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Abstract– OneM2M standard is a global initiative led jointly 

by major standardization organizations around the world in 

order to come up with a unique standard for M2M 

communications. Prior standards, but also oneM2M, while 

focusing on achieving interoperability at the communication 

level, fail or lack to achieve full interoperability at the semantic 

data level. An expressive ontology for IoT called IoT-O has been 

defined making best use of already defined ontologies in specific 

domains such as sensor, observation, service, quantity kind, 

units, or time. IoT-O defines also some missing concepts relevant 

for IoT such as thing, actuator, actuation, or manager. The 

extension of the oneM2M standard to support semantic data 

interoperability based on IoT-O is discussed. Finally, through 

comprehensive real use cases, benefits of the augmented 

standard are demonstrated ranging from heterogeneous devices 

interoperability to autonomic behavior achieved by automated 

reasoning.  

Keywords: IoT, M2M, oneM2M, interoperability, 

semantic, ontology, autonomic, reconfiguration, reasoning, 

IoT-O. 

I. INTRODUCTION 

In the recent few years, M2M systems have witnessed 

the emergence of various and different standardization 

initiatives. Indeed, different applications sectors are pushing 

standards that are often targeting mainly a specific 

application domain such as smart meters standards 

developed by IEC or IEEE (EN 13757, IEEE 1888-2011, 

etc.). Different SDOs have tackled this problem by focusing 

on the definition of a horizontal service platform that fits 

different verticals. This work has been consolidated later on 

into a global initiative aka oneM2M.  

It is worth to notice that all these initiatives have 

focused on the communication interoperability between 

system entities (servers, devices, applications, etc.). Indeed, 

these standards have defined a horizontal service layer that 

enables seamless communication between heterogeneous 

entities independently of the underlined network and 

vendor-specific device technologies. It thus possible to 

reach any entity in the system and deliver a message to it. 

However, no standard has tackled the “meaning” of the 

message content being exchanged. Although SmartM2M 

standard has introduced some recommendations for 

supporting semantics [1], a generic data model has not been 

specified. This has been let to the appreciation to the service 

provider, system developer, or the system user.  Such 

standards have achieved interoperability at the 

communication level only and lack to provide 

interoperability at the data level too. This has led to 

inefficient systems, since actual autonomic systems could 

not be achieved.  

Semantic data is brought through the definition of a 

common set of ontologies that describe the entire system’s 

entities but also the data items produced, exchanged and 

consumed by these entities. Various information models 

have been defined for IoT ranging from specialized models 

such as the Zigbee or KNX data models to more general 

ones such as W3C SSN Erreur ! Source du renvoi 

introuvable.. These solutions suffer from two main issues. 

They are even too specialized and focused in a specific 

application domain, or lack from some concepts mainly 

related to actuation. Indeed, in multiple information models, 

“control” concepts are missing. Using such models may be 

very challenging since in M2M systems, devices may be 

sensors or actuators, or both.  

In this paper, we discuss and propose an ontology model 

(IoT-O) that handles both sensing and actuating concepts of 

M2M devices but also some concepts related to services. 

We, then, discuss the extension of oneM2M standard to 

support semantic data based on the proposed ontology. 

Finally, through comprehensive uses cases, we show the 

use of IoT-O along the oneM2M standard. 

A. oneM2M Standard 

The oneM2M global initiative [3] is an international 

partnership project established in June 2009 by the seven 

most important standard defining organizations in the world 

and various alliances and industry. The main goal is to 

define a globally agreed M2M service platform by 

consolidating currently isolated M2M service layer 

standards activities. OneM2M is planning to boost M2M 

market by removing the need to develop common 

components, simplify development of applications by 

providing a common set of APIs, leverage existing 

worldwide networks, and provide evolution and 

interoperability of standard functions support. The oneM2M 

technical working groups are focusing on requirements, 

system architecture, protocols, security, management, 

abstraction and semantics.  Figure 1 oneM2M system 

architecture [3] describes the OneM2M system architecture. 

