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NEW STABILITY RESULTS FOR SPHERES AND WULFF

SHAPES

JULIEN ROTH

Abstract. We prove that a closed convex hypersurface of the Euclidean space

with almost constant anisotropic first and second mean curvatures in the Lp-
sense is W 2,p-close (up to rescaling and translations) to the Wulff shape. We

also obtain characterizations of geodesic hypersphere of space forms improving

those of [10] and [11].

1. Introduction

Let F : Sn −→ Rn+1 be a smooth function satisfying the following convexity
assumption

(1) convexity AF = (∇dF + F Id |TxSn)x > 0,

for all x ∈ Sn, where ∇dF is the Hessian of F . Here, > 0 means positive definite
in the sense of quadratic forms. Now, we consider the following map

φ : Sn −→ Rn+1

x 7−→ F (x)x+ (grad|SnF )x

The image WF = φ(Sn) is called the Wulff shape of F and is a smooth convex
hypersurface of Rn+1 due to condition (1). Note that if F = 1, the the Wulff shape
is the sphere Sn.

Now, let (Mn, g) be a n-dimensional closed, connected and oriented Riemannian
manifold, isometrically immersed into by X into Rn+1. We denote by ν a nor-
mal unit vector field globally defined on M , that is, we have ν : M −→ Sn. We
set SF = AF ◦ dν, where AF is defined in (1). The operator SF is called the
F -Weingarten operator or anisotropic shape operator, and we can defined in this
anisotrpic setting all the corresponding extrinsic quantities like anisotropic princi-
pal curvatures and anisotropic mean curvature and higher order mean curvature
(see the preliminaries section for the precise definitions).

In the isotropic context, geodesic hyperspheres in Euclidean spaces can be char-
acterized among closed hypersurfaces by various properties. In particular, it is
well known that geodesic hyperspheres are the only totally umbilical closed con-
nected hypersurfaces in Euclidean spaces. The question of the stability of this
characterization has been intensively studied in the last years by many authors
(see [1, 3, 8, 10, 11, 12, 13] and references therein for instance). In the anisotropic
setting, the so-called Wulf shape plays the role of geodesic spheres and can be char-
acterized by similar results (see [4, 7] for instance). Analogously to spheres, for a
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2 JULIEN ROTH

given F , the Wulff shapeWF is, up to homotheties and translations, the only closed
convex hypersurface with vanishing traceless anisotropic second fundamental form.
Very recently, De Rosa and Gioffrè [2] studied the stability of this characterization.
Namely, they proved that if the traceless part of the anisotropic second fundamen-
tal form is sufficiently small, then the hypersurface is closed to the Wulff shape.
The aim of the present note is first to obtain a new stability result concerning the
Wulff shape. Namely, we prove the following stability result.

〈thm1〉Theorem 1.1. Let n > 2 an integer, F : Sn −→ R be a smooth function satisfying
the convexity assumption (1), h > 0 and p > n. Let M a closed and oriented
hypersurface of Rn+1 bounding a convex domain. Assume that V ol(M) = V ol(WF ).
Then, there exists ε0 > 0 depending only on n, p, h and F such that if for ε 6 ε0,
we have

• ‖HF − h‖p < εh and
• ‖HF

2 − h2‖p < εh2 for a constant h2,

then M is closed to the Wulff shape in the following sense : there exists a smooth
parametrisation ψ : WF −→ M , a vector c0 ∈ Rn+1 and a constant K depending
on n, p and F so that

‖ψ − Id− c0‖W 2,p(W) 6 Kh
pε

p
2 .

Remark 1.2. • Here V ol(M) is the volume of M for the induced metric g.
• We recall that the extrinsic radius of M is the radius of the smallest closed

ball in Rn+1 containing M .
• Note that the right-hand sides in both pinching conditions of the theorem

are respectively hε and h2ε for some homogeneity reasons, since for the
Wulff shape, we have HF

2 = (HF )2.
• As we will see in the proof (Lemma 3.1), the constant h2 will be necessarily

close to h2.

