < M.

Thus we have the uniform estimate in the slice space Ef; as in the proof of Theorem 5.4 and
the same argument applies. This proves the converse. O

N

IN

Remark 5.8. In the previous theorem, u has further regularity: (faza lu(t, )P dt)% €
LP(R™) uniformly in a > 0 and ||f||zr ~ sup,sg H(fja lu(t,-)|P dt)%HL as one can check.
p

The largest class in this scale for uniqueness is the one in the statement.

5.3 Results for p < 2

For p < 2 we do not know general results without imposing further properties of the propa-
gators. Here we assume boundedness of the propagators acting on L?, and consider solutions
in L*°(LP). Note that, by Remarks 4.5 and 4.12, we can assume uniform boundedness rather
than almost everywhere boundedness.

Theorem 5.9. Let 1 < q¢ < p < 2. Assume that sup |['(t, )] ¢e) <o0o. Letu €
0<s<t<0

L>((0,00); LP(R™)) be a global weak solution of (1.1). Then there exists ug € LP(R™) such
that u(t,-) = T'(¢t,0)ug in LP(R™) for all t > 0. Moreover, u € %([0,00); LP(R™)) and, in
particular, ug is unique.

Proof. Let u € L*®(LP) be a global weak solution of (1.1). Let ¢t > 0, and pick (tx)ken a
decreasing sequence of real numbers converging to 0, with ¢t < %, such that there exists
ug € LP(R™) with

u(ty,) = up as k— oo, weakly* in LP(R").
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By Proposition 4.3 and Theorem 5.1, for k € N and h € €.(R"™), we have that

/ u(t,x)h(x)dz :/ u(ty, )0(t, tr)*h(z) de.
It remains to prove that ||I'(¢,t;)*h — I'(¢,0)*h||y PR 0. By Lemma 4.9, and the fact
—00
that t — ¢, ~ ¢ for all k € N, we have that sup |T'(¢, t)"(| o (12 ) < oo for all 7' € (p',¢').
keN ’
Let 6 € [0,1) be defined by & = & + 152 For all h € 4°(R"),
IT (¢, t)* B = (8, 0)*All 1y < IV, t)*h = T(8,0)*hlI%/IIT(¢, ) b — (8, 0) Al
S I0(t te)"h = T (£, 0)"h] 2" —— 0.
k—oo

We now show that v € %([0,00); LP(R™)). Let ¢ > 0 and vy € €°(R™) be such that
|lup — vollzr < e. Let s,t > 0:

IT(t,0)uo — ['(s,0)ugl|Le < ||T(¢,0)(uo — vo)llz» + |IT'(Z,0)vo — I'(s,0)vo||Le + [|[T'(s,0)(vo — uo)| e
< e+ ||0(t,0)vg — I'(s,0)vo| 74T (£, 0)vo — (s, 0)wol|}5°

~

for 6 € (0,1] such that % = g + 152 Therefore
IT(£, 0)uo — T(s, 0)uoll e S & + [vollfal|T(£, 0)vo — (s, 0)woll "

Since (¢ — I'(¢,0)vp) € €([0,00); L*(R™)), there exists § > 0 such that for all ¢, s > 0 with

1

|t —s| <9, ||T'(¢,0)vg — '(s,0)vpl|r2 < (L)m This proves that

llvoll7.q

IT(t,0)up — I'(s,0)uplle Se Vit ,s>0, |t—s| <9,

and then the fact that (¢ I'(t,0)uo) is continuous in LP(R™). In particular,
uy = }gr(l) (¢, 0)ug = %E)I(l) u(t,-).

Since we know moreover that (¢ — I'(¢,0)v0) € %([0,00); L*(R™)), the same reasoning
shows that ||T'(¢, 0)ug|| L == 0. O
—00

Corollary 5.10. Let 1 < ¢ < p < 2. Assume that sup [['(L,8)| ¢ (rey < 00. Forue 7',

0<s<t<oo
the following assertions are equivalent.
u is a global weak solution of (1.1) in L*((0,00); LP(R")); (5.13)
Ny € LP(R™) such that u(t,-) =T'(t,0)ug in LP(R™) for all t > 0; (5.14)
u is a global weak solution of (1.1) in XP. (5.15)

In this case, u € Co(LP) and [Jug|lp ~ llull oo ey ~ [Julxe.

Proof. (5.13) = (5.14) is proven in Theorem 5.9. The implication (5.14) = (5.13) is

a consequence of sup |[|I'(¢, s)| #(r») < 00, and Lemma 4.10. So is the norm estimate
0<s<t<o0

[wollp ~ llull Lo (Lr)-
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(5.15) = (5.13): Let t > 0. Using Proposition 3.6 and Hélder’s inequality, we have that

'WW?MZQ/MéQWJMuwwwdgi
ﬂ/JB@%wmm%@%gi
/ - ][ ]é@ [u(o ) dy do) dx)’l’éumu)Hp.

(5.14) = (5.15): Let r € (q,p), and = € R", 6 > 0. Using Lemma 4.9 we have that

][ ][ (¢, 0)uo(y )]2dydt)é < (Mugluol™ ()7,

3=

with constants independent of z,d. Therefore ||N (u)||rr < |Juol/rr < lull oo (Lr) as we have
shown in the proof of Theorem 5.9 that t — I'(¢,0)ug is continuous in LP(R™). Moreover u
is a global weak solution of (1.1) by Lemma 4.10. O

5.4 Further results

Without any assumption on the propagators, we have proven well posedness results in
the class XP for p > 2. We now consider solutions in L (LP) under an LP boundedness
assumption on the propagators. Note that, contrary to the case p < 2, we do not need to
make assumptions about the boundedness of the propagators for different values of p.

Proposition 5.11. Let p € (2,00]. Assume that sup [|T(t, )| ¢ (Lr) < 00. Foru e 7',

0<s<t<o0
the following assertions are equivalent.
u is a global weak solution of (1.1) in L>(LP); (5.16)
My € LP(R™) such that u(t,-) = T'(t,0)ug in LP(R™) for all t > 0. (5.17)

In this case, ||uollp ~ |[ull Lo (rry ~ |lul|x»-

Moreover, if p < oo and sup |[|['(t,s)| ¢y < oo for some r € (p,00) then u € Co(LP).
0<s<t<0

Proof. Proposition 4.8 and the assumption give us that (5.17) implies (5.16), with |Jug||zr ~
||UHLOO(Lp) We now prove that (5.16) implies (5.17). Proceeding as in the proof of Theo-
rem 5.9, we only have to show that

IT(t, s)"h = L'(¢,0)" k|| — 0
s—0

for all t > 0 and h € 6.(R™). Let M > 0 be such that & is supported in B(0, M). For all
j>1andt>s>0, we have that

in(t-1 * *
18s, (0.00) (T (E, 8)* = T(8, 00Vl 1 Sar 27277 ||1g, (g ay (D(E, 8)* — T(¢,0)*)A ]| 2.

For each j > 1, the right hand side converges to 0 when s — 0 by strong continuity of
s+ I'(t, s)*h by Proposition 3.17. Combining this estimate with Proposition 3.19, we have
the following for all 7 > 2, and some constant ¢ > 0:

n(L—1) _.4
1, (0.00) (D (E, 8)* = T(£, 00l 1y Sar 27279 e T ||| 12,
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with constant independent of s when s < t/2. Therefore, we can apply dominated conver-
gence for sums to obtain

IT(, 8)"h = (¢, 0)"hl| pr < ; MLs;0,.00) (T'(; 8)" = T(, 0)")All ppr —> 0-
J=Z

The uniqueness of ug follows from convergence in L2 . of u, since we know that u(t,-) =
['(t,0)ug for all ¢ > 0. The equivalence of norms follows from the above and Corollary 5.5.

If we assume that p < oo and that sup ||['(¢, )| ) < oo for some r € (p,o0),
0<s<t<o0

then we obtain that u € 6y(LP) exactly as in the proof of Theorem 5.9. O

An interesting corollary is the following weak maximum principle without continuity.

Corollary 5.12. Assume that C = sup |[[['(¢, )] ¢ =) < oo. Then any global weak
0<s<t<o0

solution u of (1.1) in L=®(R1) satisfies
sup [[u(t, )| oo wny < C| fll Loo mrys
>0

where f is the initial value of u (which exists as limit in the LY _ sense).

We end this section with another corollary assuming pointwise bounds. Remark that
this does not include p = 1.

