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Ludics Characterization of Multiplicative-Additive Linear

Behaviours

Christophe Fouqueré ∗ Myriam Quatrini †

Abstract

Ludics is a logical theory that J.-Y. Girard developed around 2000. At first
glance, it may be considered as a Brouwer-Heyting-Kolmogorov interpretation of
Logic as a formula is denoted by the set of its proofs. More primitively, Ludics is a
theory of interaction that models (a variant of) second-order multiplicative-additive
Linear Logic. A formula is denoted by a set of objects called a behaviour, a proof
by an object that satisfies some criteria. Our aim is to analyze the structure of
behaviours in order to better understand and refine the usual notion of formulas
or types. More precisely, we study properties that guarantee a behaviour to be
recursively decomposable by means of multiplicative-additive linear connectives and
linear constants.1

1 Introduction

Ludics is a logical theory that J.-Y. Girard developed around 2000. At first glance, it
may be considered as a Brouwer-Heyting-Kolmogorov interpretation of Logic as a formula
is denoted by the set of its proofs. More primitively, Ludics is a theory of interaction,
where interaction is the fact that a meeting happens between two objects together with
the dynamical process that this meeting creates. This notion is primitive in the sense
that the main objects of Ludics, called designs, are defined with respect to interaction:
they are objects between which meetings may happen and on which rewriting processes
may be described. Hence, among the computational theoretical and methodological
frameworks, Ludics is ontologically closer to Game Semantics than to Proof Theory or
Type Theory. Indeed, if interaction corresponds to cut and cut-elimination in Proof
Theory, and to application rule and normalization in Type Theory, it presupposes more
primitive notions fixed: formulas and formal proofs in Proof Theory, types and terms in
Type Theory. On the opposite, the concept of play in Game Theory serves as a means
for interaction. However we should notice that, in Game Semantics, the definition of a
game is external to interaction, whereas in Ludics the corresponding notion of behaviour
is internal: it is a closure of a set of designs with respect to interaction. In other words,
Ludics may be considered as an untyped computational theoretical framework, but with
types subsequently recovered. In [12], Terui showed that such a notion of interactive type
may be applied with success to the study of formal grammars. Our aim is to analyze
the structure of interactive types in order to better understand and refine the usual
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notion of formulas or types. More precisely, we characterize in this paper behaviours
that correspond to (linear) logical formulas.

We give properties that guarantee a behaviour to be recursively decomposable by
means of multiplicative-additive linear connectives and linear constants. First of all,
essential finiteness (or uniform boundedness when infinite sums are accepted) ensures
that such a decomposition indeed terminates on constants. Additive decomposition is
immediate as it is already present in Ludics. Multiplicative decomposition is a more
complex problem to tackle. For that purpose, two notions turn out to be fundamental:
(1) incarnation, a specific concept of Ludics, enables to characterize which part of a
behaviour is used during interaction, (2) the presentation of a design as a set of paths
instead of a set of chronicles as originally introduced by Girard. These notions help also
study the relation between Ludics and Game semantics [7, 8, 1]. In a previous work [9],
the presentation of a design as a set of paths was the key point that allows the authors
to compute the incarnation of a set of designs without computing the behaviour. To be
able to fully characterize behaviours that are linearly decomposable, we investigate two
new notions: visitability and regularity. A visitable path is a path that may be travelled
by interaction. A regular behaviour is such that its set of visitable paths is exactly the
set of positive-ended chronicles of its incarnation, stable by shuffle and dual operations,
where a shuffle of two paths is an interleaving of actions that respects polarity. With
that given, we prove the following result:

A ∈ C∞ iff A is a regular uniformly bounded behaviour.

where C∞ = C+∞ ∪ C
−
∞, defined inductively in the following way:

C+∞ = 0 | 1 |
⊕

n∈[1,∞](
⊗

q∈[1,∞[´ C
−
∞) C−∞ = ⊤⊤⊤ | ⊥⊥⊥ |

˘
n∈[1,∞](

˙
q∈[1,∞[ ˆ C

+
∞)

The paper is organized as follows. In section 2, we recall the main facts concerning
Ludics. In particular, we make explicit the equivalence between the two presentations of a
design, as set of paths versus set of chronicles. We define what is a shuffle of paths. To our
knowledge, the shuffle operation, largely used in combinatorics and to study parallelism
(see for example [6, 11]), appears in Logics only to study non-commutativity [2, 3]. We
give a few properties concerning orthogonality in terms of path travelling, introducing
visitable paths, i.e., paths that are visited by orthogonality. In section 3 additive and
multiplicative operations on behaviours are studied with respect to visitability. The
main result is a characterization of a tensor of behaviours mainly as a shuffle operation
on paths. Section 4 is devoted to prove our main theorem already stated above.

2 Ludics from Paths, Incarnation from Visitable Paths

2.1 Chronicles and Paths

The main objects of Ludics, the designs, are defined by Girard [10] in order to be
the support of interaction and of its dynamics. The interaction between two designs
occurs when their respective bases share a same address in dual positions. The dynamic
part of interaction is decomposed in elementary steps called actions (moves in Game
Semantics). The (dynamics of the) interaction consists in following two dual alternate
sequences of actions, one in each design.

Definition 2.1 (Base, Action, Sequence)

• A base β is a non-empty finite set of sequents of pairwise disjoint addresses: Γ1 ⊢
∆1, . . . , Γn ⊢ ∆n such each ∆j is a finite set of addresses, at most one Γi may be
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empty and the other Γi contain each exactly one address. An address is noted as a
sequence of integers.

• An action κ is

– either a triple: a polarity that may be positive (+) or negative (−); an address
ξ that is the focus of κ; a finite set of integers {k1, . . . , kn} called a ramifica-
tion. When used in an interaction, the action κ creates the finite set of new
addresses {ξ.k1, . . . , ξ.kn} on which the interaction may continue. An action
with focus ξ.ki is said justified by κ.

– or the positive action daimon denoted by z.

• A sequence of actions s is based on β if each action of s is either justified by a
previous action in s, or has its focus in β, or is a daimon which should be, in this
case, the last action of s. An action κ of s is initial when the focus of κ is in β.

For ease of reading, one may put as superscript of an action its polarity: κ+ is a positive
action whereas κ− is a negative action.

Two kinds of sequences of actions, paths and chronicles, may equivalently be used
to define designs. Roughly speaking, a path is an alternate sequence that allows to
recover the justification relation between actions, a chronicle is a path with an additional
constraints on the justification relation: a negative action should be justified by the
immediate previous action in the sequence.

Definition 2.2 (Path, Chronicle)

• A path p based on β is a finite sequence of actions based on β such that

– Alternation: The polarity of actions alternate between positive and negative.

– Justification: A proper action is either justified, i.e., its focus is built by one
of the previous actions in the sequence, or it is called initial with a focus in
one of Γi (resp. ∆i) if the action is negative (resp. positive).

– Negative jump: (There is no jump on positive action) Let qκ be a subsequence
of p,
- If κ is a positive proper action justified by a negative action κ′ then there is
a sub-sequence α+

0 α
−
0 . . . α+

nα
−
n of p such that α+

0 = κ, α−
n = κ′ and for all

i ∈ {0, . . . , n}, α+
i is immediately preceded by α−

i and α−
i is justified by α+

i+1

in p.
- If κ is an initial positive proper action then its focus belongs to one ∆i and
either κ is the first action of p and Γi is empty, or κ is immediately preceded
in p by a negative action with a focus hereditarily justified by an element of
Γi ∪∆i.

– Linearity: Actions have distinct focuses.

– Daimon: If present, a daimon ends the path. If it is the first action in p then
one of Γi is empty.

– Totality: If there exists an empty Γi, then p is non-empty and begins either
with z or with a positive action with a focus in ∆i.

• A chronicle c based on β is a non-empty path such that each non-initial negative
action is justified by the immediate previous (positive) action.
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Figure 1: Path p: Constraint of negative jump between κ+ justified by κ′−

The polarity of a path is given by the polarity of its first action if the path is not
empty: a negative path is a path with a first action that is negative. A positive-ended
path is a path whose last action is positive. Abusively, we may say that an empty path
is also negative or positive, a positive-ended path may be empty.

Note that the negative jump condition (see Fig.1) in the definition of a path is satisfied
as soon as each non-initial negative action is justified by the immediate previous action,
as it is the case with in the definition of a chronicle. Furthermore, the sequence of actions
induced in the negative jump condition defines a chronicle. Such a sequence is a view of
the path. In the other direction, a set of chronicles may give rise to a path by shuffling

the chronicles.

Definition 2.3 (View) Let s be a sequence of actions based on β, the view psq is the
subsequence of s defined as follows:
- pǫq = ǫ where ǫ is the empty sequence;
- pκq = κ;
- pwκ+q = pwqκ+;
- pwκ−q = pw0qκ

− where w0 either is empty if κ− is initial or is the prefix of w ending
with the positive action which justifies κ−.

A path p being given, we remark that ppq is a chronicle. We may also notice that
the negative jump condition on a positive action κ+ justified by a negative one κ− may
be rephrased as follows: let qκ+ be the prefix of p ending on κ+, κ− ∈ pqq.

If we consider the set p∗ of all prefixes q of a path p, we obtain the set of chronicles
pqq induced by p, this set is denoted ppp∗qq. Conversely, it is possible to rebuild the path
p from the set of chronicles ppp∗qq. The relevant operation to build paths from chronicles
is the operation of shuffle. The shuffle operation may more generally be defined on paths.
The standard shuffle operation consists in interleaving sequences keeping each element
and respecting order. We depart from this definition first by imposing that alternate
polarities should also be satisfied, second by taking care of the daimon that should only
appear at the end of a path.

Definition 2.4 (Shuffle of paths)

• Let p and q be two positive-ended negative paths on disjoint bases: β and γ, and
such that at least one path does not end on a daimon. The shuffle of p and q ,
noted p ⊔ q , is the set of sequences p1q1 . . . pnqn, based on β ∪ γ such that:
- each sequence pi and qi is either empty or a positive-ended negative path,
- p1 . . . pn = p and q1 . . . qn = q ,
- if pn ends with z then qn is empty.

• The definition is extended to paths pκ1z and qκ2z where p and q are two positive-
ended negative paths on disjoint bases:

pκ1z⊔ qκ2z = (pκ1z⊔ q) ∪ (p ⊔ qκ2z)
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• The definition is extended to paths rp and rq where r is a positive-ended path and
p and q are two positive-ended negative paths on disjoint bases:

rp ⊔ rq = r (p ⊔ q)

Remark 2.5 Note that each path in p ⊔ q respects the order of actions in paths p and
q . Furthermore, if at least one of p or q does not end with a daimon, each path in p ⊔ q
contains exactly once all actions from p and q .