The system architecture is composed of four functional 

entities called nodes known as application dedicated node 

(ADN), application service node (ASN), middle node 

(MN), and infrastructure node (IN). Each node contains a 



common services entity (CSE), an application entity (AE), 

or both. An AE provides application logic, such as remote 

blood sugar monitoring, for end-to-end M2M solutions. A 

CSE comprises a set of service functions called common 

services functions (CSFs) that can be used by applications 

and other CSEs. CSFs incudes registration, Security, 

application and service layer management (ASM), Device 

Management, communication management and delivery 

handling, network service exposure, data management and 

repository, Discovery, subscription and notification, service 

session management, service charging and accounting, 

group management, and location service.  

 

Figure 1 oneM2M system architecture [3] 

The system architecture has specified three reference 

points called Mca, Mcc, and Mcn. The Mca interface 

enables AEs to use the services provided by the CSE. The 

Mcc interface enables inter-CSE communications. The 

Mcc’ interface is similar to Mcc, but provides an interface 

to another oneM2M system. The Mcn interface is between a 

CSE and the service entities in the underlying networks. 

OneM2M adopted a RESTful architecture, thus all services 

are represented as resources. Resources are associated with 

CSFs to provide the defined functions. 

B. Full interoperability challenge 

Full interoperability is a desirable property to achieve in 

M2M systems. This will pave the way to the ultimate goal 

aka autonomic systems. Indeed, interoperability between 

heterogeneous devices, services is only a requirement to 

achieve autonomic behavior including self-configuration, 

self-healing, self-optimization, and self-repairing.  

As introduced earlier, almost all standardization 

initiatives have not efficiently tackled the issue of full 

interoperability, i.e. considering both communication and 

data interoperability. Having treated the interoperability at 

the communication level through the definition of common 

service, resources, payload formats, and mapping to 

existing internet protocols or network access technologies, 

the different M2M standards have achieved the 

communications interoperability. Thanks to this 

interoperability, M2M systems’ entities already benefit 

from services such as discovery, monitoring, management, 

etc. Although such service platform can be sufficient for the 

design and implementation of specific M2M systems, 

autonomic system behavior using automated reasoning 

based on top of a knowledge oriented service platform 

cannot be achieved.  

For example, using a service platform built upon 

oneM2M standard, an application can discover seamlessly 

new devices plugged into the system. This application can 

subscribe to the new device events and will receive them as 

soon as they are triggered even if the routing path implies 

the crossing of multiple entities and using heterogeneous 

communication protocols or network technologies at any 

segment of the communication path. This has been made 

possible thanks to the interoperability at the communication 

level. Now that device events have been successfully 

reported, the application does not have any mean in order to 

“understand” the reports’ content without prior conventions 

(data formats, encapsulation, and semantics) set up between 

the application and the device application developers. 

C. Semantic data, concepts and principles 

Ontologies have proven beneficial for intelligent 

information integration, information retrieval, and 

knowledge management. They enable to index resources 

content using semantic annotations that can result in the 

representation of explicit knowledge that cannot be assessed 

and managed because of their mess. Ontologies are very 

popular and useful to overcome challenges fixed in the 

proposed study because they provide a new way of cleverly 

structuring a domain making use of semantic hierarchical 

and property/value relationships based on a vocabulary of 

concepts/instances [4]. 

The most popular language in the domain of semantic 

knowledge modeling making use of ontologies is the Web 

Ontology Language (OWL). OWL is a semantic an 

expressive schema language for publishing and sharing 

ontologies using RDF (the Resource Description 

Framework) extensions. OWL facilitates interoperability 

between entities by providing a shared understanding of the 

domain in question. It is an effective means for explicating 

implicit design decisions and underlying assumptions at 

system build time based on powerful deductive reasoning 

capabilities such as the Semantic Web Rule Language 

(SWRL) or the SPARQL query language. 

II. AN EXPRESSIVE ONTOLOGY FOR IOT (IOT-O) 

A. IoT ontology principles  

Users and software agents should be able to discover, 

monitor and control sensors and actuators offering 

particular services and having particular properties with a 

high degree of automation. However, oneM2M did not 

standardized the device data model and the data they 

handle. In this study, we propose a semantic data model 

based on ontology to represent IoT device meta-data, 

operations, and exchanged data independently from the 



underlying formalism originally used for describing them. 