This result is a generalization in the anisotropic context of the main result of
[10], but not only since the hypothesis are that both first and second anisotropic
mean curvatures are close to constants for the Lp-norm. We can also improve the
results of [10] for space forms in the same way and obtain new characterizations of
geodesic hyperspheres under weaker assumptions. We denote by Mn+1

δ the simply
connected real space form of constant curvature δ. We prove the following result.

〈thm2〉Theorem 1.3. Let n > 2 an integer, h > 0 and p > n. Assume that (Mn, g)
is a closed connected hypersurface of Mn+1

δ so that V ol(M) = V ol(Sn). If δ > 0,
assume moreover that M is contained in an open ball of radius π

4
√
δ

. Then, there

exist ε0(n, p, h) > 0, K(n, p) and β(n, p) 6 1 such that if for ε 6 ε0, we have

• ‖H − h‖p < εh and
• ‖H2 − h2‖p < εh2 for a constant h2,

then M is diffeomorphic and Kεβ-close to a geodesic hypersphere of radius 1
‖H‖2 in

the following sense: there exists a diffeomorphism F from M to Sn
(

1
‖H‖2

)
so that∣∣∣|dxF (u)|2 − 1

∣∣∣ 6 Kεβ
for any x ∈M and any unit vector u ∈ TxM .
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Remark 1.4. • For more convenience, we wrote the above theorem with H2,
but due to the twice traced Gauss, formula, we have n(n−1)H2 + δ = Scal ,
we can reformulate equivalently the theorem with almost constant scalar
curvature.
• This result is an improvement of a previous result of [10] since we assume
Lp-norms instead of pointwise almost proximity to constant. Moreover, in
the case where δ > 0, we assume that M is contained in an opengeodesic
ball of radius π

4
√
δ
. We can remove the assumption with as counterpart,

the fact that C and ε0 depend also on the extrinsic radius of M . We will
develop this point in the proof. The same remark holds the the following
two corollaries.

From the following theorem, we can obtain new characterizations of geodesic
hyperspheres.

〈cor1〉Corollary 1.5. Let (Mn, g) be a closed and oriented Riemannian manifold, iso-
metrically immersed into Mn+1

δ and p > n. If δ > 0, we assume that M is contained
in an open ball of radius π

4
√
δ
. Let h > 0 Then, there exists ε(n, h, δ) > 0 such that

if M has constant mean curvature H = h, and ‖Scal − s‖p < ε for a constant s,
then M is a geodesic sphere.

〈cor2〉Corollary 1.6. Let (Mn, g) be a closed and oriented Riemannian manifold, iso-
metrically immersed into Mn+1

δ and p > n. If δ > 0, we assume that M is contained
in an open ball of radius π

4
√
δ
. Let s > 0 Then, there exists ε(n, δ) > 0 such that

if M has constant scalar curvature Scal = s, and ‖H − h‖p < ε for a constant h,
then M is a geodesic sphere.

When p ∈ (1, n], one can not obtain similar result, since we use a pichning result
for almost umbilical hypersurfaces for the Lp-norm with p > n. Nevertheless, we
can obtain for the Euclidean space a stability result comparable to Theorem 1.1,
with the assumption that the hypersurface is convex using a result by Gioffrè [3].
Namely, we have the following for p > 1 which can also be deduced form Theorem
1.1 for F = 1.

?〈cor3〉?
Corollary 1.7. Let n > 2 an integer, h > 0, p > 1 and R > 0. Let M a
closed and oriented hypersurface of Rn+1 bounding a convex domain. Assume that
V ol(M) = V ol(Sn) and that the extrinsic radius of M is smaller than R. Then,
there exists ε0(n, p, h,R) > 0 such that if for ε 6 ε0, we have

• ‖H − h‖p < εh and
• ‖H2 − h2‖p < εh2 for a constant h2,

then M is closed to the unit sphere in the following sense : there exists a smooth
parametrisation ψ : Sn −→M , a vector c0 ∈ Rn+1 and a constant K depending on
n, p, h and R so that

‖ψ − Id− c0‖W 2,p(W) 6 Kε
p
2 .