Corollary 5.13. Assume the propagators I'(t,s), 0 < s < t < oo, have kernels bounds. Let
1<p<oco. Forue %', the following assertions are equivalent.

w is a global weak solution of (1.1) in L*°(LP); (5.18)
HNug € LP(R™) such that u(t,-) = T'(t,0)ug in LP(R™) for all t > 0; (5.19)
u is a global weak solution of (1.1) such that @ € LP(R"™), (5.20)

where
t(x) =sup esssup |u(t,y)|, x¢€R".
t>0 yily—z|<4vi

In this case, u € Co(LP) and [lug|lp ~ |lullLoo(rey ~ l@llp ~ llullx».

Recall that solutions have no reason to be defined at each point, hence the variant of
the pointwise maximal function.

Proof. As mentioned, I'(¢, s) extends to uniformly bounded operators on LP when ¢t > s > 0.
Corollary 5.10 and Proposition 5.11 thus yield the result, at least for the modified non-
tangential maximal function N (u) instead of the standard non-tangential maximal function
u*. However, |[N(u)||zr ~ ||@]zr. Indeed, we first observe that N(u) < @. A converse
inequality o < NB(U), for some B > 0, follows from the local boundedness properties
of solutions as stated in Proposition 4.13. Since |[Ng(u)|/rs ~ |N(u)]||e, the proof is
complete. O

6 Close to constant or bounded variation time dependency

In this section, we obtain well-posedness results for LP data when p < 2. It seems to us that
one should be able to extend the following results to p > 2 but this would require other
methods and we leave this open.
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6.1 More about gradient bounds for semigroups

We need to use the following quantified version of the boundedness property for the gradient
of semigroups for autonomous problems.

Definition 6.1. For 1 < g <2, A,A >0, M : [2,¢') — (0,00), let us define M(A, X\, q, M) C
L>*(R"™; #,(C)) by A € M(A,\,q, M) if and only if A satisfies (1.2) with constants A, A,
and the following holds for L = —div AV,

sup ||\/7§Ve_tL*Hg(Lr) <M(r)<oco Vrel2,q).
>0

As mentioned in the proof of Proposition 2.8, this implies that there exists a function

M’ [1,2]n (n”—fq,Q] — (0, 00), such that

sup le™ Nl 2wy < M'(p) <00 Vpe[1,2]N (7,2]

Recall that for p = 2, M'(2) = 1 by the contraction property ot the semigroup.

Remark 6.2. Any A constant, or even continuous and periodic or almost periodic on R"
belongs to M(A, A\, 1, M) for some function M (see [5, Section 3| and the references therein).

Definition 6.3. Let A € LOO(RTFI; A, (C)) and I C Ry be a bounded interval. We define
Ar = f; A(t,.)dt € L= (R"; #,(C)).

Lemma 6.4. If A € LOO(RTrl;,//n((C)) satisfies (1.2), then there exist ¢ € [1,2), and
M :[2,¢') — (0,00) such that
Ap € M (AN, q, M) for all bounded interval I.

Proof. Tt is immediate that A satisfies (1.2) with constants A, \. We need the existence of
q and M that works for all A;. This is provided by Remark 2.11. O

6.2 Existence and uniqueness for p < 2 with BV (L>) coeflicients

Definition 6.5. We denote by BV (L*>) := BV ([0, 00); L (R™; .#,(C))) the space of func-
tions A : (0,00) — L*®(R"™; #,(C)) with (semi-)norm

JAlpv (=) = sup{ 3 1A(tks1,) = Alth, )l1o=3 (ti)ren non decreasing in [0,00) .
k=0

If the semi-norm is zero then A is independent of t. The BV condition can thus be seen
as a (large) perturbation of the autonomous case.
Let

At x) =D i ) (B Ar(2)
k=0

with Ay € L®(R"™; #,(C)) for all k € N, and (¢ )ken increasing from ¢y = 0 to co. It is easy

to see that A € BV(L*) if and only if Z |Ag+1 — Ag||zee < 00, and in this case the sum

k=0
equals ||A[| gy (ze). Moreover, if all Ay, satisfy (1.2) with same ellipticity constants A, A,
then so does A. This is representative of the general situation thanks to the next lemma.
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Lemma 6.6. Let A € L®°(R"™; ., (C)) N BV (L™®) satisfy (1.2) with constants A, \. For
jeN, and (t,z) € ]R:L_H, let us define

Then
(i) For all j € N, A; satisfies (1.2) with constants A, \.

(i1) For almost every (t,x) € (0,00) x R", A;(t,x) —— A(t,x).

Jj—o0
(iii) For all j € N, ||Ajllpv(r=) < [|AllBv (L)

Proof. (i) and (it) follow directly from the definition of A; and Lebesgue’s differentiation
theorem. We turn to (éi7). By the discussion above

m+1

[e%¢) m42 -
1Al By (zey = Y H ][mj A(s,z)ds — ][m “ A(s,x)dsHLoo
m=0 Y Y3

27

< fz_j iHA(m“ +s,) = AL+ )H ds < |lA| O
=5 = % ; 27 5 )|l o < BV(L>®)-

Lemma 6.7. Letq € [1,2), M : [2,¢) = (0,00), and A, A > 0. Let A € L®(R"™; .#,(C))N
BV (L) be of the form

At x) =D i ) (B Ak(2)
k=0

with A € M(A, N\, q, M) for all k € N, and (tg)ren increasing from to = 0 to co. Then, for
all p € (max{(1, #"q/}, 2), and vy € LP(R™),

[v: (t,z) — T'(t,0)vo(z)] € L®(LP)

and |lvollp ~ [[vllzee(zry, with constants depending only on p,q, M,\, A and the BV norm
of A.

Remark 6.8. The range of p within [1,2) depends only on the one of Proposition 2.8.

According to Remark 2.10, ni"q, can be improved to nq—fq.

Proof. By density, it is enough to assume vy € L?(R™) N LP(R™). Then v € %,(L?). For
k €N, set vy = I'(tg, 0)vp and

ef(tftk)Lkvk, if t > g,
wy(t, ) = .
0, if t < ty,

where Ly = —div A;V. Observe that, for t € [ty,tx11), and s € [t;,t;11) with i < k, we
have that
I(t,s) = e U=t bk g=(te—te-1)Le-1  o=(tit1—s)Li
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This was proven for finite sequences (tj)j:07,,_7 N+1, but uniqueness in Theorem 3.11 gives
us this formula even for infinite sequences. Thus we have that v(t,-) = wg(¢,-) for all
t € [tg,trr1). Observe that for all w € L2(R™) and t > tj,1,

e—(t—tk+1)Lk+1(e—(tk+1—¢k)Lk1U)
t
—e~(=tk) Lk / e~ =D iidiv (Apyy — Ag)Ve Oy do.
tet1
Hence, for t > tg11,

t
wk+1(t, ) = wk(t, ) - / ef(tfa)LkJrldiV (Ak+1 - Ak)vwk(O', ) do.

te+1

Therefore, by Proposition 2.8 and the value of p, we have that
ity 1000V (Wit — wi) w2 < Myl | Arrer — Akllzee | ey 1 00) Vil o2

The norms H./\;IL,CJrl | #(7w.2) are uniformly bounded from our assumption Ay € M(A, A, ¢, M)
for all k£ € N. Thus there exists a constant C' > 0, depending only on p,q, M and the ellip-
ticity constants in (1.2), such that

[Vwigillpee < (14 Cl|Akt1 — Agllzee) [[ Vw72

Iterating, and using [9, Proposition 2.1], we have that

k
IVwrlizee < T+ ClA 1 = Al )[Vawol|gwe < e“MANBV ) [lug| 15,
=0

o0

since Z | Aj+1 — AjllLe = || Al v (L) for this particular A. So far, we have not used that
§=0

1 < p < 2 in the statement. We note for further use that

sup |[ Uiy 1, Voo < CIAEV @) g . (6.1)
S

The estimate on wy, is sufficient to control ||v(¢,-)||z» when 1 < p < 2 as we now show. Let
t € [tg,tgs1) for some k € N. Using successively that Ay € M(A, A, q, M) for all k € N, [5,
Corollary 3.6 and Theorem 5.1] , a change of variable s — s —tj, in the fourth line and p < 2
in the fifth line in applying [9, Proposition 2.1], we have the following chain of inequalities,
with constants independent of ¢ and k:

lo(t, )lze = fle™ = k|

S llorllze

< (/W‘Ve_SLkvk)2d8>%’
0
_ (/Ooo‘vw,f(s,.)‘2013)é .

vwka < e“IAlBvie) g . O

Lp

N
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Theorem 6.9. Let A € L®(R"™; .4, (C)) N BV(L®) satisfy (1.2) with constants A,\.
Let q € [1,2), and M : [2,¢") — (0,00) be such that A; € M(A,\,q, M) for all bounded
intervals I of R.