Since ontologies are designed to be reusable and extensible, 

we decided to  define a complete ontology for IoT by 

reusing existing ontologies. New concepts are designed 

only when needed. This approach enables to reduce the 

ambiguity of IoT terminology and allows to converge 

quickly to a common vocabulary. 

 In general, an ontology for IoT should represent a 

variety of concepts such as platform, deployment system, 

thing, device, manager, service, sensor, actuator, sensing 

and actuating capabilities, observation, operation, time, 

unit, kind, value, and their relationships. Since there is no 

single model that covers all these concepts, a set of well-

defined ontologies were carefully selected in order to form 

an expressive ontology called IoT-O. Figure 2 shows how 

the selected ontologies are merged together to form this 

new ontology. IoT-O consists of five main parts which are 

sensor, observation, actuator, actuation and service models. 

B. IoT-O concepts and relationships 

The DUL upper ontology is selected to describe very 

general concepts that are the same across all knowledge 

domains, and so facilitate reuse and interoperability. It is a 

lightweight foundational model for representing either 

physical or social contexts. The SSN ontology, which is 

aligned with DUL, is selected to represent sensors in terms 

of measurement capabilities and properties, observations 

and other related concepts, however it does not describe 

actuator devices. Since currently there is no ontology that 

accurately describes actuators, we designed a new ontology 

called ACT, which is inspired from SSN and aligned with 

DUL, to describe actuators in terms of actuating capabilities 

and properties, actuation, and related concepts. The QUDV 

ontology was selected to represent quantities, units, 

dimensions and values. The OWL-TIME ontology was 

selected to provide a vocabulary for expressing facts about 

topological relations among instants and intervals, together 

with information about duration, and about date time 

information.  

Given that OneM2M aims to enable seamless 

interactions between business applications and services, it is 

important to represent how these services can be requested, 

without any ambiguity in order to reduce the amount of 

manual effort required for discovering and using them. The 

MSM ontology was selected to describe services since it 

provides a common vocabulary based on existing web 

standards able to capture the core semantics of both Web 

services and Web APIs in a common model. Each service is 

described using a number of operations that have address, 

method, input and output Message Content descriptions.  

 

 

Figure 2: IoT-O ontology model 



 

D. Actuator model instance according to IoT-O 

To understand how the IoT-O ontology works, let's 

consider a concrete example representing a real actuator 

using the M2M ontology. The "HUELUX" actuator is a 

digitally dimmable wireless lighting bulb from Philips. It 

has a power range of 0 Watt to 50 Watt with a lighting time 

of 2 seconds. The luminance level can be dimmed by 

requesting the required power value. The light bulb offers a 

web service to enable remote luminance control. The 

luminance can be dimmed instantaneously by sending a 

create request to the address "/HUELUX_APP/dimming" 

with a message body containing the required power. Figure 

3 Actuator model instance according to IoT-O details the 

corresponding ontology instance. It shows how the actuator, 

actuation and service information are inserted in the IoT-O 

ontology. The actuator model represents the light bulb 

information and actuating capabilities including power 

range and lighting time. The actuation model represents the 

dimming command. The Service model represents the light 

bulb web service including the luminance dimming 

operation, address and method. 

 

 

Figure 3 Actuator model instance according to IoT-O 

E. Semantics extension to the oneM2M Standard  

Through oneM2M working group WG5, semantics is 

already envisioned for the oneM2M standard. However, as 

of its Candidate release, semantics aspects are not tackled 

yet. In this subsection, we will discuss a possible extension 

to oneM2M standard in order to support semantic data. The 

main idea is to use specific resource’s attributes in order to 

augment the resource with its semantics. Such attributes can 

be used to give some indication about the ontology 

associated with the content being transported. Two options 

are then available.  

The first option, as we dubbed inline integration, relies 

on using a resource attribute in order to carry the full 

definition of the ontology in an appropriate format. Using 

this option, any application (or process) can understand the 

received content after the interpretation of the ontology 

definition. Such attribute is not yet defined in oneM2M 

standard, but can be pushed in future oneM2M releases. 