Moreover, if p > n− 1, then ε0 does not depend on R.

Remark 1.8. Note that there is no interest here to obtain corollaries comparable
to Corollaries 1.5 and 1.6. Indeed, if the hypersurface (which is supposed to bound
a domain) has constant mean curvature, the Alexandrov theorem gives that M is a
sphere without need of the almost constancy of the scalar curvature.



4 JULIEN ROTH

Remark 1.9. In all the statements, we assume a normalization of the volume for a
sake of simplicity, but be scaling, we can obtain statements with constants depending
also on the volume.

2. Preliminaries

Let (Mn, g) be a n-dimensional closed, connected and oriented Riemannian man-
ifold isometrically immersed into the (n + 1)-dimensional simply connected real
space form Mn+1

δ of constant curvature δ. The (real-valued) second fundamental
form II of the immersion is the bilinear symmetric form on Γ(TM) defined for two
vector fields X,Y by

II(X,Y ) = −g
(
∇Xν, Y

)
,

where ∇ is the Riemannian connection on Mn+1
δ and ν a normal unit vector field

on M . When M is embedded, we choose ν as the inner normal field.
From II, we can define the mean curvature,

H =
1

n
tr (II).

Now, we recall the Gauss formula. For X,Y, Z,W ∈ Γ(TM),

(2) gaussR(X,Y, Z,W ) = R(X,Y, Z,W ) + 〈SX,Z〉 〈SY,W 〉 − 〈SY,Z〉 〈SX,W 〉

where R and R are respectively the curvature tensor of M and Mn+1
δ , and S is the

Weingarten operator defined by SX = −∇Xν.
By taking the trace and for W = Y , we get

(3) ?gausstrace?Ric(Y ) = Ric(Y )−R(ν, Y, ν, Y ) + nH 〈SY, Y 〉 −
〈
S2Y, Y

〉
Since, the ambient space is of constant sectional curvature δ, by taking the trace a
second time, we have

(4) ?gausstrace2? Scal = n(n− 1)δ + n2H2 − ‖S‖2,

or equivalently

(5) ?gausstrace3? Scal = n(n− 1)
(
H2 + δ

)
− ‖τ‖2,

where τ = S −HId is the umbilicity tensor.
Now, we define the higher order mean curvatures, for k ∈ {1, · · · , n}, by

Hk =
1(
n
k

)σk(κ1, · · · , κn),

where σk is the k-th elementary symmetric polynomial and κ1, · · · , κn are the
principal curvatures of the immersion.

From the definition, it is obvious that H1 is the mean curvature H. We also
remark from the Gauss formula (2) that

(6) ?h2scal? H2 =
1

n(n− 1)
Scal − δ.

On the other hand, we have the well-known Hsiung-Minkowski formula

(7) hsiung1

∫
M

(
Hk+1 〈Z, ν〉+ cδ(r)Hk

)
= 0,
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where r(x) = d(p0, x) is the distance function to a base point p0, Z is the position
vector defined by Z = sδ(r)∇r, and the functions cδ and sδ are defined by

cδ(t) =

 cos(
√
δt) if δ > 0

1 if δ = 0

cosh(
√
−δt) if δ < 0

and sδ(t) =


1√
δ

sin(
√
δt) if δ > 0

t if δ = 0
1√
−δ sinh(

√
−δt) if δ < 0

Finally, we define the function tδ = sδ
cδ

.

On the other hand, let F : Sn −→ Rn+1 be a smooth function satisfying the
following convexity assumption (1):

AF = (∇dF + F Id |TxSn)x > 0,

for all x ∈ Sn, where ∇dF is the Hessian of F . The Wullf shape is defined by
WF = φ(Sn) with

φ : Sn −→ Rn+1

x 7−→ F (x)x+ (grad|SnF )x

Now, let (Mn, g) be a n-dimensional compact, connected, oriented manifold
without boundary, isometrically immersed into by X into Rn+1. We denote by ν
a normal unit vector field globally defined on M and the F -Weingarten operator
SF = AF ◦S, where AF is defined in (1). The eigenvalues of AF are the anisotropic
principal curvatures that we will denote κF1 , κ

F
2 , · · · , κFn . Finally, for r ∈ {1, · · · , n},

the r-th anisotropic mean curvature is defined by

HF
r =

1(
n
r

) ∑
i1<···<ir

κFi1 · · ·κ
F
ir .