Proposition 2.6 Let p and q be two paths such that p ⊔ q is defined, i.e., up to their
(positive-ended or empty) prefix, they have disjoint bases. Let r be a sequence belonging
to p ⊔ q , then r is a path.

Proof

• Suppose that p and q have an empty prefix and at least one of them does not end
with a daimon. We check below that r satisfies criteria for being a path:
– By construction, the conditions of alternation, justification, linearity, daimon and
totality are satisfied.
– Since all subsequences pj and qj start with a negative action, for all action κ

belonging to r and such that wκ is a prefix of r , pwκq is either completely in p
if κ is in p or in q if κ is in q . Then the negative jump condition on r is directly
inherited from p and q .

• Suppose that p = p′κ1z and q = q ′κ2z with empty common prefix. Remark that
p′ and q ′ are positive-ended paths with empty-common prefix. Furthermore either
r ∈ p′κ1z⊔ q or r ∈ pκ1z⊔ q ′. Hence it follows from the previous item that r is a
path.

• Suppose that p = sp′ and q = sq ′ where s is a positive-ended path and p′ and q ′

are two positive-ended negative paths on disjoint bases. The same reasoning as in
the first item applies as the prefix s may be viewed either as in p or q .

It is possible to build paths from a given set of chronicles, provided that these chroni-
cles are pairwise coherent. Indeed, coherence ensures that, after a common positive-ended
prefix, chronicles are made of negative paths either on disjoint bases or with first actions
of same focus.

Definition 2.7 (Coherence)

• Two chronicles c1 and c2 of same base are coherent, noted c1 ¨ c2, when the two
following conditions are satisfied:

– Comparability: Either one extends the other or they first differ on negative
actions, i.e., if wκ1 ¨ wκ2 then either κ1 = κ2 or κ1 and κ2 are negative
actions.

– Propagation: When they first differ on negative actions and these negative
actions have distinct focuses then the focuses of following actions in c1 and c2

are pairwise distinct, i.e., if w(−, ξ1, I1)w1σ1 ¨ w(−, ξ2, I2)w2σ2 with ξ1 6= ξ2
then σ1 and σ2 have distinct focuses.

• Two paths p1 and p2 of same base are coherent, noted p1 ¨ p2, if ppp∗1qq ∪ ppp∗2qq is
a clique with respect to ¨.
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Let p be a path, it follows from the definition of a view and the coherence relation
that pppqq as well as ppp∗qq are cliques of chronicles.

Definition 2.8

• Let P and Q be two sets of positive-ended paths, the shuffle of P and Q, noted
P ⊔Q, is the set

⋃
(p ⊔ q), the union being taken on paths p ∈ P, q ∈ Q where p ⊔ q

is defined.

• Let P be a set of positive-ended paths, the shuffle closure of P , noted P ⊔ , is the
smallest set such that P ⊔ = P ⊔ ⊔P ⊔ and P ⊂ P ⊔ .

2.2 Designs as Sets of Chronicles or Sets of Paths

The notions of cliques of chronicles or cliques of paths are both relevant to define designs.
The first one is closer to a tree-like presentation of formal proofs, the second one is closer
to the definition of a strategy as set of plays. The first one was the one introduced by
Girard in [10].

Definition 2.9 (Design, Slice, Net)

• A design D, based on Γ ⊢ ∆, is a prefix-closed clique of chronicles based on Γ ⊢ ∆,
such that chronicles without extension in D end with a positive action and the clique
is non empty when the base is positive, i.e., when Γ is empty.

• A slice is a design S such that if w(−, ξ, I1), w(−, ξ, I2) ∈ S then I1 = I2.

• A net of designs is a finite set of designs such that foci of the bases do not appear
twice on the same part of sequents.

Abusively, in the following, we consider also a net of designs as a set of chronicles,
recovering the designs as the maximal cliques of this set of chronicles.

Example 2.10 Let us consider the following design D, drawn in a proof-like manner2:

ξ000 ⊢ σ00

⊢ σ00, ξ00
(+,ξ00,{0})

σ0 ⊢ ξ00
(−,σ0,{0})

⊢ ξ00, σ
(+,σ,{0})

ξ0 ⊢ σ
(−,ξ0,{0})

ξ100 ⊢

⊢ ξ10
(+,ξ10,{0})

ξ1 ⊢
(−,ξ1,{0})

⊢ ξ, σ
(+,ξ,{0,1})

The maximal chronicles are c and d given below, i.e., D = c∗ ∪ d∗ \ {ǫ}:
c = (+, ξ, {0, 1})(−, ξ0, {0})(+, σ, {0})(−, σ0, {0})(+, ξ00, {0}),
d = (+, ξ, {0, 1})(−, ξ1, {0})(+, ξ10, {0}).
The maximal paths are obtained as shuffles of these chronicles. Namely:
p = (+, ξ, {0, 1})(−, ξ0, {0})(+, σ, {0})(−, σ0, {0})(+, ξ00, {0})(−, ξ1, {0})(+, ξ10, {0}).
q = (+, ξ, {0, 1})(−, ξ0, {0})(+, σ, {0})(−, ξ1, {0})(+, ξ10, {0})(−, σ0, {0})(+, ξ00, {0}).
r = (+, ξ, {0, 1})(−, ξ1, {0})(+, ξ10, {0})(−, ξ0, {0})(+, σ, {0})(−, σ0, {0})(+, ξ00, {0}).
Chronicles c and d (and their prefixes) are obtained as views of paths p, q , r (and their
prefixes). In particular, c = pqq = prq and d = ppq.
We may notice on this example that shuffles of paths are paths, as we stated in proposi-
tion 2.6. For example, the sequence s =(+,ξ,{0,1})(−,ξ0,{0})(+,σ,{0})(−,ξ1,{0})(+,ξ00,{0}), which

2For ease of reading, throughout the paper, designs are drawn in a proof-like way with actions omitted.
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interleaves chronicles c and d, does not keep all actions of c and d. Note also that it sat-
isfies all constraints to be a path except the negative jump condition: (+,ξ00,{0}) is justified
by (−,ξ0,{0}), however one cannot find a sequence (αi) that satisfies the condition.

We recall below a result we proved in [9] that states that a non-empty clique of non-
empty paths may give rise to a net of designs. Furthermore it follows from proposition 2.6
that R⊔ is a set of paths when R is a net of designs. Hence that makes explicit the link
between paths and chronicles of a design, and more generally of a net of designs, hence
justifies the switch from/to the reading of designs or nets as cliques of chronicles to/from
the reading of designs or nets as cliques of paths. Thus we say that p is a positive-ended
path of a net R whenever p is in R⊔ .

Proposition 2.11 [9] Let V be a non-empty clique of non-empty paths based on β such
that maximal ones are positive-ended and let V ∗ be the closure by prefixes of V . The set
of chronicles ppV ∗qq defined as the union of views of paths of V ∗ forms a net of designs
based on β.

Proposition 2.12 Let p be a positive-ended path of a net of designs R then p ∈ R⊔ .

Proof Let p be a positive-ended path of R, we prove that p ∈ R⊔ by induction on the
length of p.
– If p = ǫ or p = κ+, the result is obvious as in the two cases pppqq = {p}.
– Otherwise p is of the form wκ−κ+. As p is a path, pwκ−κ+q = w′κ−κ+, i.e., κ−κ+

are the two last actions of a (positive-ended) chronicle of R. Let us define a sequence q
as p where one deletes actions in w′κ−κ+. It is straightforward to prove that q is a path
of R and that r ∈ q ⊔w′κ−κ+. Thus the result follows by induction hypothesis.

Note that a path p made of actions present in a net of designs R may not be a path of
R.

Example 2.13 Let us consider the following design E drawn on the left:

⊢ ξ000, ξ111
z

ξ11 ⊢ ξ000

⊢ ξ000, ξ1

ξ00 ⊢ ξ1

⊢ ξ0, ξ1

ξ ⊢

The two following sequences are paths:
p = (−, ξ, {0, 1})(+, ξ0, {0})(−, ξ00, {0})(+, ξ1, {1})(−, ξ11, {1})z.
q = (−, ξ, {0, 1})(+, ξ1, {1})(−, ξ11, {1})(+, ξ0, {0})(−, ξ00, {0})z.
However p ∈ E⊔ and q 6∈ E⊔ .

2.3 Duality and Reversible Paths

We define in the next subsection the fundamental notion of interaction. Two designs
may then be orthogonal as soon as their interaction behaves ‘well’ in a sense that will
be made clear later. The closure by bi-orthogonality of a set of designs allows to recover
the notion of type, called in Ludics behaviour. The study of these behaviours is in some
aspects more graspable when interaction is defined on designs presented as cliques of
paths. It is the case for visitability that characterizes sequences of actions visited during
an interaction, or incarnation that defines designs of a behaviour that are fully visited
by interaction. Indeed, as we shall prove in lemma 2.20, the sequence of actions visited
during an interaction is a path. Furthermore paths visited during an interaction between
a design and another design (or a net) are duals in the following sense.

Definition 2.14 (Duality, Reversibility) Let p be a positive-ended alternate sequence.
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Figure 2: Path p: Constraint of restrictive negative jump between κ− justified by κ′+

• The dual of p (possibly empty) is the positive-ended alternate sequence of actions
∼p (possibly empty) such that3:

– If p = wz then ∼p := w.

– Otherwise ∼p := pz.

• When p and ∼p are positive-ended paths, we say that p is reversible.

Example 2.15 There exist paths such that their duals are not paths. Let us consider the
following design:

ξ000 ⊢ σ00

⊢ σ00, ξ00

σ0 ⊢ ξ00

⊢ ξ00, σ

ξ0 ⊢ σ

ξ100 ⊢

⊢ ξ10

ξ1 ⊢

⊢ ξ, σ

The sequence s = (+, ξ, {0, 1})(−, ξ0, {0})(+, σ, {0})(−, ξ1, {0})(+, ξ10, {0})

is a path based on ⊢ ξ, σ. On the contrary its dual ∼s is not a path:
it does not satisfy the negative jump condition.