The second option, as we dubbed reference-based 

integration, uses the semantic attribute ontologyRef of type 

xs:anyURI, already defined in the Candidate release of 

oneM2M standard, to point the application to a remote 



location where it can find the full definition of the ontology. 

It can also be used to serve as just a reference to an 

ontology supposedly known by the application (i.e. through 

the use of predetermined ontology catalog). 

It is clear that these two options have their pros and 

cons. Indeed, while the inline integration option gives great 

flexibility since every data element will carry its own 

ontology, this option will introduce an important overhead 

in all communications by increasing significantly the 

payload size. Moreover, this can be very inefficient 

especially for communications to/from very constrained 

M2M devices. The reference-based integration introduces 

less overhead when compared to the first option. However, 

the need for an external repository (or a hard-coded/known 

catalog) may introduce new issues such as the optimal 

repository location, definition coherence across multiple 

repositories, access rights, repository availability, etc. 

Moreover, such option may introduce new delays related to 

the acquisition of the necessary ontology definition prior to 

data processing. This may be problematic in case of delay 

sensitive applications. 

Although both options present advantages and 

disadvantages, we believe that at this stage of the oneM2M 

standard definition, the use of the dedicated semantic 

attributes remains the best solution in order to introduce 

interoperability at the data level in the oneM2M standard 

without questioning the foundations of this new standard 

and in order to comply with its first published release. 

III. SEMANTIC DATA INTEROPERABILITY  

In this section, and through comprehensive use cases, 

we present the usability of our new generic data model. 

Also, we will introduce OM2M [5], our developed 

horizontal platform which is compliant with both 

SmartM2M and oneM2M standards. The use case will also 

feature our living lab aka ADREAM smart building and put 

the addressed challenge in a real scenario. 

A. LAAS smart building: ADREAM 

ADREAM is the LAAS-CNRS smart experimental 

building. The main originality of this instrumented building 

compared to already existing ones is that it is a « living lab 

» of 1700m² since it is both a research tool and a building 

with offices for the researchers.  

 

Figure 4: M2M testbed within ADREAM building 

The building includes 500m² of technical platforms 

(IoT, robotics, ambient intelligence, energy) and 700m² of 

offices. It hosts our smart apartment equipped with various 

sensors and actuators connected using different networking 

technologies. The device set includes different sensors 

(temperature, humidity, luminescence, presence, etc.) but 

also actuators such as electric plugs attached to different 

elements: lamps, fans, humidifier, etc. all these devices are 

gathered around different gateways. Each gateway is 

specialized in one or two networking technologies (Zigbee, 

6lowpan, KNX, Phidgets). Finally, these gateways are 

connected to one central server. Figure 4 illustrates the 

testbed composition. 

B. Seamless device discovery and interaction 

In order to demonstrate the interoperability aspect 

achieved by the OM2M platform through its compliance 

with the oneM2M standards and its support of a generic 

data model IoT-O, we propose a simple scenario where the 

software platform is able to discover newly plugged devices 

such as sensors and actuators, browse the exposed attributes 

and methods, and finally interact with these devices by 

retrieving sensed data or triggering actions. 

The scenario setup, as showed in Figure 4, includes 

different devices attached to an M2M gateway through 

local network technologies such as wireless ones: ZigBee, 

6lowpan, or wired technologies such as Phidgets or KNX. 

The M2M gateway is connected to a M2M server. The 

M2M gateway entity is equipped with mapping modules 

that translate every communication with a specific 

networking technology into a generic communication 

protocol that is completely independent from the transport 

protocol or the network access. Thus, the support of new 

technologies or protocols is simply achieved through the 

implementation of the translation module (i.e. Interworking 

Proxy Unit). When the IPU discovers a new device through 

the specific technology discovery mechanism, it will expose 

this device along its attributes and methods to other entities 

in the M2M system. From the M2M system perspective, 

any data or action request is routed to this IPU in order to 

be translated to the specific technology operations. In this 

way, any application present in the M2M system can access 

the new discovered resources (device, device’s attributes, 

device’s actions, etc.) using standardized restful operations, 

and this can be achieved without any knowledge of the 

underlying network technology or its low level 

mechanisms. 