Let p € (max{1, n%:],}, 2)" and ug € LP(R™). Then

(i) sup [ID(t, s).2(zr) < 0.
0<s<t<o0

(i) The function u : (t,x) — I'(¢,0)ugp(x) is the unique global weak solution of (1.1) in
L>®°(LP) or in XP such that u(0,-) = ug.

Moreover, u € Go(LP), and |[ul|goo(rry ~ lluollre ~ |lullx»-
(iii) The solution u given in (ii) is such that Vu € TP2, and ||Vu||zp.2 ~ ||uo||L»-

Proof. By Corollary 5.10, we have that (i) implies (7).

Next, (11) = (i7i) is proven, using independent arguments that do not rely on the
BV (L) assumption, in Proposition 7.1 and Theorem 7.3.

Let us now prove (7). Assume that ug € L%(R")NLP(R™). Let {A;,j € N} be the family
of approximations of A defined in Lemma 6.6. Let v9) denote the corresponding global weak
solution of &,v = div A;Vv. By Lemma 6.7, we have that |lug||z» ~ [|ul) | zoo(zp) forall j € N
with implied constants independent of j. Moreover |lug|r2 ~ Hu(j)HLOO(Lz) ~ HVu(j)HLz(Lz)
uniformly in j € N. Therefore, there exists a subsequence (v\));cy of (ul9));e, a function
v € L*®(L?), and a function u € L>(LP) such that

o) —— weak* in L>°(L?),

vol) —— Vo weak* in L?(L?),

(EAC)J—) weak™ in L°°(LP).
J—00

We have that v = u as distributions, and that v is a global weak solution of (1.1). By
Theorem 3.11, it follows that v(¢,z) = I'(¢,0)ug(z) for all ¢ > 0 and almost every z € R™.
Therefore, for all ¢ > 0, [|T'(¢,0)uol|zr = ||v(¢,.)||zr < |luollze. Thus I'(£,0) extends to a
bounded operator on LP(R™), with norm independent of ¢. Starting at s > 0 instead of 0

gives in the same way that sup ||['(¢, s)|| ¢ (z») is controlled by the BV(L°°) norm of A on
t€[s,00)
the interval [s, 00), which is smaller than the one on [0, c0). O

Remark 6.10. Curiously, we are not able to prove (iii) using the approach of Lemma 6.7.

Remark 6.11. In the general situation, we can obtain all values of p € (1,2) if n = 1,2,

and all values p € (nz—fQ —e(A, M), 2) if n > 3. If A(¢,z) depends only on ¢ or is periodic and
continuous with respect to = for all ¢ > 0 with common period, or even almost periodic for

all ¢ > 0, then we obtain p € (1,2) in any dimension.

6.3 Existence and uniqueness for p < 2: small perturbations of autonomous
equations or continuous coefficients

We now turn to an existence and uniqueness result for small perturbations of an autonomous
problem or for continuous coeflicients on a finite interval. We start with the following variant
of Duhamel’s formula.

!The range can be larger according to Remark 6.8.
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Lemma 6.12. Let f € L*(L?) and h € L*(R"). Let A € L>®(R", #,,(C)) satisfy (1.2) and
L = —div AV. Define, for allt > 0,

U(t, ) = eitLh + RLf(t7 ')7
where

Rof: (t,x) — /0 t e =9div f(s, ) (z) ds,

is the bounded operator from T2 to X2 from Proposition 2.12. Then u is the unique element

of W (0, 00) such that, for all ¢ € 2,
(u,09) = (AVu, Vo) + (f, V),
and Tr(u) = h.
Proof. We first assume that f € 2. Define vy : (t,7) — e~**h(x) and
v=1vy+RLf.

By semigroup theory, v € ¥ (L?), and satisfies d;v = —Luvgy + div f. By Proposition 2.13
and Step 0 of the proof of Theorem 3.11, we have that Vv € L?(L?), and thus

<’U, 8t¢> = <AV’U7 V¢> + <f7 v¢>7

for all ¢ € 2, as well as Tr(v) = h.
Now, we turn to a general f € L?(L?), and let (fx)ren be a sequence of functions in 2
converging to f in L?(L?). Define, for all k € N,

up = vo + R fr, and wuw=wvy+Rrf.

Then up — u in X? and Vu, —— Vu in L?(L?), using Propositions 2.12 and 2.8.
k—o0 k—o0
Therefore

(u, 0r9) = (AVu, V) + (f, V),

for all ¢ € 2. Since Tr(v;) = h for all k € N, and Tr is continuous from W (0, 00) to L? by
Lemma 3.1, we also have that Tr(u) = h.
We turn to uniqueness. Let @ € W (0, 00) be another solution of

(@, Opp) = (AV@, V) + (f, V),
for all ¢ € 2, with Tr(a) = h. Then w = u — @ is a solution of
dw = divAVw, w e W(0,00), Tr(w)=0,
and thus v = @ by Theorem 3.11. ]

Corollary 6.13. Let A € LR, . #,(C)) and A € L™(R", #,(C)) satisfy (1.2). Let
L = —divAV. For allt >0 and h € L*(R™), the following holds in L*(R™):

t
D(t,0)h = e h + / e~ (3L div (A(s,.) — A)VI(s,0)hds. (6.2)
0
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Proof. Let h € L?(R"), define vg(t,-) = e *h, and f(t,-) = (A(t,") — A)VI'(¢,0)h for
all t > 0. We have that f € L?(L?) by Theorem 3.11. Define v = vy + Rpf, and
a(t,.) =T'(¢t,0)h for all ¢ > 0. Using Lemma (.12, we have the following, for all ¢ € Z:

(u,01¢) = (AVu, Vo) + ((A - A)Vi, V),

Since @ € W (0, 00) is a global weak solution of (1.1) with Tr(@) = h, we have that u — @ €
W(0,00) is a global weak solution of d;(u — @) = divAV(u — a), with Tr(u — @) = 0.
Therefore u = @ by Theorem 3.11. O

Theorem 6.14. Let g € [1,2), and M : [2,q') — (0,00), and let A € M(A, N\, q, M). Let
pE (max{l, %}, 2) and assume

1
= A Allpe <~ (6.3)
MLl gre2)

where L = —div AV. Then,

sup  [[T(Z, s)|| 2(zr) < oo
0<s<t<o0

Consequently, the conclusions of Corollary 5.10 hold in any open subinterval (r,2) on which
(6.3) is valid.

Proof. Let ug € LP(R™) N L?(R™), and define u(t,-) = I'(t,0)ug. We want to show that
|l oo (£ry < lluol|r» With constant independent of ug.
Let us first assume that A is of the form
471 m41
27
Z A 7[ A(s,2) ds + gy o) (D) A(2),

277 27
27

for some j € N and almost every (¢,z) € (0,00) x R™. With this hypothesis, applying (6.1)
47 4+ 1 times, we have the a priori information that Vu € T?? with norm depending on
j. However, we first show that |Vul||zp2 ~ |uo| rr independently of j. Then we deduce a
bound on ||lu|x» and, finally, a bound on |[ul| zec(z).-

Step 1. Using the representation (6.2) with v(¢,-) = e~*Fuq for all t > 0, we also have that
IVullzse < [Vollzee + | ML(A ~ A)Vulree.