In fact, when p is a path, the sequence ∼p satisfies automatically alternation, justifi-
cation, totality, and daimon conditions. The only condition which may be not satisfied
is the negative jump condition. In [9] we call “restrictive negative jump condition” the
fact that p is reversible, i.e., p is a path such that ∼p satisfies the negative jump condition
(see Fig. 2). The restrictive negative jump constraint is nothing but the dual of the neg-
ative jump constraint. In the next lemma we prove that this restrictive negative jump
constraint is always satisfied on chronicles.

Lemma 2.16 The dual of a chronicle is a path.

Proof Let c be a chronicle. By definition of ∼c, the sequence is alternate, justified and the
daimon may only be the last action of the sequence. The negative jump condition results
directly from the definition of chronicles. Finally, if κ+ is justified by κ− in ∼

c then κ+ is
justified by κ− in c. Thus κ− immediately precedes κ+ in c as c is a chronicle. Hence,
if wκ+ is the prefix of ∼

c, since pwκ+q = pwqκ+ and since κ− is the last action of w,
κ− ∈ pwq. This proves that restrictive negative jump is satisfied. Hence ∼

c is a path.

We proved in proposition 2.6 that being a path is stable by the shuffle operation.
However, as we show in next example, being a reversible path is not stable by shuffle.

Example 2.17 Let us consider the design drawn on the left:
ξ000 ⊢ σ00

⊢ σ00, ξ00

σ0 ⊢ ξ00

⊢ ξ00, σ

ξ0 ⊢ σ

ξ100 ⊢

⊢ ξ10

ξ1 ⊢

⊢ ξ, σ

The path s =(+,ξ,{0,1})(−,ξ0,{0})(+,σ,{0})(−,ξ1,{0})(+,ξ10,{0})

is in the shuffle of the two chronicles
(+,ξ,{0,1})(−,ξ0,{0})(+,σ,{0}) and (+,ξ,{0,1})(−,ξ1,{0})(+,ξ10,{0}).
As we prove it in lemma 2.16, the duals of these two
chronicles are paths. But ∼s is not a path.

3The notation κ is simply (±, ξ, I) = (∓, ξ, I) and may be extended on sequences by ǫ = ǫ and

wκ = w κ.
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Nevertheless, not being reversible is stable by shuffle as shown in the next lemma.

Lemma 2.18 Let p and q be two positive-ended paths and r ∈ p ⊔ q be a path such that

its dual ∼r is a path, then duals ∼p and
∼
q are paths.

Proof We prove the result by contradiction: let us suppose that p and q are two paths,

r ∈ p ⊔ q is a path such that its dual ∼r is a path, and at least one of the duals ∼p and
∼
q is

not a path. Without loss of generality, we can suppose that ∼p is not a path.

• Remark the following. Let p, q , r defined as above then there exist p′, q ′, r ′ satisfying
the same requirements as for p, q , r and such that r ′ = wz where w is a prefix of
r . Indeed, as ∼p is not a path, there exists an action κ− justified by κ+ such that
p = w1κ

+w2κ
−w3 and the (Restrictive Negative Jump) constraint is not satisfied on

κ−. Hence p′ := w1κ
+w2κ

−
z is a path such that

∼
p′ is not a path. Let r = x1κ

−x2
and note that w1κ

+w2 is a subsequence of x1. Let q ′ be the subsequence of x1κ
−

with actions in q , then q ′ is a positive-ended prefix of q , hence a path. Finally let

r ′ := x1κ
−
z then r ′ and

∼
r ′ are paths such that r ′ ∈ p′ ⊔ q ′ (by following the same

construction steps as for r ).

• Hence for proving the lemma, it suffices to consider triples (p′, q ′, r ′) satisfying the

following: r ′ ∈ p′ ⊔ q ′ is such that
∼
r ′ is a path (r ′ satisfies the restrictive negative

jump), r ′ = wκ−z and the restrictive negative jump is not satisfied on action κ−

present in p′.

• Remark also that if lengths of p′ and q ′ are less or equal to 2 then
∼
p′ and

∼
q ′ are

paths.

• Let (p0, q0, r0) be such a triple with length of r0 minimal with respect to all such
triples (p′, q ′, r ′). Notice that κ− is not initial, otherwise (Restrictive Negative
Jump) would be satisfied for p0. As r0 satisfies the (Restrictive Negative Jump),
there exists a sequence (α+

n = κ+, α−
n , . . . , α

+
0 , α

−
0 = κ−) where κ+ justifies κ− and

the sequence is defined as in the definition of (Restrictive Negative Jump). Let us
suppose r0 = w′α−

1 w
′′α+

0 κ
−
z.

– Suppose α+
0 is an action of p0, then it is also the case for its justifier α−

1 .
Define r1 = w′κ−z. Remark that r1 is a path and its dual is a also a path.
Furthermore, we can define q1 (resp. p1) as the subsequence of q0 (resp. p0)
present in r1. Remark that r1 ∈ p1 ⊔ q1 and ∼p1 is not a path. This contradicts
the fact that r0 is minimal.

– Otherwise α+
0 is an action of q0, then it is also the case for its justifier α−

1 . If
actions in w′′ are actions of q0, we define r1, q1, p1 as before and this yields
a contradiction. Else let β+ be the last action of p0 in w′′. There is also an
action γ− of p0 which immediately precedes β+ in w′′. One can delete from
r0 the actions γ− and β+. Then we get a shorter sequence r1 together with
paths p1 and q1 such that p1 does not satisfy the (Restrictive Negative Jump).
Hence a contradiction.

2.4 Interaction on Designs as Clique of Chronicles or as Cliques of

Paths

The interaction, also named normalization, is defined by Girard in [10] when designs are
presented as cliques of chronicles:

9



Definition 2.19 (Closed Cut-net, Interaction, Orthogonality, Behaviour)

• Let R be a net of designs, R is a closed cut-net if

– addresses in bases are either distinct or present twice, once in a left part of a
base and once in a right part of another base,

– the net of designs is acyclic and connex with respect to the graph of bases and
cuts.

An address presents in a left part and in a right part defines a cut. Note that a
closed cut-net has a unique design with positive base, called its main design.

• Interaction on closed cut-nets Let R be a closed cut-net. The design resulting
from interaction, denoted by [[R]], is defined in the following way: let D be the main
design of R, with first action κ,

– if κ is a daimon, then [[R]] = {z},

– otherwise κ is a proper positive action (+, σ, I) such that σ is part of a cut with
another design with last rule (−, σ,N ) (aggregating ramifications of actions on
the same focus σ):

∗ If I 6∈ N , then interaction fails.

∗ Otherwise, interaction follows with the connected part of subdesigns ob-
tained from I with the rest of R.

• Orthogonality

– Two designs D and E respectively based on ⊢ ξ and ξ ⊢ are said to be
orthogonal when [[D,E]] = {z}.

– Let D be a design of base ξ ⊢ σ1, . . . , σn (resp. ⊢ σ1, . . . , σn), let R be the net
of designs (A,B1, . . . ,Bn) (resp. R = (B1, . . . ,Bn)), where A has base ⊢ ξ

and Bi has base σi ⊢, R belongs to D⊥ if [[D,R]] = {z}.

– Let E be a set of designs of the same base, E⊥ =
⋂

D∈E D⊥.

– A set of designs E is a behaviour if E = E⊥⊥.

With the following lemma, we prove that interaction gives rise to two dual paths.

Lemma 2.20 Let D be a design of base ξ ⊢ σ1, . . . , σn (resp. ⊢ σ1, . . . , σn),
let R be the net of designs (A,B1, . . . ,Bn) (resp. R = (B1, . . . ,Bn)), where A has base
⊢ ξ and Bi has base σi ⊢,
R belongs to D⊥ iff there is a path p such that p is a path of D and ∼p is a path of R.
We denote the path p by 〈D←R〉 and ∼p by 〈R←D〉.

Proof Remark first that with D and R as given in the lemma, we have that (D,R) is a
closed cut-net.

• Suppose that (D,R) is a convergent closed cut-net. The sequence 〈D←R〉, is built
by induction on the number n of normalization steps:
– Case n = 1: If the interaction stops in one step: either D = {z}, in this case
〈D←R〉 = z, or the main design (which is not D) is equal to {z} and in this case
〈D←R〉 is the empty sequence. Otherwise let κ+ be the first action of the main
design. The first action of 〈D←R〉 is κ+ if D is the main design and is κ+ otherwise.
– Case n = p+ 1: the prefix κ1 . . . κp of 〈D←R〉 is already defined.

10



– Either the interaction stops, hence the main design is z, and 〈D←R〉 =
κ1 . . . κp if the main design is a subdesign of R, or 〈D←R〉 = κ1 . . . κpz if
the main design is a subdesign of D.

– Or, let κ+ be the first proper action of the closed cut-net obtained after step
p, 〈D←R〉 begins with κ1 . . . κpκ+ if the main design is a subdesign of R, or
it begins with κ1 . . . κpκ

+ if the main design is a subdesign of D.

We then check by induction on its length that the sequence 〈D←R〉 is a path:
– The base case of the induction depends on the polarity of D: If D has a negative
base then the base case is the empty sequence, and the empty sequence is a path on
D, otherwise D has a positive base hence there exists a first action in the sequence
〈D←R〉, this action being the first action of D, hence a path on D.
– Suppose κ1 . . . κpκ is a prefix of 〈D←R〉 and that by induction hypothesis κ1 . . . κp
is a path on D.

– If κ is a positive action then, with respect to normalization, pκ1 . . . κpqκ is a
chronicle of D that extends pκ1 . . . κpq, hence κ1 . . . κpκ is a path on D.

– If κ is an initial negative action hence D is negative and κ is the first action
of the normalization, i.e., p = 0, and κ is a path on D.

– Otherwise the focus of the negative action κ has been created during normal-
ization by a positive action present in κ1 . . . κp, hence κ1 . . . κpκ is a path on
D.

Normalization being defined symmetrically between D and R, we also have that
〈R←D〉 is a path.

• Suppose that there is a path p of D, such that ∼p is a path of R. Note that one of
p or ∼p ends with a daimon. The proof that the closed cut-net (D,R) normalizes
to {z} is done by induction on the length k of a prefix of p. More precisely, we
prove that normalization is finished when k = n if D ends with a daimon otherwise
when k = n+1. Furthermore, after k steps, interaction is done on two nets S and
T such that p = κ1 . . . κkq , the prefix κ1 . . . κk is visited in D during these k steps
and q is a path in the net of designs S on which interaction may continue: S is

a subnet of D. Similarly, ∼p =
∼
κ1 . . . κkq , the prefix κ1 . . . κk is visited in R during

these m steps and
∼
q is a path in the net of designs T on which interaction may

continue: T is a subnet of R.
– Case k = n and D ends with a daimon. By induction hypothesis, z is a (first)
action the net S that remains of D. Thus normalization ends.
– Case k = n+1 and D does not end with a daimon. Hence

∼
q ends with a daimon.