Furthermore, since all exchanged messages are 

augmented with semantics as discussed in section II.B. One 

application cannot only have access to the data being 

generated by the device or the actions it exposes, but also 

the it can understand the meaning of these data. Indeed, 

since the application has access to the ontology that 

“defines” the data, it can browse the ontology and map the 

received data elements into this ontology and perform the 

appropriate processing.  



IV. TOWARDS AUTONOMIC M2M SYSTEMS 

In this section, we demonstrate how the IoT-O ontology 

can be used to develop autonomic M2M systems [6,7] 

capable of self-management to hide intrinsic complexity to 

administrators and users.  The main goal here is to 

dynamically reconfigure the CSE resource architecture 

based on semantic matching between registered 

applications.  

A. Autonomic service for resource architecture 

dynamic reconfiguration 

In the normal case, an application must perform 

manually several complex search request to discover 

relevant resources and perform several subscriptions to 

monitor the evolution of interesting resources. In addition, 

an application has a partial view of its M2M environment, 

then it becomes very complex to find the right resources 

especially in huge and highly distributed M2M system.  

Introducing a new autonomic service with a global view 

of the M2M system capable of configuring CSE resource 

architecture when needed is a challenge. The objective here 

is to enable any application to dynamically discover 

interesting devices and to exchange data with the right 

communication mode according to its description, role, and 

relationships. To meet this goal a representative model of 

M2M system knowledge is required to assist the execution 

of the management process. Since the IoT ontology covers 

all required M2M concepts needed for this use case, it will 

be used as a knowledge model by an autonomic service. 

B. Data model for automated reasoning 

Figure 5 shows a partial view of the IoT-O ontology 

highlighting the main concepts needed for the self-

configuration process. In one hand, the IoT-O enables to 

represent physical things like sensor and actuator devices 

that respectively observes and acts on a quantity kind. In the 

other hand, it enables to represent nonphysical things like 

monitor and controller managers that respectively monitors 

and controls a quantity kind. Each thing is registered to a 

node and is accessible via a set of web services. Additional 

concepts of IoT-O can be considered to further refine the 

semantic matching process for a more advanced 

configuration. 

 

 

Figure 5: IoT-O main concepts and relationships used for reasoning 

C. Smart building use case 

Let's consider a building equipped with a gateway 

connecting locally some devices like an electricity meter, a 

luminosity sensor, and a lamp that created on the gateway 

an "ASN-AE_ElectricityMeter", "ASN-

AE_LuminositySensor", and "ASN-AE_Lamp". An "ASN-

AE_LampController" and an "ASN-

AE_LuminosityMonitor" applications are registered on the 

gateway to dynamically update the lamp state according to 

the luminosity level. Let's suppose that a lamp controlling 

application "ADN-AE_LampController" and a power 

consumption monitoring application "ADN-

AE_ElectricityMonitor" are deployed on the user 

Smartphone to enable the user to manually monitor and 

control his devices. In addition, A smart metering 

application "IN-AE_ElectricityMonitor" is registered on the 

smart metering server to track the building consumption. 

 The autonomic service should discover and monitor the 

description of all registered applications, reasons on the 

IoT-O ontology model using inference rules to find relevant 



matching, and finally reconfigure the resource architecture 

accordingly to set up the required connections. 

Initially, the autonomic service discovers the IN-CSE 

and so adds the "IN_SmartMeteringServer" individual as 

instance of the "IN" class in the IoT-O instance. Then, it 

retrieves the registered applications and looks mainly for 

the "DESCRIPTOR" container to find the application 

descriptions. The "IN-AE_ElectricityMonitor" individual is 

added as instance of the Monitor class and is linked to the 

"Electricity" QuantityKind. Then, the autonomic service 

searches for the authenticated nodes and so adds the 

"ASN_HomeGateway" individual as instance of the ASN 

class, and the "ADN_Smarthone" individual as instance of 

the ADN class. It creates also a subscription on the IN to be 

notified of new authenticated nodes. Figure 6: IoT-O smart 

building use case instance example corresponding M2M 

ontology instance as generated by the Autonomic service.  