Using [5, Corollary 6.10] and Proposition 2.8 (Recall that p > =L Wthh is the exponent
found in [5] and p < 2), this gives us that

IVullwz < Clluollzr + el Mellzerre) [ Vulloa,

for some constant C' > 0. Therefore, with C' = C(1 — €HMLHL(T;7,2))*1, independent of 7,
we have ||Vul|pp2 < O||uol|ze. Using (6.2) with L = —A and w(t,-) = e"®ug for all t > 0,
together with a classical conical Littlewood-Paley estimate for w, we have that

luollzr ~ IVwllzsz S IVullrez + |Moa(A = D) Vulgre S [ Vullgre.
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Step 2. Using Proposition 2.12 together with the representation (6.2) with L = —A and
step 1, we have that

[ullxr S llwllxe + [Vullrez S lwllxe + [luollze-

The LP boundedness of the non-tangential maximal function for w yields ||w| xr < ||uol|z»,
hence ||ul|xr < |Juol|Le-

Step 3. For ¢t > 0, using Holder’s inequalities as p < 2 and Proposition 3.6, we have

el = [ f uardsdys [ (F 0 juto)Pds)’ dy <l
n B(ac,\/f) n B(yv\/i)

For all ug € LP(R™) N L?(R™), we thus have obtained from this and step 2 that
sup [[u(t,-)[|lze < lluolLe-
>0

The operators I'(¢, 0) thus extend to bounded operators on LP(R"™), and one has the uniform
estimate sup || T'(,0)|| ¢ (z») < 0co. Furthermore, we obtain strong continuity of I'(¢,0) at 0
0<t

in LP(R™) from the one on L?(R"™) as we work for p in an open interval. Thus, ||uo|z» <
|u[| oo (zry- In conclusion, we have shown that

[ullxr ~ lluollze ~ [[Vullze2 ~ [lul Lo Lr)-

The same reasoning gives us that sup [I'(#,s)|| #(r) < oo. Note that the bound is
0<s<t<0

uniform for all j.

The rest of the proof is identical to the proof of Theorem 6.9, using the family {Aj, j€ N}
of approximations of A at the beginning of the proof rather than the approximations given
by Lemma 6.6. O

Theorem 6.15. Assume A € %€([0,T]; L>°(R™; #,(C))) and that there are q € [1,2),
and M : [2,¢'") — (0,00) such that A(s,-) € M(A, N\, q, M) for all s € [0,T]. Forp €
(max{l, %}, 2), we have that

sup [[(t, s)|l g(rry < o0 (6.4)
0<s<t<<T

Consequently, the conclusions of Corollary 5.10 hold replacing t > 0 by t € (0,T], global
solutions by local solutions on (0,T), and €o(LP) by €([0,T]; LP).

Proof. Let ug € LP(R™) N L?(R™) and define u(t,-) = ['(t,0)ug. We want to show (6.4).
To do so, we adapt the proof of Theorem 6.14. For ¢ > 0, choose § > 0 according to the
uniform continuity of A on [0,7] such that ||A(s, ) — A(s',")||re < € if [s — §'| < 25. We
may assume that 6 = 2% for some k € N.
271
We begin by replacing A by A;(t,z) = Z ]l[mT (mH)T)(t)A(”;—jT,a:), for j > k. We
m=0 2

—o L2
still denote the solution by u to keep the notation simple. With such coefficients, we know
from (6.1) that [|[Vu|rs2 < co qualitatively.

Step 1. Using the representation (6.2) with v(,-) = e"**ug, L = —div A(0,-)V, we have

||11(0,25)VU||TP72 < Hﬂ(o,za)VUHTzL2 + Hﬂ(o,Qé)ML(Aj — A(0, ) V)| 7w,z
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Note that the truncation implies that the only values of A(s,z) that play a role are those
for s € [0,20]. Thus as j > k, we obtain,

10,25 Vttllwe < Clluol|ze + €| MLl g irw2) 100,26 Vel 7oz,

for some constant C' > 0 independent of j. Therefore, having first chosen ¢ > 0 with
e[ MLll rr2y < 1, using the finiteness of ||l 25 Vullrr.2, we have [l o5 Vullpp2 <

Clugllze, with €' = C(1 — e MLl z(rr2)) ™

Step 2. Set w(t,:) = e'®ug. Using Proposition 2.12 together with the representation (6.2)
with L = —A and step 1, we have that

Mo 28yl xr S [Mo,26)wllxr + [ 0,26) Vtrllge2 S flwllxe + [luol| zr-

The LP boundedness of the non-tangential maximal function for w yields ||w| xr < ||uol|z»,
hence |1 25)ullxr S [luol| e

Step 3. For 0 <t < 4, using Holder’s inequalities as p < 2 and Proposition 3.6, we have

P
it M = [ fweorarays [ (f 0 ea?ds)” dy S o
B(z,Vt n N B(y,Vt)

For all ugp € LP(R™) N LQ(]R ), we thus have that

sup lu(t,-)|[ze S fluollLr-
0<t<é

Therefore, the operators I'(¢,0) extend to bounded operators on LP(R™), and one has the
uniform estimate sup [[I'(,0)[| #(zr)y < co. Furthermore, we obtain strong continuity of
0

I'(¢,0) at 0 in LP(R”S from the one on L?(R™) as we work for p in an open interval. In
conclusion, we have shown that

luollLe ~ sup [u(t, )] Le-
0<t<s

Given the form of A;, one can obtain similarly sup IT(, 8)|l.#(Lry) < 00. Tter-
mdi<s<t<(m+1)é
ating at most % times, using the reproducing formula for the propagators, we obtain
sup ||T'(¢, 8)|| 2(zr) < 0.
0<s<t<T

We conclude for A as in Theorem 6.9 using the above approximations A; of A, remarking
that the bound obtained for the propagators of A; are uniform for j large enough and depend
solely on the uniform continuity assumption and 7. O

Remark 6.16. In this argument, we only used properties of the semigroups for each co-
efficients A(s,-) on a bounded interval. Thus we may replace the assumption A(s,:) €
M(A, N q, M) for all s € [0,T], by A(s,-) € Mrp(A, X\, q, M) for all s € [0,T]. The subscript
T means that we consider the supremum in Definition 6.1 taken on (0,77]. For example,
any A € L>®(R", #,(C)) that is uniformly continuous (or even that belongs to VMO) on
R™ belongs to My (A, A, 1, M) for some M and all T > 0; see [4]. In particular for any
A € €([0,00); L>®(R™; #,(C))) such that A(s,-) is uniformly continuous on R", uniformly
for s > 0 (the uniformity in s is imposed to guarantee that we have the same function M
for all A(s,-)), we can apply our result with p € (1,2) and obtain global solutions in €' (LP)
(but not bounded). For example, it applies to any A which is uniformly continuous on
R,
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7 Square functions and maximal functions a priori estimates

We prove here some comparisons between conical square functions in LP(R™), namely
||Vu||7p2 and non-tangential maximal functions in LP, namely |u||x» for weak solutions
of Oyu = div AVu. In the case of autonomous equations, such bounds are obtained in [22]
for p > 1. It is tempting to study the cases where p < 1 as well, but this is outside the
scope of the present work.

7.1 Controlling the maximal function by the square function for 1 < p < oo

As a consequence of Proposition 2.12 and classical Littlewood-Paley theory, we first obtain
the following control of the maximal function by the square function.

Proposition 7.1. Let 1 < p < oo, ug € L*(R"), and u(t, ) = T'(t,0)ug for all t > 0. If
Vu € TP?, then u € XP, and

ullxe < [[Vullze.

with implicit constant independent of u.

Proof. Set v(t,.) = e'®uq for all t > 0. Using (6.2) with L = —A and Proposition 2.12, we
have that

[ullxe S llvllxe + IR-alle@e2 xnlA = Iz [[Vull zp.2-

Using (6.2) again, together with the classical conical Littlewood-Paley estimate, and Propo-
sition 2.8, we also have that

lollxr S e S HVVllzre S IVullee + [M-a(A = DVulrre S [[Vullppe. O

~

_n_

Note that the range can be improved to p > 5,

classical conical Littlewood-Paley estimate.

which is the same range as for the
As a corollary, we have the following improvement of Theorem 3.11.
Corollary 7.2. For all ug € L?>(R"), the problem
o = div AVu, wue€ X%, Tr(u) = ug

is well-posed. Moreover, the solution u is the energy solution, i.e. u(t,-) = I'(t,0)uq for all
t >0, and

luoll 2 = ullpoe(r2y < Nullx2 S IVullraizy < 4/ a5 luoll 2

Proof. Existence. Let u(t,:) = I'(¢,0)up for all ¢ > 0. By Proposition 7.1 and Theo-
rem 3.11, we have that

lullx2 < I Vullrzz = [Vl 22y < /35 luollza-

Uniqueness. We have by Proposition 3.6 that [|u]lje(z2) S [lullx2 for all u € X2, and
L>(L?) is a class of uniqueness as shown in Theorem 5.2. O
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7.2 Controlling the square function by the maximal function for p € [1,2)

Theorem 7.3. Let u be a global weak solution of (1.1). Let p € [1,2), and assume that
u € XP. Then Vu € TP? and
[Vullree < [Jullxe,

with constant depending only on the ellipticity parameters in (1.2).

Note that the proof works for 0 < p < 1 as well with the definitions of 772 and XP
extended to these values.