We also set HF
0 = 1 for convenience. Note that the Wulff shape is F -umbilical,

that is SF = HF Id and all its anisotropic principal curvatures are equal to 1 and
therefore, for any r ∈ {1, · · · , n}, we have HF

r = 1.

We finally recall these integral forumlas proved by He and Li in [4] and which
generalize the classical Hsiung-Minkowski formulas (7) in the anisotropic setting.

(8) hsiung

∫
M

(
F (ν)HF

r−1 +HF
r < X, ν >

)
dvg = 0.

We finish this section of preliminaries by the following results which give an upper
bound of the diameter of a hypersurface in Mn+1

δ in terms of its mean curvature
and their consequence on the extrinsic radius. We have the following

Theorem 2.1. (Topping [14], Wu-Zheng [15]) Let n > 1 and (Mn, g) be a closed
〈Topping〉 connected Riemannian manifold isometrically immersed into a complete Riemann-

ian manifold (Nn+p, h) of curvature KN satisfying KN 6 b2 with b a real or purely
imaginary number. For any 0 < α < 1, if

(9) condsob1 b2(1− α)−2/n(ω−1n V ol(M))2/n 6 1,

(10) condsob2 2ρ0 6 injM (N),
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where injM (N) is the injectivity radius of N restricted to M , ωn = V ol(Sn) and ρ0
is given by

ρ0 =

 b−1 sin−1
(
b(1− α)−1/n(ω−1n V ol(M))1/n

)
if b is real,

(1− α)−1/n(ω−1n V ol(M))1/n if b is imaginary.

then, we have the following

diam(M) 6 C(n, α)

∫
M

|H|n−1dvg,

where diam(M) is the intrinsic diameter of M and H its mean curvature (for the
immersion into N) and C(n, α) a constant depending only on n and α.

This result have be first proved by Topping if N is the Euclidean space using
the extrinsic Sobolev inequality of Michael and Simon [6]. Then, it has been gen-
eralized by Wu and Zheng for arbitrary manifold with bounded curvature by using
the general extrinsic Sobolev inequality of Hoffmann and Spruck [5]. This is the
reason why assumptions (9) and (10) are neeeded. Note also that is N is the Eu-
clidean of hyperbolic space, then, both conditions (9) and (10) are trivially satisfied.

Finally, we recall that the extrinsic radius R(M) of M is defined by

R(M) = inf{ρ > 0| ∃x ∈Mn+1(δ) s.t. φ(M) ⊂ B(x, r)},

where φ is the immersion of M into Mn+1(δ). By a slight abuse of notation, we
denote it R(M) but, this radius depends not only on M but also on the immersion
φ. Since in this paper, the considered immersion will be fixed, this notation does
not lead to any ambiguity.
The extrinsic radius is bounded from below by the mean curvature due to the
following estimate (see [9])

tδ(R(M)) >
1

‖H‖∞
,

with equality if and only if M is a geodesic sphere. On the other hand, even if,
this is not optimal at all, we remark obviously that R(M) 6 diam(M) and using
Theorem 2.1, this implies that R(M) is also bounded form above by in term of the
mean curvature without any condition if δ 6 0. Now, we have the ingredients to
prove the results.

3. Key lemmas
?〈proof〉?

First, using the integral formula (8), we are able to prove the following techincal
lemma.