By induction hypothesis, z is a (first) action the net T that remains of R. Thus
normalization ends.
– Case k = 0 with k 6= n: The induction proposition follows from the hypotheses.
– Case k + 1 with k + 1 6= n and induction hypotheses are satified for k: let
q = κk+1q ′, hence q = κk+1q ′. Neither κk+1 nor κk+1 are the daimon. Without
loss of generality, we can suppose that κk+1 is a positive action. As q is a path
of the net S, the main design of the cut-net (S,T) is in the net S. We have also
that κk+1 is a first negative action of a design in the net T. We can then apply one
step of normalization. The process of normalization continue with a subnet S′ of
S and a subnet T′ of T. Remark that q ′ is a path of S′ and q ′ is a path on T′.
Hence the result.
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We finish this subsection with what could be considered at first sight of low-interest.
However we make use of it in the following situation: let us give a path p in a behaviour
A, then pppqq is a design. It follows from the proposition given below that its completion
pppqq

c
is a design in A whereas it may not be the case for the design pppqq itself.

Definition 2.21 (Completion of designs) Let D be a design, the completion of D,
noted Dc, is the design obtained from D by adding chronicles c(−, ξ, I)z whenever c ∈ D,
I is a finite set of integers, c(−, ξ, I)z is a chronicle and c(−, ξ, I) 6∈ D.

Proposition 2.22 Let D be a design in a behaviour A, consider a design C ⊂ D then
Cc ∈ A.

Proof Let E ∈ A⊥. Hence E ⊥ D. Let p be the longest positive-ended path in the design
C that is a prefix of 〈D←E〉. Either p = 〈D←E〉, hence E ⊥ C, and also E ⊥ Cc. Or
there exist actions κ−, κ+ and a sequence w such that 〈D←E〉 = pκ−κ+w. Consider
the chronicle c such that ppκ−q = cκ−. By construction, c ∈ C. Either cκ− ∈ C hence
also cκ−κ+ ∈ C as C ⊂ D and there is a unique positive action after a negative action.
Contradiction as p is then not maximal. Or cκ−z ∈ Cc hence E ⊥ Cc.

2.5 Visitable paths, Behaviours, Incarnation

This subsection is devoted to a few properties concerning behaviours. Hence, we always
suppose that a set of designs is closed with respect to bi-orthogonality. Visitability and
incarnation are important concepts to study. A visitable path in a behaviour, i.e., in a
design of this behaviour, is a path that may be travelled by interaction. It follows from
lemma 2.20 that a path is visitable iff its dual is visitable. The incarnation of a behaviour
may be characterized as the subset of its designs that is fully travelled by interaction.
It follows it is sufficient to study visitability and incarnation to be able to characterize
behaviours and operations on behaviours. As we already mentionned in the previous
subsection, all these properties rely mainly on the concept of path.

Definition 2.23 (Visitability) Let A be a behaviour.

• Let p be a path of A, p is visitable in A if there exist a design D in A and a net
R in A⊥ such that p = 〈D←R〉.

• VA is the set of visitable paths of A.

Proposition 2.24 Let A be a behaviour, VA =
∼
VA⊥ ,

Proof By definition, p ∈ VA iff there exist a design D ∈ A and a net R ∈ A⊥ such that

p = 〈D←R〉, i.e., ∼p = 〈R←D〉. Thus, as D ∈ A = A⊥⊥, ∼p ∈ VA⊥ . Hence
∼
VA ⊂ VA⊥ ,

i.e., VA =
∼∼
VA ⊂
∼
VA⊥ . Replacing A by A⊥, we have also

∼
VA⊥ ⊂ VA. So VA =

∼
VA⊥ .

Definition 2.25 (Incarnation) Let A be a behaviour, D be a design in A. The design
D is material (or incarnated) in the behaviour A if D is minimal in A with respect to
inclusion. We denote by |D|A the material design of A that is included in D.
The incarnation |A| of a behaviour A is the set of its material designs.

Proposition 2.26 Let A be a behaviour, D be a design in A. |D|A =
⋃

R∈A⊥ pp〈D←R〉qq.
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ξ10000 ⊢

⊢ ξ1000

ξ100 ⊢

⊢ ξ10

ξ1 ⊢

ξ210 ⊢

⊢ ξ2000, ξ21

ξ200 ⊢ ξ21

⊢ ξ20, ξ21

ξ2 ⊢

⊢ ξ

q
ξ2000 ⊢ ξ100

⊢ ξ100, ξ200

ξ10 ⊢ ξ200

⊢ ξ200, ξ1

ξ20 ⊢ ξ1

⊢ ξ210

ξ21 ⊢

⊢ ξ1, ξ2

ξ ⊢

∼
q ?

Figure 3: A path q in the shuffle of two designs the dual
∼
q of which is not a path.

Proof Remark that
⋃

R∈A⊥ pp〈D←R〉qq = pp
⋃

R∈A⊥ 〈D←R〉qq. To obtain a design D0

strictly included in
⋃

R∈A⊥ pp〈D←R〉qq, we have to erase at least a chronicle c (and its
extensions). But there is at least a path p0 ∈

⋃
R∈A⊥ 〈D←R〉 such that c ∈ ppp0qq hence

if we denote by R0 a net such that p0 = 〈D←R0〉 we have by linearity constraint on
designs that D0 6⊥ R0. Hence D0 6∈ A.

3 Visitable Paths and Logical Decomposition

In this section we relate MALL logical connectives, in fact ⊗, ⊕, ´, with operations on
visitable paths. Operations ⊕ and ´ are quite immediate. The behaviour A⊕B, is the
union of the two behaviours A and B, hence visitable paths of the result should be the
union of the two sets of visitable paths. The behaviour ´A is built by adding an identical
action as root, hence visitable paths of the resulting behaviour should be built by adding
this action as prefix of visitable paths of A. As ⊗ models a kind of concurrency, it is
natural to consider that the set of visitable paths of a tensor should be in some way the
shuffle of the sets of underlying behaviours. However belonging to the shuffle of visitable
paths is not sufficient for being a visitable path in the tensor of two behaviours as shown
in the following example.

Example 3.1 Let us consider behaviours A = {A}⊥⊥ and B = {B}⊥⊥ where:

A =

ξ10000 ⊢

⊢ ξ1000

ξ100 ⊢

⊢ ξ10

ξ1 ⊢

⊢ ξ and B =

ξ210 ⊢

⊢ ξ2000, ξ21

ξ200 ⊢ ξ21

⊢ ξ20, ξ21

ξ2 ⊢

⊢ ξ

Let us consider the path q =(+, ξ, {1, 2})(−, ξ2, {0, 1})(+, ξ20, {0})(−, ξ1, {0})(+, ξ10, {0})(−, ξ200, {0})

(+, ξ21, {0})(−, ξ100, {0})(+, ξ1000, {0}). We have that q is a path in A⊗B as shown in Fig. 3
on the left (path in red). It is a shuffle of the two following paths
– p1 = (+, ξ, {1, 2})(−, ξ2, {0, 1})(+, ξ20, {0})(−, ξ200, {0})(+, ξ21, {0})

– p2 = (+, ξ, {1, 2})(−, ξ1, {0})(+, ξ10, {0})(−, ξ100, {0})(+, ξ1000, {0})

These two paths p1 and p2 are visitable respectively in A and B. However
∼
q is not a path.

It suffices to prove that pp
∼
q qq is not a design. In fact p

∼
qq is not even a chronicle: p

∼
qq =

(−, ξ, {1, 2})(+, ξ2, {0, 1})(−, ξ21, {0})(+, ξ100, {0})(−, ξ1000, {0})z and the justifier of ξ100 is not
present in p

∼
qq. This may also be noticed in figure below on the right:

∼
q defines in blue

a path in an object that cannot be completed to give rise to a design with
∼
q fully present.

Hence q 6∈ VA⊗B.
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3.1 Extension of a base

Extension is a technical trick to simplify the presentation of results on the tensor ⊗
operation. In short, the extension is applied to positive behaviours with a simple base
⊢ ξ. The first action of designs of such a behaviour is necessarily of the form (+, ξ, I).
The extension to J is the set of designs where the first action is replaced by (+, ξ, I ∪J),
this operation is defined only when J does not overlap any such I. Such an operation
does not change visitable paths. In fact, we conveniently present the extension with
respect to a behaviour or to a set of paths and not only to a set of addresses J . We
remind that two positive behaviours A and B are alien when the ramifications of the
first actions of designs belonging to A and the ramifications of the first actions of designs
belonging to B are pairwise disjoint.

Definition 3.2 (Extension) Let A and B be alien positive behaviours of base ⊢ ξ.

• The extension of A with respect to B, denoted by A[B], is the set of designs D

such that either D = Dai or there exist designs A ∈ A of first action (+, ξ, I) and
B ∈ B of first action (+, ξ, J) and D is obtained from A by replacing its first action
by (+, ξ, I ∪ J).

• Let P (resp. Q) be a set of paths of A (resp. B), the extension of P with respect
to Q, denoted by P[Q], is the set of paths p such that either p = z or there exist
paths r ∈ P of first action (+, ξ, I) and s ∈ Q of first action (+, ξ, J) and p is
obtained from r by replacing its first action by (+, ξ, I ∪ J).

Lemma 3.3 A[B] is a behaviour. V(A[B]) = (VA)[VB].

Proof It follows from the definition that p is a path of A[B] iff p is either the daimon or
of the form (+, ξ, I ∪J)q where (+, ξ, I)q is a path of A and (+, ξ, J) is the first action of
a design of B. Hence also a path in (A[B])

⊥ is either empty or begins with (−, ξ, I ∪ J).

Let G ∈ |A⊥⊥
[B] |. For each F ∈ A⊥

[B], consider the path 〈G←F〉: either it is the daimon

or it is of the form (+, ξ, I ∪ J)pF where (+, ξ, I) (resp. (+, ξ, J)) is a first action of
a design of A (resp. B). Remark that sequences (+, ξ, I ∪ J)pF are pairwise coherent
paths. Hence it follows from proposition 2.26 that G = ppDai ∪

⋃
F(+, ξ, I ∪ J)pFqq. We

note now that the design ppDai ∪
⋃

F(+, ξ, I)pFqq is in the behaviour A. Hence G is in

A[B]. Thus |A⊥⊥
[B] | ⊂ A[B]. Note now that, A being a behaviour, let D ∈ A, if E is

a design that includes D then E ∈ A. Hence also let D ∈ A[B], if E is a design that

includes D then E ∈ A[B]. Thus A⊥⊥
[B] ⊂ A[B]. It follows that A[B] is a behaviour.