Proof. The proof is highly similar to its autonomous counterpart in [22, Theorem 6.1],
itself based on Fefferman-Stein’s original argument for L = —A in [20]. The only difference
is that we need to use cut-off functions rather than integration by parts to localise near
the boundary of truncated cones, Proposition 3.6 instead of Caccioppoli’s inequalities, and
Kenig-Pipher’s maximal function instead of the maximal function used in [22]. We include
the full proof for the convenience of the reader. Let ¢, R, 0 > 0 with ¢ < %. Pick g > 0 to
be determined later. Recall that

38252 1
Ns(u = sup ][ ][ lu(t,y)|* dy dt> * VreR™
52 B(x,36)

6>0

Define £ = {z € R" ; Npu(z) < o}, and E* = {z € E; Vr > 0 |B(z,r)NE| >
2|B(z,7)|}. Let B = E¢, B* = (E*)°, and, for z € R", a > 0,

refe(g) = {(t,y) €[0,00) x R"; |y — x| < at and € < t < R},

as well as REFY(E*) = J,cpr T2 (2).
We also define B5%(E*) = B.(E*) U BE(E*) U B'(E*), where

B.(E*) = {(t,y) € [0,00) x R" ; t € (¢,2¢) and d(y, E*) < t},
BR(E*) = {(t,y) € [0,00) x R"; t € (R,2R) and d(y, E*) < t},
B'(E*) = {(t,y) € [0,00) x R"; t € (¢,2R) and t/2 < d(y, E*) < t}.

Note that ~
Ra,2R,1(E*) _ «R25,R,1/2(E*) U BE’R(E*).

We remark that

/ / ][ - |Vu(t y)]2dydt dx—2/ / ][ 5|Vu(s 7y)|2dyd3> dz.
d

n
R
/ (/ ][ s|Vu(s?,y))? dy ds) dz < cn/ s|Vu(s?,y)|? dy ds.
* 2¢ J B(z,s) R25,R,1/2(E*)

with ¢, the reciprocal of the volume of the unit ball. We estimate the last integral. To do

S0, set
xt) = (1= In(4) (1-n(f)) V() e B

where 7 € €°°([0,0),[0,1]) is equal to 1 on [2,00), and equal to 0 on [0, 1]. Notice that
X is almost everywhere differentiable, supported in RE’QR’I(E*), and constantly equal to 1

a
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on stvR’%(Ef). Moreover, for all (¢,y) € R&2%1(E*), we have that [Vx(¢,y)| < w
For (t,y) € B.(E*), we have,

d(y,B* 40" || so
10ix(t, )| < 20| [loo (& + 2eE) < A e

The same reasoning gives us that |Opx(¢,y)| < 4“77,”“’, for all (¢,y) € BR(E*). For (t,y) €

B'(E*), we also have that |d;x(t,y)| < 2’ ||°° v, E*) < 2”77;”‘”. Putting all these estimates
together, we have shown that there exists C > 0 such that for all (¢,y) € R®2L(E*), we
have that

C
IVx(t )+ 19ex(,y)l < -
According to Remark 3.7, provided we show that (s, x) — u(s?, z)x?(s,z) € L%(e,2R; H'(R")),
we can use this function as a test function. We assume this for now, and estimate as follows:
/ s|Vu(s?, y)|* dy ds < 2) ?)%e/ sx*(s,9)A(s, y)Vu(s®, y) - Vu(s?, y) dy ds
R2e R’1/2(E*)

n+1
R+

ST+ Ja+ U3,

where
h= [, s Tulst ) - w2 VO ) dy s
J2 = /R (0s(x (s, y)u(s®,y)), u(s*, y)x(s,y)) ds|,
da=| [ 062000 (0ol s ) s

Here, we notice that for each s, the bracket is the duality H—*(R"), H'(R"). Hence, J =
3 fR+ ds|Ix (s, -)u(s?,-)||72 ds = 0. Moreover,

BE [ ) Vuls )l dyds,
stR(E*)

dyd
Js < / fu(s?, )2 L2
Be,R(E*)
This yields

/ /][ s|Vu(s ,y)|2dyds>da:
* N 2e

dyds dyds\ 3 3
</ \u(sQ,yW PR P ([ v P dyds)”
B R(E*) S B R(E*) S B R(E*)

We now consider the following six integrals, recalling that B&f(E*) = B.(E*) U BE(E*) U
B'(E*).

dyd
= / fu(s?, )2 L=, L= / s|Vu(s?, y)|* dy ds,
B.(E¥) S B.(E*)
2 o dyds 2 2
I3 = lu(s”,y)| ; Iy = s|Vu(s?,y)|* dy ds,
BR(E*) BR(E*)
2 o dyds 2 2
I5 = |U(S ay)| 5 IG = 8|VU(S ay)| dyds
B’(E*) S B’(E*)
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For I;, we have the following:

dyd
nsf o (/ s*”dm)\u(s%y)\?ﬁ

B-(E*) N ENB(y,s) §

/26/][ dedsdx // ][ |2dydsdx
B(:cs g2 B(xz,2¢) s
46°

/ ][ ][ u(s,y)|2dydsdx:/ INou(z)|? da.

E6>0 62 JB(z,25) B

To handle I, we use Proposition 3.6, and a covering argument, to obtain the following:

¢ 482
125/ /][ s|Vu(52,y)|2dydsdx§// ][ Vu(s,y)[* dy ds da
B(z,2¢) g2 B(z,2¢)
/][ ][ (s y)\zdydsdx—/ INju(z)|? da.
€2/2 B(:p4e)

In the same way I3+1y < [ [Nju(x) |2 dz. We now turn to I5, Ig, using a Whitney decompo-
o0
sition of B*: there exist ¢1,co € (0,1) with co > ¢1, and ¢3 € N, such that B* = U B(xg,rg)

for some x; € R™ and r; > 0 such that
Vk e N cyd(xg, E*) <1 < cod(xg, EY),
Vr € B* Hk‘ eN; ze B(:L"k,rk)}‘ < c3.
We have the following:

oo

2rk( +1) dy ds
5y [ [ P
0/ e(o5 =1/ B(pri) s

o0 4r§(i+1)2

<> f (s, ) dy s,
k=0 T%(%_1)2 B(xkv 13262 \/g)

Now remark that, for k € N and s € [r%(é - 1)2,41"]%(% +1)2]:

Tk C2
d E) <d EHY<=2< —= /s
(ok, B) < dfa, ) < - < o _02)\/g

Therefore, there exists zj, € E such that

B(.Tk, li2c2 \[) C ‘B(‘ll’ik7 1— cg(cl + 1)\/)

This yields
47“k( +1) 9 9
ESY w(f, ], ju(s, ) dy ds) < |B*| sup | \u(=)P,
o keN (5-D% B, 725 (L +1)Vs) =

for some v > 4 depending only on c¢1,ce. In the same way, using Proposition 3.6, we also
have that

0 47“2(%—&—1)2
Is S Z/ k / [Vu(s,y)|* dyds,
- B(zg, 1

k=0 Tk(*_l) 2262\/5)

0 4rk(811+1) ) )
s>/ [ Tl dyds S |5 sup Wou(a)

= 022 B2z e 2ckB
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for some 7’ > ~ depending only on c1, c2. Now fix 8 = +/. Summing all the estimates, and
taking limits as € — 0 and R — oo, we have the following:

/ / ][ \Vuty)]Qdydtdx<\B o +/]Ngu (2)]*dz

Now we consider the distribution functions defined by

gs(o) = xeR”' /][ ]Vuty)\zdydt> }‘,

9N —HxGR ; Nau(x) >U}|.
We have that |B*| < |B| = gn(0), and that

/ Npu(z)|* dz < 2/0 tgn (t) dt.
E 0

gs(o) SB[+ = //][ |Vuty)|2dydtd:c

1 g
SB[ (o) S onie) + [ tavoae

This implies

Therefore, as p < 2,

/ ap_lgg(a)dag/ oP g da—i—/ ol~ 3/ tgn(t)dtdo
0 0

5/ oP~ 1gN(cr)d o,
0

and thus Vu € TP? with ||Vullzpe < [[Npulre < |lullxe.