〈lem1〉
Lemma 3.1. Let (Mn, g) be a closed Riemannian manifold, isometrically immersed
into Rn+1 and assume that the extrinsic radius of M is smaller than R. Let p > 1 ,
h and h2 be two positive constants and ε ∈

(
0, 12
)
. If the first and second anisotropic

mean curvatures satisfy

• ‖HF − h‖p < εh and
• ‖HF

2 − h2‖p < εh2,
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for some positive ε, then ∣∣∣h2 − h2∣∣∣ 6 Ah2ε,
where A is an explicit positive constant depending on n, h, R and F .
Moreover, if p > n− 1 and M is convex, then, A does not depend on R.

Proof. The proof of this lemma is based on the Hisung-Minkowski formulas (8) for
r = 1 and k = 2. Indeed, the Hisung-Minkowski formula for r = 2 is the following

(11) ?hsiung2?

∫
M

(
HF

2 〈X, ν〉+ F (ν)HF
)
dvg = 0.

Then, we get

0 =

∫
M

(
HF

2 〈X, ν〉+ F (ν)H
)
dvg

=

∫
M

(
h2 〈X, ν〉+ F (ν)H

)
dvg +

∫
M

(HF
2 − h2) 〈X, ν〉 dvg

=
h2
h

∫
M

h 〈X, ν〉+

∫
M

F (ν)HF dvg +

∫
M

(H2 − h2) 〈X, ν〉 dvg

=
h2
h

∫
M

HF 〈X, ν〉 dvg +
h2
h

∫
M

(h−HF ) 〈X, ν〉 dvg +

∫
M

F (ν)hdvg +

∫
M

F (ν)(HF − h)dvg

+

∫
M

(HF
2 − h2) 〈X, ν〉 dvg

Now, we use the Hsiung-Minkowski formula for r = 1, that is

(12) ?hsiung0?

∫
M

(
HF 〈X, ν〉+ F (ν)

)
dvg = 0,

to get

0 = −h2
h

∫
M

F (ν)dvg +
h2
h

∫
M

(h−HF ) 〈X, ν〉 dvg +

∫
M

F (ν)hdvg +

∫
M

F (ν)(HF − h)dvg

+

∫
M

(HF
2 − h2) 〈X, ν〉 dvg

=

(
h− h2

h

)∫
M

F (ν)dvg +
h2
h

∫
M

(h−HF ) 〈X, ν〉 dvg +

∫
M

F (ν)(HF − h)dvg

+

∫
M

(HF
2 − h2) 〈X, ν〉 dvg

Then, since |〈X, ν〉| 6 R, using the Hölder inequality and both conditions
‖HF − h‖p < εh and ‖HF

2 − h2‖p < εh2, we get∣∣∣h− h2
h

∣∣∣ ∫
M

F (ν)dvg 6 h2εRV ol(M) + εh sup(F )V ol(M) + εh2RV ol(M).

Using the fact that |HF
2 | 6

(
HF
)2

, we deduce

|h2| 6 h2 + (HF − h)2 + 2h(HF − h) + (h2 −HF
2 )

and so with the assumptions ‖HF − h‖p < εh and ‖HF
2 − h2‖p < εh2 , we get

|h2| 6 5h2.
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Thus, we have∣∣∣h2 − h2∣∣∣ ∫
M

F (ν)dvg 6 εh2 sup(F )V ol(M) + (h3 + hh2)RV ol(M)ε

6 εh2 sup(F )V ol(M) + 6h3RV ol(M)ε

and we obtain

|h2 − h2| 6
(
h2

sup(F )

inf(F )
+

6h3R

inf(F )

)
ε(13) h-h2

6 h2A(h,R, F )ε,

which gives the wanted assertion.
Now assume that p > n−1 and M is convex. We will show that R can be controlled
from above by h. First, as we have already mentionned, R 6 diam(M) and so, by
Theorem 2.1, we have

R 6 C(n)

∫
M

|H|n−1dvg

6 C(n)V ol(M)‖H‖n−1p .(14) majR

Now, let {e1, · · · , en} an orthonormal basis diagonalizing SF . Then, we have

H =

n∑
i=1

〈Sei, ei〉

=

n∑
i=1

〈A−1F ◦ SF ei, ei〉

=

n∑
i=1

κFi 〈A−1F ei, ei〉

6 ‖A−1F ‖
n∑
i=1

κFi = ‖A−1F ‖H
F ,(15) majHHF

since all κFi are nonnegative by convexity of M . Moreover, from the assumption
‖HF − h‖p < εh with ε < 1

2 , we get that

h

2
6 (1− ε)h 6 ‖HF ‖p 6 (1 + ε)h 6 2h,

Combining this with (14) and (15), we obtain

R 6 C(n)V ol(M)
(

2h‖A−1F ‖
)n−1

.