From the previous reasoning, we deduce easily that V(A[B]) = (VA)[VB].

3.2 Visitability for Linear Operations on Behaviours

The interpretation of Multiplicative-Additive Linear Logic (MALL) in the framework
of Ludics is a real success. Not only are there full completeness and soundness results
but completeness is internal: product and sum of two behaviours is a behaviour (without
need for closing by bi-orthogonality the result). In the original paper of Girard [10], these
results are also achieved for second-order, however we do not consider it in this paper.
Before establishing properties concerning visitability (proposition 3.6 and theorem 3.7),
we recall below the main linear operations on behaviours: multiplicative tensor ‘⊗’,
additive sum ‘⊕’ and also the shift ‘´’ operation. The shift operation is required as
the logics is polarized: it allows for switching from/to a positive behaviour to/from a
negative behaviour. Dual operations are defined in a standard way: A`B = (A⊗B)⊥,
A&B = (A⊗B)⊥ and ˆA = (´A)⊥.
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Definition 3.4

• Let Gk be a family of positive behaviours pairwise disjoint,
⊕

k Gk = (
⋃

k Gk)
⊥⊥

• Let A and B be two positive alien designs:
- If A or B is Dai, then A⊗B = Dai.
- Otherwise A = (+, ξ, I)A′ and B = (+, ξ, I)B′ then A⊗B = (+, ξ, I ∪ J)(A′ ∪B′).

• Let G and H be two positive alien behaviours, G⊗H = {A⊗B ; A ∈ G,B ∈ H}⊥⊥

• Let G be a negative behaviour of base ξi ⊢, ´G = ((+, ξ, {i})G)⊥⊥.

Theorem 3.5 (internal completeness [10])

• Let K 6= ∅,
⊕

k∈K Gk =
⋃

k∈K Gk

• A behaviour of positive base is always decomposable as a
⊕

of connected behaviours.

• Let G and H be two alien positive behaviours, G⊗H = {A⊗B ; A ∈ G,B ∈ H}.

• Let G be a negative behaviour of base ξi ⊢, ´G = {Dai} ∪ (+, ξ, {i})G.

• Ludics is fully sound and complete with respect to polarized multiplicative-additive
Linear Logic.

Proposition 3.6 Let A be a negative behaviour, then V´ξiA = {z} ∪ (+, ξ, {i})VA.
Let (Ak)k∈K be a family of pairwise disjoint positive behaviours with K 6= ∅, then
V⊕

k∈K Ak
=

⊎
k∈K VAk

.

Let A and B be alien positive behaviours, then VA⊗B = {q ;
∼
q is a path and q ∈

VA[B]
⊔VB[A]

}.

Proof Let A be a negative behaviour with base ξi ⊢. ´ξiA is a behaviour then z

is visitable in it. Let E be a design of (´ξiA)⊥ distinct from Dai. Note that the
only first proper action of designs of ´ξiA is (+, ξ, {i}). Hence one can define E′ =
{c ; (−, ξ, {i})c ∈ E}. It is immediate that E′ is a design. As normalization is determin-
istic, E′ ∈ A⊥. Reversely, from a design E′ ∈ A⊥, one builds a design E = (−, ξ, {i})E′ ∈
(´ξiA)⊥. Hence p is a visitable path of ´ξiA iff p = z or p = (+, ξ, {i})p′ where p′ is a
visitable path of A.
Let (Ak)k∈K be a family of disjoint positive behaviours with base ⊢ ξ.

• Let p ∈ V⊕
k∈K Ak

: there exist designs D ∈
⊕

k∈K Ak and E ∈ (
⊕

k∈K Ak)
⊥

such that p = 〈D←E〉. By the disjunction property, ([10], Th. 11), we have that⊕
k∈K Ak =

⊎
k∈K Ak. Hence there exist k0 such that D ∈ Ak0 and E ∈

⋂
k∈K A⊥

k ,
so in particular E ∈ A⊥

k0
. Thus p ∈ VAk0

⊂
⊎

k∈K VAk
.

• Let p ∈
⊎

k∈K VAk
. Hence there exist k0 ∈ K such that p ∈ VAk0

: there exist

designs D ∈ Ak0 and E ∈ A⊥
k0

such that p = 〈D←E〉. As behaviours Ak are
pairwise disjoint, we can add to E (or replace) chronicles of the form (−, ξ, I)z
where I is in the directory of Ak, k 6= k0, to get a design E′. Hence E′ ∈

⋂
k∈K A⊥

k

and p = 〈D←E′〉. Thus p ∈ V⊕
k∈K Ak

.

Let A and B be alien positive behaviours with base ⊢ ξ.
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• Let p ∈ VA⊗B. As p is a visitable path, ∼p is a path. Furthermore there exist designs
D ∈ A ⊗ B and E ∈ (A ⊗ B)⊥ such that p = 〈D←E〉. Using the independence
property ([10], Th. 20), there exist designs D1 ∈ A and D2 ∈ B such that D =
D1 ⊗D2.
If p = z, then p ∈ VA[B]

. So let us consider the other cases, i.e., designs D1 and
D2 are distinct from Dai.
Let (+, ξ, I) (resp. (+, ξ, J)) be the first action of D1 (resp. D2). Behaviours being
alien, we have that I ∩ J = ∅. Note that each action of p is either (+, ξ, I ∪ J), or
an action of design D1 or an action of design D2, the three cases being exclusive of
one another.
Let p1 := (+, ξ, I)q1 (resp. p2 := (+, ξ, J)q2) where q1 (resp. q2) is the subsequence
of p made of actions of D1 (resp. D2). Following the adjunction theorem ([10], Th.
14), we have that D1 ⊥ (E)D2 with (E)D2 independent from D1, i.e., (E)D2 ∈
A⊥. Similarly, (E)D1 ∈ B⊥. Note that p1 = 〈D1←(E)D2〉 ∈ VA and p2 =
〈D2←(E)D1〉 ∈ VB. Finally remark that p ∈ (+, ξ, I ∪ J)q1 ⊔ (+, ξ, I ∪ J)q2 (as
jumps are on negative actions). Hence p ∈ VA[B]

⊔VB[A]
.

• Let p ∈ VA, p′ ∈ VB. If one of the two paths p or p′ is the daimon, then their shuffle
is the daimon, hence in VA⊗B. Otherwise, p = (+, ξ, I)p1 and p′ = (+, ξ, J)p′

1.
As p ∈ VA, there exist designs D ∈ A and E ∈ A⊥ such that p = 〈D←E〉.
Similarly there exist designs D′ ∈ B and E′ ∈ B⊥ such that p′ = 〈D′←E′〉. Let

q ∈ (+, ξ, I∪J)p1 ⊔ (+, ξ, I∪J)p′
1 such that

∼
q is a path. We will prove that q which

is a path of D ⊗D′ is visitable in A ⊗ B. Let us consider the design G := pp
∼
qqq

c
.

We prove by contradiction that G ∈ (A ⊗ B)⊥. Let F ∈ A and F′ ∈ B. Suppose
that F ⊗ F′ 6⊥ G. Notice that, since a slice of G is finite, it is not possible that
the interaction between G and F ⊗ F′ would be infinite. Let r be the sequence of
actions of F⊗F′ used during the normalization before divergence. We consider the
two cases of non-convergence, due to the fact that the next (proper positive) action
in one of the designs has no dual in the other design:
– action κ+ in F or F′ and κ+ 6∈ G: this contradicts the construction of G.
– action κ+ in G and κ+ 6∈ F ⊗ F′. By construction of G, κ+ ∈ pp

∼
qqq. Hence

κ+ ∈ ppqqq. Notice that ppqqq is a slice, hence κ+ appears only once in ppqqq. Thus,

w.l.o.g., κ+ appears in pppqq. Let r1 the subsequence of r followed in F. Remark
that r1 ∈ pp∼pqq, hence also r1κ

+ ∈ pp∼pqq. The design pp∼pqq is included in E, then
by proposition 2.22, the design pp∼pqq

c
belongs to A⊥, then, pp∼pqq

c
⊥ F , hence a

contradiction.
Thus F ⊗ F′ ⊥ G. Finally, by construction, we have that q = 〈D⊗D′←G〉. So
q ∈ VA⊗B.

Theorem 3.7 Let P be a positive behaviour, N be a negative behaviour, (Pk)k∈K be
a family of pairwise disjoint positive behaviours with K 6= ∅, Q1 and Q2 be positive
behaviours.
– VP = {Dai} ∪ (+, ξ, {i})VN iff P = ´ξiN.
– VP =

⊎
k∈K VPk

iff P =
⊕

k∈K Pk.

– VP = {q ;
∼
q is a path and q ∈ VQ1[Q2]

⊔VQ2[Q1]
} iff P = Q1 ⊗Q2.

Proof The properties follow from propositions 3.6 and 2.24.
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4 Regular Behaviours

We prove in following sections that regularity as it is defined below is the main concept for
a behaviour to be the denotation of a MALL formula. The only other constraint that is
necessary concerns the finite structure of such a formula. This last constraint is specified
in the next section. In a few words, a regular behaviour is a behaviour such that all
‘reasonable’ paths are visitable in this behaviour. ‘Reasonable’ means not only reversible
but also made of actions that are present in the incarnation of a behaviour: such a path is
called regular for this behaviour. Obviously, a visitable path for a behaviour is a regular
path for this behaviour.

Definition 4.1 Let A be a behaviour, let κ be a proper action of a chronicle c of a design
of the incarnation |A|, the sequence 〈κ〉c of justifiers of κ in c until an initial action with
base the one of A is called a trivial chronicle for A.

It is worth noticing that a trivial chronicle is a chronicle such that each action is
justified by the immediate previous one in the sequence. For ease of reading, we may
note 〈κ〉 making implicit the chronicle (and the design) from which the sequence is
extracted.

Definition 4.2 A reversible path p is regular for a behaviour A if p has the same
base as A and if, for each proper action κ of p, the subsequence of justifiers of κ in p is
a trivial chronicle for A.
A behaviour A is regular when each regular path for A is visitable in A, i.e., RA ⊂ VA.