To finish the proof, we check that (s,z) — u(s? 2)x?(s,z) € L%(e,2R; H*(R")). We
begin by checking f:R Jgn [u(s%,2)x?(s, z)[* ds dz < oo, with constants that depend on €, R.
Indeed, we may split [¢,2R] into a finite number of intervals [62, 3262]. For each of them,
arguing as for I;, we obtain a bound [, INsu(z)|?dz. By definition of E and p < 2, this

does not exceed 0% 7P [p, [Nsu(z)[P dz < co. Next, ffR Jon IV (u(s?,2)x% (s, z))|? ds dz is
estimated similarly, using Proposition 3.6 as for I5. O

7.3 Controlling the square function by the maximal function for p € [2, 00|

Theorem 7.4. Let u be a global weak solution of (1.1). Let p € [2,00]. If u € XP, then
Vu € TP? with | Vullre2 < |Jullx» and implicit constant independent of wu.

Proof. Step 1: In this step we prove the result for p = 2. Let R,e > 0 with R > \1[ Let

X € €*°((0,00), [0, 1]) be supported in [, %], and such that, for some constant C' > 0,
x(t)=1 vte[2,4], OI<E viel2], [X()<Ce Vie 5,1

Let 0 € €>°(R™, [0, 1]) be supported in B(0,2R) and such that

0(zr) =1 VeeB(0,R), |VO(z)| <= Ve B(0,2R)\ B(0,R).

R
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For M > 0, define ¢p(t,z) = etA(llB(O,M))(:r) for all (t,z) € (0,00) x R™. Remark that
o is smooth, that ¢/(t, x) increases as M increases with ¢ (t, ) FYE 1 for all (¢,z) €
—00

(0,00) x R™, and that

Vol peez ~ [ Upo,n)llBMO < 2, | dnrll oo oy < 1.

Let Ry > 4R and set ¢ = ¢r,. We want to show

1;:/ / Vult, )2t 2)20(2)2x () de dt < Jull%e = J,
0 n

independently of u, Ry, R and e. Indeed, if this is the case, then we can let Ry — oo first

by monotone convergence, which implies a control of f;s/ &) B(O.R) |Vu(t,z)|? dz dt and it

suffices to let R — oo and € — 0.

Let a=¢,b=1/¢ and Q = B(0,2R). Let ¢ = ¢0x (we forget the variables to keep the
notation reasonable) and remark that uy? € L?(a, b; H}(Q)). According to Remark 3.7, we
can use this as a test function to obtain

/Oo A(t, )Vu(t,z) - V(up?)(t,z)) dt de = —/oo<8tu(t, Y, u?(t,-)) dt.
0o Jre 0
From ellipticity,

I< (/OOO [ At ult,a) - Tui?)Eo) da atl

+| / Aty 2)Vult,z) - V(2 (t, ) a(t, o) de dt
0 R™
S L+ Iz + I3,

where
h= /0m<atu<t, ) ()t ) dil,
I = /0 b / A(t2)Vu(t,x) - 6(t,2)Vo(t, )6 (@) (Hult, 2) da dt

9

I3 = /OOO /n A(t,x)Vul(t,z) - ¢2<t’$)‘9($)ve(33)>(2(t)mdm gl

To estimate I;, we decompose further and obtain Iy < Iy + I12 + I1 3, where (forgetting
to write the ¢ variable)

9

L= /OOO<3t(U9¢X),u0¢X> di

ha=| [ (o 0xdi0. ) |
0

ha=| [ twsox 00wt
0
In the first integral, the inner product is the H~1(Q), H}(Q) duality so that we can use

Lions’ theorem again and we have that I1 = & [0 9|lu(t,.)06(t,.)x(t)|3dt = 0. In the
other two integrals, the inner product can be rexpressed with the L? duality. To estimate
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I o, remark first that, if g; denotes the standard heat kernel defined by g;(z) = (wt)"2e™ 3¢,
we have for all x € B(0,2R) and for all ¢ > 0,

s(t. )] 5| [ Ot = )0 ()

‘ o Orgt(x — y)Up(o,Ry)e dy)

clx— 2
<C /21— 4te ol y‘ dy<R_
Rn

In this calculation, we used |z —y| > Rog — 2R > 2R, so that |z — y|? > % + R%. Now
define k. € N such that 2k < E% < 2k*+1 We have the following

Lo <SR 22/

using R~2¢~! < 1. Moreover

2e 1
Lis S ][ / |u(t,x)]2d1‘dt+][ / |u(t,x)\2dxdt < ||u|]§(2,
€ n 1 n

since |x/(t)] < g for all t € [e,2¢], and [x/(t)| < Ce for all t € [, 1].
To estimate Iy we use Cauchy-Schwarz inequality, Harnack inequalities for each 0, ;¢,
j=1,...,n, and Carleson inequality (see [15, Proposition 3|) to obtain

/OO/ IVu(t, 2)20(z)%¢(t, z)2x (t)2 da:dt)é(/ooo /Rn \U(t,a:)|2|v¢(t7x)|2dxdt>é
% / /n 7[%]{9@ (5,9 *IVe(s, y)\2dyds) dgcdt)é

2k+1

/ u(t, z)? da dt < R-222ka\\u\rx2 < e,
" k=0

[N

2
S I% / / ][ ][ (s,y |2dyds)|v¢(t x)]zdxdt)
n Bzt
1 2t 2 % 1 1
<Iz / sup ][ ][ u(s,y)| dyds)dzHquﬁHTooz) SIzJz.
R (t,x)el,

For I3, we have by the Cauchy-Schwarz inequality and R=2¢~! < 1,

1

13<12/ / u(t, 2)2|VO(2) 2o (t, 2)2x(E) dacdt)é<i(/Ooo/n|u(t,x)2x(t)2dxdt)2

% 2]€+1 1 I% 1 ) ) )
Zka][ / ][ N ’“(tay)IQdydtdx)Q < §(2k55>2ﬁ <k
n J B(z,V2ke)

Combining all the estimates, we have that I < T 2J54+J. As I < 00 by definition, we thus
conclude that I < J as desired.

Step 2: In this step we prove the result for 2 < p < oo essentially by establishing a
local version of Step 1. Fix zg € R, Ryg, R > 0 with Ry > 4R, ¢ > 0 and consider
X € € (R, [0,1]) supported in [e,4R?] such that, for some C' > 0,

x(t)=1 vie[2e,RY, [X()<E Vtele2e], X< Ve [R%4RY.

59



We define ¢(t, z) = etA(lB(meo))(:r) for all (¢,x) € [0,00)xR"™. We also let § € €>(R", [0, 1])
be supported in B(xg,2R) and such that

0(z) =1 Va € B(xo, R), IVO(z)| <& Va ¢ B(xo, R).

Defining

o o 2 2 2 2
I /0 / [Vult,2) Po(t, 7 0(x)x (1) dt

T = ||(ts2) = Wp(a 2m) (@) Lo.arey (Bult, )| 2z

we only have to show that I < J with implicit constants independent of u, xg, €, R, Ry.
Indeed, if this holds, then, taking the limit as Ry — oo and then as ¢ — 0,

RE
/ 7[ Vut, 2)2 dz dt
0 JB(zo,R)

26 2
SR / Sup][ 7[ u(t, y) P Uo.ar2) () LB (e 2r) (V) dydt) dz

>0

gR—”/ Nuxgdx,ﬁ inf  M((Nu)?)(y
B(z04R)| ()] el (Nw)”)(y)

where M is the Hardy-Littlewood operator on R"™.
2
Define C(F)(y) = supps,([5 [ [F(t,z)[*dt dz)z. Thus if y € R™ by taking the supre-
mum over all B = B(xzg, R) 3 y, we have shown

CVul)(y) S [M((Nu)?)]2 ().

As p > 2, using the parabolic version of [15, Theorem 3, (2)] and the maximal theorem, we
obtain the conclusion.
We proceed as in Step 1, estimating I < 111 + I12 + 11,3 + Iz + I3, where

ha = [t antusigns i o
na = [ wusox-0x0) ]

L= /0 (u, ubdx - 06X)

| [ [ AoVl 66076020 0ulE 7 do ],
0 R

I3 = /OOO /n A(t,z)Vu(t,z) - ¢2<t’x)0(x)ve(x>)(2(t)mdx dt).

Using |9;6(t,2)| < Ry', we have that

R2 2
R -
s < / / u(t,2) Plosd(t, )] dzdt < 2o [ N (e oryu) (2) dx < 7
0 20.2R R§ Jrn

and using the properties of x and 6, we also obtain

2 4R2
s < f / U an 2 (), xﬂzdxm][ / 1oy 2 ()u(t, ) dardt <
IS Rn Rn
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Next, as in Step 1, we also have that Iy < T 3J3. Finally, by Cauchy-Schwarz inequality

1 2
C . 2 3
Is S’R(/n/s (1B (zo,2r) (T)u(t, )] dxdt)
I% o0 Lo 92—k R2 2 %
~R 2 h 1 tx)2dedtdy)® < T
~ R (/n k:;2 iklRQ ][B(:E,RQIE) | B(mo,QR) (x)u( ,$)| €T y> <

This concludes Step 2. O

N|=
N|=

J2.