Finally, reporting this upper bound of R into (13), we get that A can be choosen
to be independent on R if p > n− 1 and M is convex. This conludes the proof of
the Lemma. �

Now, we give this second lemma for hypersurfaces of spheres and hyperbolic
spaces.

〈lem2〉Lemma 3.2. Let (Mn, g) be a closed Riemannian manifold, isometrically immersed
into Mn+1

δ and assume that the extrinsic radius of M is smaller than R. Let p > 1,
h and h2 be two positive constants and ε ∈ (0, 1). If the first and second mean
curvatures satisfy
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• ‖H − h‖p < εh and
• ‖H2 − h2‖p < εh2,

for some positive ε, then

|h2 − h2| 6 Bh2ε,
where B is an explicit positive constant depending on n, δ, h and R.
Moreover, if δ 6 0 and p > n− 1, or if δ > 0 and M is contained in a geodesic ball
of radius π

4
√
δ
then B does not depend on R.

Proof: The proof is close to the proof of Lemma 3.1 with some slight differences.
Proceeding as in the proof of Lemma 3.1 with the Hsiung-Minkowski (7) instead of
the anisotropic one (8), we get

0 =

(
h− h2

h

)∫
M

cδ(r)dvg +
h2
h

∫
M

(h−H) 〈Z, ν〉 dvg +

∫
M

cδ(r)(H − h)dvg

+

∫
M

(H2 − h2) 〈Z, ν〉 dvg.

Then, since |〈Z, ν〉| 6 sδ(R), using the Hölder inequality and both conditions
‖H − h‖p < εh and ‖H2 − h2‖p < εh2, we get∣∣∣h− h2

h

∣∣∣ inf(cδ(r))V ol(M) 6 h2εsδ(R)V ol(M) + εh sup(cδ(r))V ol(M) + εh2sδ(R)V ol(M).

Using the fact that |H2| 6 (H)
2
, we deduce

|h2| 6 h2 + (H − h)2 + 2h(H − h) + (h2 −H2)

and so with the assumptions ‖H − h‖p < εh and ‖H2 − h2‖p < εh2 , we get

|h2| 6 5h2.

Thus, we have∣∣∣h2 − h2∣∣∣ inf(cδ(r))V ol(M) 6 εh2 sup(cδ(r))V ol(M) + (h3 + hh2)sδ(R)V ol(M)ε

6 εh2 sup(cδ(r))V ol(M) + 6h3sδ(R)V ol(M)ε

and we obtain

|h2 − h2| 6
(
h2

sup(cδ(r))

inf(cδ(r))
+

6h3sδ(R)

inf(cδ(r))

)
ε.(16) majh2h2

If δ > 0, then cδ(t) = cos(
√
δt), so we deduce immediately that cδ(R) 6 cδ(r) 6 1

and then

h2
sup(cδ(r))

inf(cδ(r))
+

6h3sδ(R)

inf(cδ(r))
6

h2

cδ(R)
+

6h3sδ(R)

cδ(R)
.

If δ = 0, then cδ = 1 and so(
h2

sup(cδ(r))

inf(cδ(r))
+

6h3sδ(R)

inf(cδ(r))

)
= h2 + 6h3R.