Remark that a trivial chronicle for a behaviour A is regular for A, hence trivial
chronicles for a behaviour are visitable as soon as this behaviour is regular. Remark also
that a path p in a design of the incarnation of a behaviour is regular for this behaviour:
the set of actions of p may always be viewed as the union of the sequences of immediate
justification for each proper action, and these sequences are trivial chronicles as they are
subsequences of a path in the incarnation! Thus in particular we always have VA ⊂ RA.
However a path regular for a behaviour may not be visitable for this behaviour: in
Example 3.1, the path (+, ξ, {2})(−, ξ2, {0, 1})(+, ξ21, {0}) is regular for B but is not
visitable in B. We give below another example of a regular path that is not visitable.

Example 4.3 Let us consider the behaviour C = {C}⊥⊥ where

C =

ξ00 ⊢

⊢ ξ0

σ0 ⊢ ξ0

⊢ ξ0, σ

⊢ ξ11111
z

ξ1111 ⊢

⊢ ξ111

ξ11 ⊢

⊢ ξ1

ξ ⊢ σ

The trivial chronicles are the three following ones and their prefixes: 〈(+, ξ0, {0})〉,
〈(−, ξ1111, {1})〉, 〈(−, σ0, ∅)〉. The following sequence is a regular path for C but is not
visitable in C: (−, ξ, {1})(+, ξ1, {1})(−, ξ11, {1})(+, ξ111, {1})(−, ξ1111, {1})(+, σ, {0})

We prove in the following that regularity is stable with respect to linear logical oper-
ations, i.e., ·⊥, ⊗, ⊕ and ´.

Lemma 4.4 Let A be a regular behaviour, then the behaviour A⊥ is regular.
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Proof Following proposition 2.24, we know that an action in |A⊥| is either z or the dual
of an action in |A|. Let 〈κ〉 be a trivial chronicle for A⊥ then there exists a path q

visitable in A⊥ such that 〈κ〉 is a subsequence of q . The path
∼
q is visitable in A and

the sequence 〈κ〉 of opposite polarities is a subsequence of
∼
q and made of actions of

immediate justification, hence 〈κ〉 is a trivial chronicle for A. Let p ∈ RA⊥ , from the
previous remark it follows that ∼p is a reversible path made of actions in trivial chronicles

of A or the daimon. Hence ∼p is regular for A. Thus ∼p ∈ VA thus p ∈
∼
VA = VA⊥ .

Lemma 4.5 Let A and B be regular alien positive behaviours distinct from 0, then the
behaviour A⊗B is regular.

Proof Let p be a path of RA⊗B. Obviously a positive-ended prefix of p is in RA⊗B. Recall
also that p is of the form κ+0 κ

−
1 κ

+
1 . . . κ−n κ

+
n . We prove that p ∈ VA⊗B by induction on

n.

• The result is immediate when n = 0.

• Suppose the property satisfied for n, and p = p1κ
−
n+1κ

+
n+1. By induction hypothesis

p1 ∈ VA⊗B. It follows from proposition 3.6 that there exist paths a ∈ VA and
b ∈ VB such that p1 ∈ a ⊔ b. Note that for each positive action κ+ such that p′

1κ
+

is a prefix of p1, if κ+ occurs in a then pp′
1
qκ+ is a subsequence of a except the first

action whose ramification is an extension of the first action of a (it is a consequence
of the definitions of shuffle and view operations). Furthermore κ−n+1 and κ+n+1 are
actions in the incarnation of A⊗B hence in visitable paths of A[B] or B[A]. Without

loss of generality, we can suppose that κ−n+1 occurs in a visitable path of A[B]. Let

κ+ be the justifier of κ−n+1 in p and p′
1κ

+ be the prefix of p ending with κ+. We
have that κ+ is in a as κ−n+1 is in a. Furthermore ppq = pp′

1
qκ+κ−n+1κ

+
n+1. Hence

the justifier of κ+n+1 is in a. Thus κ+n+1 occurs in A as the behaviours A and B are
alien. It follows that κ+n+1 occurs in a visitable path of A[B].

From the previous elements we have also that aκ−n+1κ
+
n+1 is a path. Let us remark

that p ∈ aκ−n+1κ
+
n+1 ⊔ b and p is reversible. Hence by lemma 2.18 we have in

particular that aκ−n+1κ
+
n+1 is a reversible path, hence is in RA[B]

. It follows that

aκ−n+1κ
+
n+1 ∈ VA[B]

. Hence by proposition 3.6, p ∈ VA⊗B.

Lemma 4.6 Let A and B be alien positive behaviours distinct from 0, if A⊗B is regular
then A and B are regular.

Proof Note that RA[B]
⊂ RA⊗B. Thus if p ∈ RA[B]

then p ∈ VA⊗B. Hence p is a shuffle
of a visitable path in A and a visitable path in B. As behaviours A and B are alien,
they have no action in common except perhaps the daimon. Thus p is a visitable path
in A[B]. Let q ∈ RA, we can define a path q ′ extending the first action of q by the
ramification of a first action of a design in B. Thus q ′ ∈ RA[B]

, so q ′ ∈ VA[B]
. It follows

that q ∈ VA. So A is regular. Similarly, B is regular.

Proposition 4.7 Behaviours 0 and 1 are regular.
Let A be a negative behaviour, A is regular iff ´A is regular.
Let (Ak)k∈K be a family of pairwise disjoint positive behaviours where K 6= ∅, Ak is
regular for all k ∈ K iff

⊕
k∈K Ak is regular.

Let A and B be alien positive behaviours distinct from 0, A and B are regular iff A⊗B

is regular.

Proof
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• R0 = V0 = {z}, hence 0 is regular.

• R1 = V1 = {(+, ξ, ∅),z}, hence 1 is regular.

• Let A be a negative behaviour of base ξi ⊢, we have that R´ξiA = (+, ξ, {i})RA ∪
{z} and V´ξiA = (+, ξ, {i})VA ∪ {z}. The result follows.

• Note first that the set of regular paths for
⊕

k∈K Ak is exactly the disjoint union
on K of the set of regular paths for Ak. This follows immediately from the fact
that the slices of |

⊕
k∈K Ak| are exactly the disjoint union on K of the slices of

|Ak|. Then the result follows immediately from proposition 3.6.

• Let A and B be alien positive behaviours of base ⊢ ξ: One direction is proved in
lemma 4.5, the other in lemma 4.6.

The following proposition gives a more constructive presentation of regularity.

Definition 4.8 Let A be a behaviour. A is called shuffle-regular if all positive-ended
chronicles of designs of |A| and |A⊥| are visitable and VA and VA⊥ are stable by reversible
shuffle (that is, all reversible paths in material designs of A and A⊥ are visitable).

Proposition 4.9 Let A be a behaviour of simple base, i.e., either ⊢ ξ or ξ ⊢. A is
regular iff A is shuffle-regular.

Proof Let A be a behaviour.

• Suppose that A is regular.
Let c be a positive-ended chronicle of a design D belonging to |A|. A chronicle
is reversible and in the incarnation hence c is a regular path for A and then c is
visitable.
Let p and q be two visitable paths of A and let r be a reversible path belonging
to p ⊔ q . Remark that one may extract from r sequences of immediate justification
for each action in r , and these sequences are either in p or q , thus are trivial
chronicles. It follows that r is regular for A hence visitable in A. Finally it follows
from lemma 4.4 and the previous reasoning that all positive-ended chronicles of
designs of |A⊥| are visitable and VA⊥ is stable by reversible shuffle.

• Suppose that A is shuffle-regular. Let p be a path, in the following we set np the
number of positive actions of p justified each by a negative action that justifies at
least two positive actions in p. In other words, np “measures” the distance to a
trivial chronicle.

– We first show that if a positive-ended chronicle c is a trivial chronicle for A

then c is visitable. By definition of what is a trivial chronicle, there is a design
D ∈ |A| and a chronicle c ∈ D such that c is a subsequence of d: all actions of
c occur in d in the same order and c and d have the same positive last action.
Let us notice that, in a trivial chronicle, each negative action justifies exactly
one positive action. We show that c is visitable by induction on nd.

∗ If nd = 0 then c = d as the base is simple. Hence c is visitable as A is
shuffle-regular.
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∗ Otherwise, the chronicle d may be written w0κ
−w1κ

+w2 such that κ−

justifies κ+ and κ+w2 is the longest suffix of d made of actions such
that each action justifies the following in the sequence (or the following
is a daimon), hence κ− justifies at least two positive actions in d. As
d ∈ VA, we also have

∼
d ∈ VA⊥ . Note that w0κ

−κ+w2 is a chronicle hence

a path. Note also that p
∼
d q = pw0κ− q

∼
κ+w2 hence as w0κ− is a path

and κ+ is justified by κ− we have that
∼
w0κ

−κ+w2 is a path. Let us
note d′ = w0κ

−κ+w2. The completed design pp
∼
dqq

c
is in the behaviour A

(proposition 2.22). Hence there exists a subdesign E ⊂ pp
∼
dqq

c
such that

E ∈ |A|. As
∼
d ∈ VA, we have necessarily that pp

∼
dqq ⊂ E, hence also that

the reversible path
∼
d′ is a path of E. As the behaviour A is shuffle-regular,

∼
d′ is visitable in A⊥, hence d′ is visitable in A. Furthermore, the trivial
chronicle c is a subsequence of d′ and nd′ ≤ nd − 1. So by induction
hypothesis, the chronicle c is visitable in A.

– We show now that if a chronicle c is regular for A then c is visitable in A.
The proof is done by induction on nc.

∗ If nc = 0 then c is a trivial chronicle for A thus it follows from the previous
item that c is visitable in A.

∗ Otherwise, the chronicle c may be written w0κ
−w1κ

+w2 such that κ−

justifies κ+ and κ+w2 is the longest suffix of c made of actions such
that each justifies the following in the sequence (or the following is a
daimon), hence κ− justifies at least two positive actions in c. Let us note
c1 = w0κ

−κ+w2 and c2 = w0κ
−w1z. Note that the sequences c1 and c2

are chronicles hence reversible, furthermore regular as subsequences of a
regular chronicle. Moreover both nc1 and nc2 are strictly less than nc.
Thus by induction hypothesis, these two chronicles are visitable in A.
Finally we note that the path ∼

c belongs to ∼c1 ⊔
∼
c2. So, as A is a regular

behaviour, ∼c is visitable in A⊥, thus c is visitable in A.