7.4 Consequences

We have obtained comparison results only for solutions with L? data. We can remove this
constraint as follows.

Corollary 7.5. Let 1 < p < oo. Assume that, for all f € LP(R™), the problem
Ou = div AVu, ue XP, %in%u(t, )= fin LE,,
%
is well-posed. Then the solution satisfies

IN@)llze ~ [Vallzre ~ [|fllze-

Remark 7.6. We have well-posedness in XP for p > 2 by Corollaries 5.5 and 7.2. For
p < 2, we have well-posedness in XP under the assumptions of either Corollary 5.10, or
Theorem 6.9, or Theorem 6.14.

Proof. Let u € XP be a global weak solution of (1.1). By well-posedness in X?, we know
that u(t,-) = ['(t,0)f for a unique f € LP(R™), for all t > 0. Moreover ||N(u)|, ~ ||fl,-
Consider an approximation f;, € LP(R™) N L%(R") converging to f, and let u; be the
corresponding solution. We have that ||[N(ug)|l, ~ ||Vug||zp2 combining Proposition 7.1
and Theorems 7.3 and 7.4. The conclusion follows from taking the limit as k — oo. O

We wish to make a connection with old ideas in the topic such as those of Nash, as

explained in [19]. Assume A has real coefficients. Then for h € €>°(R"™), h > 0, u(t) =
I'(t,0)h, and 2 < p < oo, one has (if the coefficients are smooth to ease justifications)

%Hu(t)”ﬁz, =p(p— 1)/ u(t, z)P2A(t, ) Vu(t, z) - Vu(t, z) dz

Rn

and in particular

1PN, — lu(®)|}, = p(p — 1)/0 /n u(s, )P "2 A(s, ) Vu(s, z) - Vu(s,z) dz ds. (7.1)

This yields the finiteness of the integral when ¢ — oo, which is equal to |||}, as [|u(t)||Lr —
0. Note that for p = 2, we recover the energy equality

1R = 2/0 /Rn A(s,z)Vu(s,z) - Vu(s,z) dzds
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which motivated our approach to the energy space. Our observation is that for p > 2 and
arbitrary global weak solutions with ||u*||L» < oo (which, as we have shown, are of the form
u(t) =T'(t,0)h for a unique h € LP(R™)) we have

Fim [ ] Juls.)7 A0 ) Vu(s.2) - Vu(s) deds S [,
0 n
Indeed, using the boundedness of A,

/000 /n lu(s, z)|P~2A(s, 2)Vu(s, z) - Vu(s,z) dzds < - C(|Vul)(z)?u* (z)P~2 dz

< |CUVuDlzelluli,

by Holder’s inequality in the last line and, in the first, [15, Proposition 3] adapted to

parabolic scaling, with C(f)(x) is the supremum of (fJQ fp [2(t,y)dy dt)% taken over
all balls B, r being the radius, that contain z. Next, by [15, Theorem 3, (b)], we have
IC(IVu)|le < ||Vul|7p2. Finally we conclude using our Theorem 7.4.

It is not clear at all that integrals of the form I can play a role when considering complex
equations. In particular, (7.1) does not hold in this case. However, (modified) maximal
functions and Lusin area functionals remain valid tools, as we have just demonstrated.

8 Fatou type results

Our well-posedness results imply convergence in LZQOC(]R") or in LP(R™) sense for some p

to the initial value. Here, we address almost everywhere convergence issues. As weak
solutions may not be locally bounded, we replace the pointwise (parabolic) non-tangential
convergence by the convergence of (parabolic) Whitney averages.

Theorem 8.1. Let A be as in (1.2). Let f € L*(R") and u(t,-) = ['(t,0)f. Then for
almost every x € R™, we have convergence of the Whitney averages

1)
lim][][ u(t,y) — f(z)|*dydt = 0,
ti .,y ) =1

as well as of the slice averages

lim w(d,y) — f(z)*dy =
i f ) - 1)

In particular, for almost every r € R",

1
lim][ ][ u(t,y)dydt = lim u(d,y)dy = f(x)
=08 Jp(z,v5) 6=0JB(z,V/5)

Proof. Considering f(x) as a constant, the convergence of the slice averages follows from
the local estimates in Proposition 3.6 and the convergence of the Whitney averages.

To show the convergence of the Whitney averages, we use again the Duhamel formula
(6.2) with L = —A, which reads, for almost every (t,y) € R,

u(t,y) = e f(y) + Roa((A = DVu)(t,y) = e f(y) + v(t,y).
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Recall that v(t,y) only involves (A — I)Vu at times between 0 and ¢. Thus, the proof of
the boundedness from 722 = L?(L?) to X? from Proposition 2.12 shows that

/ supff o(t ) dy dt de < [|(A — DVullaq o).

6<e

The right-hand side converges to 0 with ¢ — 0 as [|[Vul|2(z2) ~ || f[[z2. Thus the left-hand
side converges to 0. As the integrand is non negative and non decreasing as a function of
e, it follows that it converges to 0 almost everywhere, that is

][ ][ y)|? dy dt — 0 almost everywhere.
H

Finally, for almost every x € R",

][][ 1) = P dpde 50

by the known results concerning pointwise non-tangential almost everywhere convergence
of the solutions of the heat equation. This completes the proof. O

Corollary 8.2. Let 1 < p < co. Consider any A as in (1.2) for which (1.1) is well-posed
on XP with initial space LP (this holds for p > 2 and under conditions when p < 2). Let u
be a global weak solution in XP. Then

][][ u(t,y)dydt and ][ u(0,y)dy
B(z,V/6 B(z,V/3)

converge for almost every x € R™ to the initial value as § — 0.

Proof. Under our assumption, we know that u(¢,-) = I'(t,0)f for a unique f € LP for all
t > 0. We invoke the usual argument involving 1) control of the maximal function N (u)
and the one for the slice averages in LP, and 2) existence of limits almost everywhere for a
dense class of f, here LP N L?, from the previous theorem. We skip details. O

Remark 8.3. Consider A with real coefficients. This results holds for any 1 < p < oo and
can be proven by usual arguments, using the pointwise Gaussian upper estimate and the
conservation property. For p = 0o, one can get convergence under uniform continuity of f.
For p = 1, we have not attempted to describe the space {u € L2 _(R"™) ; |lullx1 < oo}.
This would define a Hardy space associated with a non-autonomous equation.

9 L! theory for propagators with kernel bounds

In this section, we assume that the propagators I'(¢, s), for ¢ > s > 0, have kernel bounds,
and that their adjoints have some time regularity. More precisely, we assume the following:

|z —y|?

k(t, s, z,y)| < C(t—s)"2e “ s, (9.1)
Vh e E.(R") ||T(to,s)"h —T'(to, so)*h|| - = 0, (9.2)
S—»S0
for some C,c > 0, all {5 > sg > 0, and almost all z,y € R”.

See Section 4.3 for a discussion of the first condition. The second condition can be
checked for real equations as a consequence of Nash’s regularity theorem [32].
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Lemma 9.1. Assume (9.1). Lett > s >r > 0. Then

/ k(t, 5,0, 2)k(s, v, 2,y) dz = k(t, 7,2, y),

for almost every x,y € R™. Moreover,

/ k(t,r,z,y)de =1 (9.3)

for almost every y € R™. Finally, for any f € LY(R"), 7+ T(1,5)f € 6o([s, 00), L1).

Proof. Let x,y € R"™ and define I(z,y) = [gp. k(t,s,2,2)k(s,r,2z,y)dz. Note that the
integral converges thanks to (9.1). Next, for f € 2(R™), we have the following for almost
all x € R"

| 1@y = [ Kesa( [ blrzfe)dy)ds
= /n k(t,s,z,2)(s,r)f(z)dz =T(t,s)['(s,r) f(x)

=I(t,5)f(x) = - k(t, s, z,y)f(y) dy.
Using (9.1), we have that the other equality is equivalent to I'(¢,7)*1l = 1 almost everywhere.
This is proved in the Ll?OC sense in Corollary 5.6.