If δ < 0, then cδ(t) = cosh(
√
−δt) and thus cδ(R) > cδ(r) > 1 and then

h2
sup(cδ(r))

inf(cδ(r))
+

6h3sδ(R)

inf(cδ(r))
6 h2cδ(R) + 6h3sδ(R).
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Then, in the three cases, we have |h2 − h2| 6 Bh2ε, with B a positive constant
depending only on δ, h, F and R.
As in the proof of Lemma 3.1, if p > n − 1, from Theorem 2.1, we can bound
from above R by ‖H‖n−1 and so therefore by h due to the pinching condition
|H − h| 6 εh. Hence if δ 6 0, form its expression obtained in (16), the constant B
can be choosen independent on R. Note that this can also been done if δ > 0 by
with the two additional conditions (on V ol(M)) needed to apply Theorem 2.1.
But, if we assume that M is contained in a geodesic ball of radius π

4
√
δ
, then, we

get that
h2

cδ(R)
+

6h3sδ(R)

cδ(R)
6
√

2h2 +
6h3√
δ
,

and A does not depend on R. This concludes the proof of the lemma. �

4. Proofs of the Theorems

Now, using this lemma together with appropriate result for almost umbilical hy-
persurfaces, we can prove the different theorems of this note.

Proof of Theorem 1.1. We begin with the proof of Theorem 1.1. For this, we
first recall the main result of [2]. We will use this result together with Lemma 3.1
to conclude.

?〈thrm2〉?
Theorem (De Rosa-Gioffrè [2]). Let n > 2, p ∈ (1, p) and F : Sn −→ R+ satisfying
the convexity assumption (1). There exists a constant δ0 = δ0(n, p, F ) > 0 such
that if Σ is closed convex hypersurface into Rn+1 satisfying

V ol(M) = V (WF ) and

∫
M

‖SF −HF Id‖pdvg 6 δ

with δ 6 δ0 then there exists a smooth parametrisation ψ : WF −→ M , a vector
c0 ∈ Rn+1 and a constant C depending on n, p and F so that

‖ψ − Id− c0‖W 2,p(W) 6 Cδ.

Now, if ‖HF − h‖ < εh and ‖HF
2 − h2‖ < εh2, then from Lemma 3.1∣∣∣h2 − h2∣∣∣ 6 Ah2ε,

with A a positive constant depending on n, h and F . Thus, we deduce that

(HF )2 −HF
2 6 (HF − h)2 + 2h(HF − h) + |h2 − h2|+ |h2 −HF

2 |
and so

‖(HF )2 −HF
2 ‖p 6 (4h2 +Ah2)ε = A′ε

where A′ is a positive constant depending only on n, h and F . On the other hand,
we have

(HF )2 −HF
2 =

1

n2(n− 1)

n∑
i,j=1

(κi − κj)2,

so we get ∥∥∥∥∥∥
n∑

i,j=1

(κi − κj)2
∥∥∥∥∥∥
p

6 A′′ε.
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where A′′ = n2(n− 1)A′ is also a positive constant depending only on h, n and F .
Hence, M has almost vanishing anisotropic second fundamental form. Indeed, we
have at a point x ∈M ,

‖SF −HF Id‖2 =

n∑
i=1

(ki −HF )2

=

n∑
i=1

κi − 1

n

n∑
j=1

κj

2

=
1

n

n∑
i,j=1

(κi − κi)2

which give after integration

‖SF −HF Id‖2p 6
1

n
A′′h2ε.

Finally, we fix p > n and set ε0 = inf

{
1,
n(δ0V ol(WF ))

2
p

A′′

}
where A′′ is the

constant defined above and δ0 comes from Theorem 1.3. Note that ε0 depends on

n, p, h and F . Now, let ε 6 ε0. We set δ =
(A′′ε)

p
2

n
p
2 V (WF )

. Since ε 6 ε0 and from the

definiton of δ, we have δ 6 δ0 and∫
M

‖SF −HF Id‖pdvg 6 δ.