– Let p be a regular path for A. From proposition 2.12, we know that p belongs
to the shuffle of some of its views. Furthermore each view is a regular chronicle,
hence visitable in A by the previous item. Thus, as the behaviour A is regular,
p is visitable in A.

Example 4.10 We give below four characteristic examples of behaviours that show why
regularity is useful for understanding the structure of a behaviour. In particular, we
consider the four following constraints: to have chronicles in the incarnation that are
visitable, to have stability of the shuffle property, and to satisfy the two constraints on the
dual. In each three last cases, we can remark that the behaviours are positive but neither
a shift, nor a tensor or a plus of two behaviours: the three last behaviours considered
below are not interpretations of (composed) formulas of Linear Logic.

• Let us consider the behaviour E = {E}⊥⊥ where the design E is given below on the
left. The dual behaviour E⊥ = {E′,E′′}⊥⊥ where the designs E′ and E′′ are given
below on the right.

E =

ξ100 ⊢

⊢ ξ10

ξ1 ⊢

ξ200 ⊢

⊢ ξ20

ξ2 ⊢

⊢ ξ E′ =

⊢ ξ100, ξ200
z

ξ20 ⊢ ξ100

⊢ ξ2, ξ100

ξ10 ⊢ ξ2

⊢ ξ1, ξ2

ξ ⊢ E′′ =

⊢ ξ100, ξ200
z

ξ10 ⊢ ξ200

⊢ ξ1, ξ200

ξ20 ⊢ ξ1

⊢ ξ1, ξ2

ξ ⊢
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The set VE is easily computed: it is defined as the positive-prefix closed and daimon-
prefix closed set given by the two following paths:

(+, ξ, {1, 2})(−, ξ1, 0)(+, ξ10, 0)(−, ξ2, 0)(+, ξ20, 0),
(+, ξ, {1, 2})(−, ξ2, 0)(+, ξ20, 0)(−, ξ1, 0)(+, ξ10, 0).

The set VE⊥ is exactly the set of dual paths, i.e., the positive-prefix closed and
daimon-prefix closed set given by the two following paths:

(−, ξ, {1, 2})(+, ξ1, 0)(−, ξ10, 0)(+, ξ2, 0)(−, ξ20, 0)z,
(−, ξ, {1, 2})(+, ξ2, 0)(−, ξ20, 0)(+, ξ1, 0)(−, ξ10, 0)z.

It is immediate to prove that the behaviour E is regular. Moreover the behaviour
E is fully decomposable with respect to operations of Linear Logic. As a matter
of fact, we have that E = (´ξ1 ˆξ10 1ξ100) ⊗ (´ξ2 ˆξ20 1ξ200) where we note 1ξi the
behaviour obtained as the closure by bi-orthogonality of the following design:

ξi ⊢

⊢ ξ

• Let us now consider the behaviour F = {E,F}⊥⊥ where the designs E and F are
given below on the left. The dual behaviour F⊥ = {F′}⊥⊥ where the design F′ is
given below on the right.

E =

ξ100 ⊢

⊢ ξ10

ξ1 ⊢

ξ200 ⊢

⊢ ξ20

ξ2 ⊢

⊢ ξ F =

⊢ ξ10
z

ξ1 ⊢ ξ2 ⊢

⊢ ξ F′ =

⊢ ξ100, ξ200
z

ξ20 ⊢ ξ100

⊢ ξ2, ξ100

ξ10 ⊢ ξ2

⊢ ξ1, ξ2

ξ ⊢

The set VF is easily computed: it is defined as the positive-prefix closed and daimon-
prefix closed set given by the path p =(+, ξ, {1, 2})(−, ξ1, 0)(+, ξ10, 0)(−, ξ2, 0)(+, ξ20, 0).

The behaviour F satisfies the following properties: VF and VF⊥ are stable by shuffle
and CF⊥ ⊂ VF⊥. But CF 6⊂ VF. Hence F is not regular.

• Let us consider the behaviour G = {E,G}⊥⊥ where the designs E and G are given
below on the first line. The dual behaviour is G⊥ = {G′,G′′}⊥⊥ where the designs
G′ and G′′ are given below on the second line.

E =

ξ100 ⊢

⊢ ξ10

ξ1 ⊢

ξ200 ⊢

⊢ ξ20

ξ2 ⊢

⊢ ξ G =

ξ101 ⊢

⊢ ξ10

ξ1 ⊢

ξ201 ⊢

⊢ ξ20

ξ2 ⊢

⊢ ξ

G′ =

⊢ ξ100, ξ200
z

ξ20 ⊢ ξ100

⊢ ξ2, ξ100

⊢ ξ101, ξ201
z

ξ20 ⊢ ξ101

⊢ ξ2, ξ101

ξ10 ⊢ ξ2

⊢ ξ1, ξ2

ξ ⊢ G′′ =

⊢ ξ100, ξ200
z

ξ10 ⊢ ξ200

⊢ ξ1, ξ200

⊢ ξ101, ξ201
z

ξ10 ⊢ ξ201

⊢ ξ1, ξ201

ξ20 ⊢ ξ1

⊢ ξ1, ξ2

ξ ⊢

The set VG is defined as the positive-prefix closed and daimon-prefix closed set given
by the four following paths:
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(+, ξ, {1, 2})(−, ξ1, 0)(+, ξ10, 0)(−, ξ2, 0)(+, ξ20, 0),
(+, ξ, {1, 2})(−, ξ2, 0)(+, ξ20, 0)(−, ξ1, 0)(+, ξ10, 0),
(+, ξ, {1, 2})(−, ξ1, 0)(+, ξ10, 1)(−, ξ2, 0)(+, ξ20, 1),
(+, ξ, {1, 2})(−, ξ2, 0)(+, ξ20, 1)(−, ξ1, 0)(+, ξ10, 1).

Remark that the following designs do not belong to G:

G1 =

ξ100 ⊢

⊢ ξ10

ξ1 ⊢

ξ201 ⊢

⊢ ξ20

ξ2 ⊢

⊢ ξ G2 =

ξ101 ⊢

⊢ ξ10

ξ1 ⊢

ξ200 ⊢

⊢ ξ20

ξ2 ⊢

⊢ ξ

The behaviour G satisfies the following properties: CG ⊂ VG, SG⊥ = CG⊥ ⊂ VG⊥

but SG 6⊂ VG. Hence G is not regular.

• Finally, let us consider the behaviour H = {E,H}⊥⊥ where designs E and H are
given below. The dual behaviour is H⊥ = {H′}⊥⊥ where the design H′ is given
below on the second line.

E =

ξ100 ⊢

⊢ ξ10

ξ1 ⊢

ξ200 ⊢

⊢ ξ20

ξ2 ⊢

⊢ ξ and H =

ξ101 ⊢

⊢ ξ10

ξ1 ⊢

ξ211 ⊢

⊢ ξ21

ξ2 ⊢

⊢ ξ

H′ =

⊢ ξ100, ξ200
z

ξ20 ⊢ ξ100

⊢ ξ2, ξ100

⊢ ξ101, ξ211
z

ξ21 ⊢ ξ101

⊢ ξ2, ξ101

ξ10 ⊢ ξ2

⊢ ξ1, ξ2

ξ ⊢

The set VH is defined as the daimon-prefix closed set given by two paths:

(+, ξ, {1, 2})(−, ξ1, 0)(+, ξ10, 0)(−, ξ2, 0)(+, ξ20, 0),
(+, ξ, {1, 2})(−, ξ1, 0)(+, ξ10, 1)(−, ξ2, 1)(+, ξ21, 1).

We have that CH 6⊂ VH: the behaviour H is not regular.

We finish this section with a proposition that summarizes previous results: we relate
regularity and logical operations on behaviours.

Proposition 4.11 A is a regular positive connected behaviour iff
– either A = 1,
– or A = ´B and B is a regular negative behaviour,
– or A = D⊗E where D and E are regular alien positive behaviours.

Proof The ‘if’ part follows from proposition 4.7. Let us suppose that A is a regular
positive connected behaviour. Recall that a behaviour is connected if its directory is a
singleton I, i.e. the first action of its designs is (+, ξ, I).

• If I = ∅, A = 1.

• If I = {i}, then designs in A are of the form (+, ξ, i)D. Normalization being
deterministic and A closed, the set B of such designs D is a behaviour. Hence
A = ´B. We conclude with proposition 4.7.
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• Otherwise, let K ⊂ I such that K and I−K are non-empty. We note the following
point: we can always consider that a design in A is a tensor of a design with first
action (+, ξ,K) and a design with first action (+, ξ, I−K). We consider the set D
(resp. E) of such designs of first action (+, ξ,K) (resp. (+, ξ, I −K)). Let D1 ∈ D

and E2 ∈ E, the two distinct from Dai. Hence there exist designs D2 ∈ D and
E1 ∈ E such that D1 ⊗ E1 ∈ A and D2 ⊗ E2 ∈ A. Let F ∈ A⊥. Suppose that
F 6⊥ D1 ⊗ E2. Let us consider the path p obtained during the normalisation of
D1 ⊗ E2 with F before divergence.
– The path p cannot be empty as the first action of D1 ⊗ E2 is (+, ξ, I) and the
first action of F is (−, ξ, I). Hence we can write p = (+, ξ, I)p′.
– If the last action of p is a negative action κ−, w.l.o.g. we can suppose that
p(+, ξ,K)p′q ∈ D1 and there exists a (unique) positive action κ+ that extends
p(+, ξ,K)p′q in D1. Note that pp(+, ξ, I)p′κ+qq is a set of chronicles in D1 ⊗ E1 ∪
D2 ⊗ E2. Hence, as A is regular, positive-ended chronicles in pppκ+qq are in VA.

– If κ+ is initial in D1 ⊗ E2, then one can define the design F′ = F ∪ {κ+z}

and we have that
∼
pκ+ ∈ PF′ , in particular

∼
pκ+ is a path. Furthermore, there

exist paths q ∈ PD1⊗E1 and r ∈ PD2⊗E2 such that pκ+ ∈ q ⊔ r . Thus, as A is

regular, pκ+ ∈ VA. Hence contradiction as ∼p ∈ PF and
∼
pκ+ 6∈ PF.

– Otherwise there exists a negative action κ−0 that justifies κ+. There exist

paths p1 and p2 such that p = p1κ
−
0 p2κ

+. Hence pp1κ
−
0
q ∈ F. Let us define

the design F′ = F ∪ pp1κ
−
0 κ

+qz then
∼
pκ+ ∈ PF′ . With the same reasoning as

in the previous item, this yields pκ+ ∈ VA, hence a contradiction.