Finally, the strong continuity of 7 + I'(7,s) on L'(R") is proven as follows. As the
operators are uniformly bounded on L!(R"), it suffices to check continuity for functions
in a dense class. Let f € L>®(R"™) be compactly supported, and M > 0 be such that the
support of f is contained B(0, M). Then, using (9.1), [[I'(¢, s)f — T, s) fll1(B(0,ar)e) — O
when M — oo uniformly for ¢,# in any bounded set of [s,00). So fix t > s and take t' > s
with [t —¢'| < 1. Let € > 0 and fix M > 0 so that ||[T'(t,s)f — T, s) fll L1 (B(o,m)e) < € for
all such ¢,¢" . Since [|T'(¢,s)f — T(t',8) fll L1 (B(o,m)) < M™2?|T(t,s)f — L(t', 8) fllL2(B(o,m))
we can use the strong continuity of 7 +— I'(7,s) on L?(R") to conclude. The proof for the
limit at oo is similar. O

Theorem 9.2. Assume (9.1) and (9.2). Foru € 9, the following assertions are equivalent.

Jlug € LY(R™) such that u(t,-) = T'(t,0)ug in L'(R™) for all t > 0; (9.4)

u is a global weak solution of (1.1) in L (LY),

o (LY) means u € L®(L') and there exists a weakly convergent sequence
(u(tj,.))jen in L1(R™), where (t;);en is a sequence of positive reals decreasing to 0. In this
case, u € €o([0,00), L1).

where u € LS

Proof. To prove that (9.4) implies (9.5), let f € L*(R") and define u : (t,z) — I'(t,0)f(x)
by the intergal formula. By (9.1) and Lemma 9.1, we have that u € %,([0,00), L'). Tt
remains to see it is a global weak solution of (1.1). For all a > 0 and t € (a,c0), we have,
thanks to (9.1), that there exists ¢ > 0 such that

a
IPG 0 fllze < e flllze S N1 £l
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By Lemma 9.1, and density of L' N L? in L', T'(¢,0)f = I'(¢, )I'(%,0) f for all ¢ € (a, 00).
This shows that u is a global weak solution of (1.1).

We now turn to the other direction, and assume (9.5). Let (¢;)jen be the sequence of
positive reals decreasing to 0 such that (u(t;,-));en converges weakly in L*(R™). Call f its
limit. By Proposition 4.3 and Theorem 5.1, for all j € N with ¢ > ¢;, and h € 6.(R"), we
have that

/n u(ty, z)I(t,t5)*h(z) de = /n u(t, z)h(z) dz.

Using (‘) 2) and also that (|lu(t;,-)[|1);jen is a bounded sequence, the left hand side converges
to [pn f(2)L(t,0)*h(x) dz. This implies u(t,-) = I'(¢,0) f. The uniqueness of ug = f follows
by continuity at t = 0 in L!(R"™). O

We then consider solutions only in L>°(L') and show that such solutions arise from
considering Radon measures as initial data. To do so, we need to impose a further condition
on the kernel, which is satisfied in the case of real coefficients (see [3, Theorem 9]), again
as a consequence of Nash’s regularity theorem [32].

For all t > s > 0 and almost all x € R", y+ k(t,s,z,y) is continuous on R".  (9.6)

Under (9.1) and (9.6), then for all ¢ > 0 the integral [, k(t,0,,y)du(y) makes sense in
the duality of 6,(R"™) with the space .#(R"™) of Radon measures for almost all x € R", and
belongs to L'(R") as a function of . We call this function I'(¢,0) .

Theorem 9.3. Assume (9.1), (9.2) and (9.6). For u € 2, the following assertions are
equivalent.

Np e #(R"™) such that u(t,-) =T(t,0)u for all t > 0; (9.7)
u is a global weak solution of (1.1) in L*°(L').

In this case, u € €y((0,00), L) and is weakly-star convergent to ji ast — 0.

Proof. We first show that (9.7) implies (9.8). Let u be a Radon measure and u(t,-) =
I'(t,0)u for all t > 0. By (9.1) and Fubini’s theorem, we have that v € L>(L'). Moreover,
for all a > 0 and ¢ € (a,00), we have that u(%,-) € L'(R") N L>®(R"), and, in particular
u(%,-) € L*(R™). By the reproducing formula for the kernels in Lemma 9.1 and Fubini’s
theorem, u(t,") = I'(t,$)u(%,-). This shows that u is a weak solution of (1.1) on (4%, 00)
for any a > 0. Hence it is a global weak solution.

Turning to the other direction, we assume (9.8). Let tg < t and (¢;)jen be a sequence
of positive reals decreasing to 0 and such that ([, u(tj, z)g g(z) x)dx)jen converges for all g €
%o(R™) by Banach-Alaoglu’s theorem. Let p € . (R") be the weak® limit of (u(t;,));en.
Let g € 6.(R™). Using (9.1) and (9.6), we see that I'(¢,¢;)*g € 6o(R™), and by (9.2), that

Dt £)% = T(6.0)"glli= ——> 0.

By Proposition 4.3 and Theorem 5.1, we have that

/n u(ty, 2)I(t,t5)*g(z) de = /" u(t,z)g(z) dx

so that taking the limit as 7 — oo, we obtain

/nu(t,:v)g(x)dx:/nf(tO) // (£,0, 2, y)g(@) du(y) dz.
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and thus

u(t,:n) = /n k(t’()?xvy) d/ﬁ(y),

for all t > 0 and almost all z € R"™.
To show that p is unique, let g € 6.(R"), and € > 0. By uniform continuity, pick § > 0
such that |g(z) — g(y)| < e for all x,y such that |z —y| < 4. Using (9.1), we have that

k(t,0,2,9)(g(x) — g(y))dz du(y)| < ellpll.z-
e Jaas |

Moreover, we have that

)
[ ] k0w - o) dedu(w)| < lellallgllime
™ J B(y,20)°

for some constant ¢ > 0. Therefore,

i [ [ b(t,0.2.0)(0(e) ~ g(0) de du(y) = 0.

t—0

By Lemma 9.1, we have that

/n RnktOfcy)()dwdu()/ /n/n (£,0,2,9)(g(z)—g(y)) dz du(y),

and thus / g(z)du(x) = hm / (t,z)g(x) dx, which proves uniqueness of p.

Finally, the continuity on (0,00) and the limit at oo follow directly from Lemma 9.1
since u(t, ) = T'(¢t, s)u(s,-) for all t>s>0and u(s,-) € L}(R"). O

10 Local results

We have been interested in global results with scale invariant norms in the interior. As our
estimates depend separately on 1) interior representation and 2) taking limits as ¢ tends to
0, we can formulate well-posedness for larger classes as follows. Let X be one of the spaces
where we can prove well-posedness for Y data. For T > 0, let X be a local version of
X, obtained by truncating functions by 0, i.e. |lullx; = |[(t,2) — u(t,x)N 1 (t)[x. Let
X = NpsoX7. Note that functions in X can have their X7 norms growing arbitrarily fast
as T — oo. Functions with bounded X7 norms belong to X.

Consider the Cauchy problem for (1.1) on R’ with u € X and ug € Y. In each of
the following cases, one obtains uniqueness. Since we can construct solutions in X, we get
a posteriori control at T" — oo and the solution belongs to X. In other words, arbitrary
a priori control on the norms for large times implies a posteriori bounded control. The
interested reader can write the precise statements from our explanations.

For Y = L?(R"), one can take X = L°(L?) or X = X2. In the case X = L?(H"), one
takes X7 = L2(0,T; H') instead of L2(0,T; H').

For Y = LP(R"), 2 < p < o0, one can take X = XP or the space in Proposition 5.7
when p < q.

For Y = LP(R™), 1 < p < oo and uniform L? bounds on the propagators or estimates
on its kernel (see above for the relation between ¢ and p), one can take X = L°°(LP).
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For Y = LP(R™), 1 < p < oo and non uniform L? bounds on the propagators or estimates
on its kernel (i.e. allowing the Z(L9) norm of I'(¢,s) to grow as |t — s| — o0), one also
obtains well-posedness for X = L°°(LP), but the solution has Xp norms that may grow at
infinity.

For Y = LP(R"), p. < p < 2 and BV (0,T; L) coefficients for all T' > 0, we are in the
previous situation with X = L>(LP).

We also note that the results ||Vul||pp2 < ||ul|xr in Section 7 are easily localisable in time
by looking at the proofs. Thus the further estimates using truncated maximal functions
apply and one can deduce bounds on truncated Lusin area integrals. However, note that the
converse |[ul|xr S ||Vul/7p2 is not localisable in time because the right hand side vanishes
when the time becomes small.
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