Thus, since by assumption, we also have V ol(M) = V ol(WF ), we can apply The-
orem 1.3 to obtain that there exists a smooth parametrisation ψ : WF −→ M a
vector c0 ∈ Rn+1 and a constant C depending on n, p, h and F so that

‖ψ − Id− c0‖W 2,p(W) 6 Cδ = Kε
p
2 ,

where K =
(nA′′)

p
2C

V ol(WF )
is a positive constant depending only on n, p, h and F since

A′′ depends on n, h and F , V ol(WF ) depends on n and F and C depends on n, p
and F . This concludes the proof of Theorem 1.1. �

Proof of Theorem 1.3. The proof of Theorem 1.3 is a combination of Lemma
3.2 and the main Theorem of [13]. We recall this result

Theorem (Roth-Scheuer [13]). Let M −→ Rn+1 be a closed, connected, oriented
and isometrically immersed hypersurface with V ol(M) = 1. Let p > n ≥ 2. Then,
there exist η0(n, p, ‖A‖p) > 0, C(n, p, ‖A‖p) > 0 and α(n, p) 6 1 such that if for
η 6 η0,

‖A−HId ‖p ≤ ‖H‖pη
holds, then M is diffeomorphic and Cηα-close to a geodesic hypersphere (of radius

1
‖H‖2 ).

First, if ‖H − h‖ < εh and ‖H2 − h2‖ < εh2, then from Lemma 3.2∣∣∣h2 − h2∣∣∣ 6 Bε,
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with B a positive constant depending on n,h and δ. Thus, we deduce that

H2 −H2 6 (H − h)2 + 2h(H − h) + |h2 − h2|+ |h2 −H2|

and so after integration, we get immediately

‖H2 −H2‖p 6 (4h+B)ε = B′ε

with B′ a positive constant depending only on n, h and δ. But, since

‖H2 −H2‖p = n(n− 1)‖A−HId ‖2p,

we deduce that

‖A−HId ‖p 6
(

B′ε

n(n− 1)

) 1
2

= B′′ε
1
2 ,

with B depending on n, h and δ. Second, from the assumption ‖H − h‖p < εh, we
get immediately

h

2
6 (1− ε)h 6 ‖H‖p 6 (1 + ε)h 6 2h,

if we assume that ε < 1
2 . Hence, we deduce that

‖A‖p 6 B′′ + 2h
√
n.

So ‖A‖p is bounded from above by a constant depending only on n, h, R and δ.

Now, we set ε1 = inf

{
1
2 ,

(
2η1
B′′h

)2
}

. With this choice, if ε < ε1, we get that

η = B′′

‖H‖p ε
1
2 6 η1 and

‖A−HId ‖pp 6 ‖H‖pη,

and we conclude that M is diffeomorphic and Cηα-close to a geodesic sphere of

radius 1
‖H‖2 . But, Cηα = C

(
B′′

‖H‖p

)α
ε
α
2 6 Cηα = C

(
2B′′

h

)α
ε
α
2 = Kεβ , where K

is a constant depending only on n, p, h and β = α
2 depends only on n and p.

In the case where the ambient space is the space form of constant curvature δ,
the proof is analogue using Theorem 3.1 of [13] for sphere and hyperbolic spaces
obtain the Euclidean theorem with a conformal change of metric. In this case, the
constants C, and so K too, depend also on δ. This conlcudes the proof. �.

4.1. Proof of Corollaries 1.5 and 1.6. Assume that M has constant mean cur-
vature H = h, and ‖Scal − s‖p < ε for a constant s. First, by the Gauss formula,
we have clearly Scal = n(n− 1)(H2 + δ) and so ‖Scal − s‖p < ε gives ‖H2 − h2‖pε
with h2 = 1

n(n−1)Scal − δand we can apply Theorem 1.3 to conclude that M is

diffeomorphic to a geodesic hypersphere of radius ρ. But this diffeomorphism is
explicitely given (see [10, 11]) by F = ρ X

|X| where X is the immersion of M into

Mn+1(δ). Hence, F is of the form G ◦ X. Necessarily, X is injective and so the
immersion of M is an embedding. By the Alexandrov theorem, we conclude that
M is a geodesic hypersphere.
If Scal is constant and ‖H − h‖p 6 ε, the proof is the same and we conclude by
the Alexandrov theorem for H2.
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