– If the last action of p is a positive action. This positive action should be distinct
from z otherwise the normalisation succeeds. We have that p ∈ PF, hence there
exists a (unique) positive action κ+ that extends the chronicle ppq in F. Note that
pppκ+qq is a set of chronicles in F. Hence, as A is regular, positive-ended chronicles
in pppκ+qq are in VA⊥ . κ+ cannot be initial in F as F is a negative behaviour (of

regular base). Hence there exists a negative action κ+0 that justifies κ+. There

exist paths p1 and p2 such that p = p1κ
+
0 p2κ

+. W.l.o.g. we can suppose that
pp1κ

+
0
q ∈ D1. Let us define the design D′

1 = D1 ∪ pp1κ
+
0 κ

+qz then pκ+ ∈ PD′
1
.

Thus, as A is regular, pκ+ ∈ VA, hence also ppκ+q. Contradiction with the fact

that ppκ+q 6∈ D1.

Thus D1 ⊗ E2 ⊥ F, hence D1 ⊗ E2 ∈ A. So we have D⊗E ⊂ A. Hence D and E

are behaviours and D⊗E = A.

Finally, the fact that D and E are regular follows from proposition 4.7.

5 Essentially Finite Behaviours, Uniformly Bounded Be-

haviours

The aim of this section is to characterize behaviours that may be finitely decomposed by
means of logical operations on behaviours (tensor, plus, shift and their duals). Finite-
ness and boundedness characterize among the behaviours the ones on which additive
and mutiplicative decompositions yield atomic behaviours. These latters are the be-
haviours associated with the linear constants 1, 0, ⊥ and ⊤. In other words, finiteness or
boundedness guarantee that such additive and multiplicative decompositions terminate:
incarnated designs in such behaviours are trees of finite height.
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Definition 5.1 (Size of a design, of a net) The size of a design D, noted #D, is
the number of proper actions of this design, infinite if there is an infinite number of
proper actions. The size of a net of designs is the sum of sizes of its designs.

Definition 5.2 (Finite Design) A design D is finite if its size is finite, i.e., #D <

+∞.

It is easy to prove that a design is finite iff its number of chronicles is finite iff it has
a finite number of finite slices iff there is a finite number of occurrences of foci.

Definition 5.3 (Essential finiteness / Uniform boundedness) A behaviour G is
essentially finite if

∑
D∈|G|#D < +∞.

A behaviour G is uniformly bounded if there exists N such that for all design D ∈ |G|,
for all slice S of D, #S < N .

In other words, a behaviour is essentially finite iff it has a finite number of material
designs, and these designs are finite. A uniformly bounded behaviour may have an infinite
number of material designs and these latters may have an infinite number of slices but
these latters are finite. Then the material designs in a uniformily bounded behaviour
have finite height. Note that an essentially finite behaviour is uniformly bounded. We
recall in the following lemma properties concerning incarnation of behaviours.

Lemma 5.4 [5, 10] Let G and H be two positive behaviours,
– If G is of base ⊢ ξ.i,Λ then |ˆG| = (−, ξ, {i}) · |G|
– If G and H are disjoint then |G⊕H| = |G| ∪ |H|
– If G and H are alien then |G⊗H| = |G| ⊙ |H|
where G⊙H = {D⊗ E ; D ∈ G,E ∈ H}

Proposition 5.5 (Ess. finiteness: stability properties) Let P and Q be positive
behaviours,
– P is ess. finite iff P⊥ is ess. finite,
– P is ess. finite iff ˆP is ess. finite,
– let P and Q be disjoint, P and Q are ess. finite iff P⊕Q is ess. finite,
– let P and Q be alien, P and Q are ess. finite iff P⊗Q is ess. finite.

Proof Let P be an ess. finite behaviour. The incarnation |P⊥| of P⊥ is the set of nets
R such that [9]:

R =
⋃

D∈P

pp〈R←D〉qq =
⋃

D∈|P|

pp〈R←D〉qq

Note that for all D ∈ P, the normalization path pp〈R←D〉qq only consists of the daimon
or proper actions of D where the polarity has been changed. Hence, when D ∈ |P|, the
size of D is finite, so is the size of pp〈R←D〉qq. Finally, as the number of material designs
in P is finite, the size of R is finite.
Each such anti-design R has proper actions taken from the same finite set of proper
actions: the set of dual proper actions that appear in material designs of P. Hence such
each anti-design R has a finite number of slices. In each of its slices, proper actions are
distinct. Thus there is a finite number of slices that can be ‘built’. As a consequence,
the number of material nets in P⊥ is finite: P⊥ is ess. finite.
The other items are immediate consequences of lemma 5.4.
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Proposition 5.6 (Unif. boundedness: stability) Let P and Q be positive behaviours,
– P is unif. bounded iff P⊥ is unif. bounded,
– P is unif. bounded iff ˆP is unif. bounded,
– let P and Q be disjoint, P and Q are unif. bounded iff G⊕H is unif. bounded,
– let P and Q be alien, P and Q are unif. bounded iff G⊗H is unif. bounded.

Proof Let P be a behaviour unif. bounded by N . Let R ∈ |P⊥| and D ∈ |P|. Note that
the normalization path 〈D←R〉 is in a unique slice of D. Hence pp〈R←D〉qq has size less
than N . Therefore slices of R =

⋃
D∈|P|

pp〈R←D〉qq have sizes less than N , thus P⊥ is
unif. bounded by N .
The remainder of the proof is a consequence of lemma 5.4.

6 Behaviours associated with Logical Formulas

In all this section, we consider that the base of a behaviour is either ⊢ ξ or ξ ⊢. We
consider two families of behaviours Cf = C+f ∪C

−
f and C∞ = C+∞ ∪C

−
∞ defined inductively

in the following way:

C+f = 0|1|
⊕

n∈[1,∞[(
⊗

q∈[1,∞[ ´ C
−
f ) C−f = ⊤⊤⊤ | ⊥⊥⊥ |

˘
n∈[1,∞[(

˙
q∈[1,∞[ ˆ C

+
f )

C+∞ = 0|1|
⊕

n∈[1,∞](
⊗

q∈[1,∞[ ´ C
−
∞) C−∞ = ⊤⊤⊤ | ⊥⊥⊥ |

˘
n∈[1,∞](

˙
q∈[1,∞[ ˆ C

+
∞)

The aim of this section is to characterize elements of C∞ and Cf . More precisely,
we state in theorem 6.1 that behaviours of C∞ (resp. Cf ) are exactly the regular and
uniformly bounded (resp. ess. finite) behaviours. It is immediate that Cf ⊂ C∞: C∞

differs from Cf by allowing infinite additive structures. Note furthermore that the set
Cf is sound and complete with respect to the set of polarized multiplicative-additive
formulas: this result is a straightforward corollary of Girard’s result for MALL2.

Theorem 6.1
A ∈ C∞ iff A is a regular uniformly bounded behaviour.
A ∈ Cf iff A is a regular essentially finite behaviour.

Proof Let us first consider that A ∈ C∞. The proof that A is uniformly bounded and
regular is done by induction on the structure of A:

• The property is immediately satisfied for the constants 0, 1, ⊤⊤⊤ , ⊥⊥⊥ .

• The induction follows from lemmas 4.4 and 4.7 for regularity, and proposition 5.6
for uniform boundedness.

Let us suppose that A is regular and uniformly bounded by N . We prove that A ∈ C∞
by induction on N :

• The property is immediately satisfied for N = 0, 1 or 2 (corresponding to constants
0, 1, ⊤⊤⊤ , ⊥⊥⊥).

• Suppose the property true until N and let A be a regular behaviour uniformly
bounded by N + 1. Suppose A is positive. Following the additive decomposition
theorem ([10], Th. 12), there exists a family of connected behaviours (Ak)k∈K such
that A =

⊕
k∈K Ak. Note that for each k ∈ K, Ak is uniformly bounded by

N + 1. By lemma 4.11, we can split K into three sets K1, K2, K3 such that for
each k ∈ K1, Ak = 1, for each k ∈ K2, Ak = ´A′

k, where A′
k is a regular negative
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behaviour, and for each k ∈ K3, Ak =
⊗

lk∈Lk
Aklk where Lk is the ramification

of the first action, and Aklk is a regular behaviour. Furthermore, the ramification
of each Aklk is a singleton: it is a shift of a negative behaviour A′

klk
. Finally we

notice that each A′
k and Aklk is uniformly bounded by N . Hence the induction

applies on these behaviours. We end noticing that A =
⊕

k∈K1
1⊕

⊕
k∈K2 ´A′

k ⊕⊕
k∈K3

⊗
lk∈Lk ´Aklk . When A is a negative behaviour, it suffices to consider its

dual A⊥.
The other property is proved similarly using proposition 5.5.

7 Conclusion

At first sight, Ludics objects seem to be easy to study: designs are nothing else but
abstraction of proofs or counter-proofs of multiplicative-additive Linear Logic (MALL).
However, this is not the case when one tries to identify among behaviours, i.e., closures
of sets of designs, those that are interpretation of MALL formulas. This paper is a first
step toward a full algebraic study of behaviours. First, we make explicit the equivalence
between the two presentations of a design, as set of paths versus set of chronicles. We
give a few properties concerning orthogonality in terms of path travelling, introducing
visitable paths, i.e., paths that are visited by orthogonality. Finally, our main result is
a characterization of C∞ behaviours that correspond to formulas built from the linear
constants by means of infinitely additive connectives and multiplicative connectives. In
particular, we show that such behaviours should satisfy a notion of regularity. Regularity
in turn may be defined as a global property: roughly speaking, reversible paths built
from actions in the incarnation should be visitable. Regularity may also be defined in a
constructive way: visitable paths are exactly chronicles of the incarnation or reversible
shuffles of such paths. Such a study should help us understanding the structure of MALL
proofs.

Let us remark finally that properties of Ludics that serve for proving that Ludics
is a fully abstract model of MALL4, are satisfied for the entire Ludics and not only
for behaviours interpreting MALL formulas: interaction between objects, that is cut-
elimination, is at the heart of Ludics, thus it allows to consider the Ludics framework as
a semantics for computation beyond what is given with MALL: a behaviour may model
a type and (open) interaction between behaviours corresponds to composition of types.
For future work, we plan to extend our analysis to the whole set of behaviours, defining a
grammar for it in such a way that connectives of the grammar may be computationnally
(or logically) interpreted.
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