For each discovered node, the autonomic service 

retrieves the registered applications and adds them to the 

IoT-O instance. For the gateway, The "ASN-

AE_ElectricityMeter" is added as an individual of the 

Sensor class and linked to the "Electriciy" QuantityKind. 

The "ASN-AE_LightSensor", "ASN-AE_Lamp", "ASN-

AE_LampController", and "ASN-AE_LuminosityMonitor" 

individuals are added respectively as instances of the 

Sensor, Actuator, Monitor, Controller classes, and are 

linked to the "Luminosity" QuantityKind.  

For the Smartphone, the "ADN-AE_ElectricityMeter" 

individual is added as instance of the Sensor class and 

linked to the "Electriciy" QuantityKind. The "ADN-

AE_LampController" individual is added as instance of the 

Monitor class and linked to the "Luminosity" QuantityKind.  

 

 

Figure 6: IoT-O smart building use case instance example 

D. Semantic matching inference rules 

Inference rules can be applied to infer new knowledge 

and so enrich the current IoT-O instance with new 

individuals and relationships. This new knowledge is 

necessary to understand the role of each application in the 

M2M architecture. It allows each application to take 

maximum advantage of the services offered by other 

applications.  

In this example, two SPARQL [8] rules are applied by 

the autonomic service to find semantic matching between 

the registered applications. The first rule "Infer relationship 

between monitors and sensors" says that if there is a 

monitor that observes a particular quantity kind, and if it 

exists also a sensor that observes the same quantity kind, 

and if this monitor is not already managing this particular 

sensor, then as a result a new "manages" relationship is 

inferred to link this monitor to this sensor. 



CONSTRUCT { 

  ?monitor iot:manages ?sensor 

} 

WHERE { 

  ?monitor rdf:type  iot:Monitor . 

  ?sensor rdf:type  iot:Sensor . 

  ?qKind rdf:type  iot:QuantityKind . 

  ?monitor iot:monitors  ?qKind . 

  ?sensor iot:observes  ?qKind . 

  FILTER EXISTS { ?monitor iot:manages ?sensor } 

} 

The second rule "Infer relationship between controllers 

and actuators" says that if there is a controller that controls 

a particular quantity kind, and if it exists also an actuator 

that acts on the same quantity kind, and if this controller is 

not already managing this particular actuator, then a new 

"manages" relationship is inferred to link this controller to 

this actuator. 

CONSTRUCT { 

  ?controller iot:manages ?actuator 

} 

WHERE { 

  ?controller rdf:type  iot:Controller . 

  ?actuator rdf:type  iot:Actuator . 

  ?qKind rdf:type  iot:QuantityKind . 

  ?controller iot:controls  ?qKind . 

  ?actuator iot:actsOn  ?qKind . 

  FILTER EXISTS{?controller iot:manages ?actuator} 

} 

Using the same approach, more advanced rules can be 

applied including more constraints such as the device 

location, temporal requirements, or quality of services 

parameters.  

E. Resource configuration execution  

The Autonomic service is capable now to plan the list of 

required actions and to execute them by simply sending 

RESTful requests to the service platform. Indeed, to 

establish a relationship between a monitor and a sensor, a 

new subscription resource is created on the monitor sensor 

application containing the monitor contact.  Respectively, to 

establish a relationship between a controller and an 

actuator, a new subscription resource is created on the 

controller application containing the actuator contact. 

  Concretely, the autonomic service automatically 

subscribes the "IN-AE_ElectricityMonitor" and the 

ADN_ElectricityMonitor" to the "ASN-

AE_ElectricityMeter". It subscribes also the ASN-

AE_LuminosityMonitor" to the "ASN-

AE_LuminositySensor". Finally, the "ASN-

AE_LampController" and the "ADN-AE_LampController" 

are subscribed to the "DA_LampContoller". 

V. CONCLUSION   

Current M2M standards aims to provide a horizontal 

service platform  to enable communication interoperability 

between machines. However, the semantic data 

interoperability is not achieved which brings into question 

the horizontality of such platform. To overcome this 

challenge, a dedicated ontology for IoT called IoT-O has 

been defined. IoT-O merges together a set of popular 

ontologies and is enriched with new relevant concepts and 

relationships. Two possible integration with the oneM2M 

standard are discussed. The mean concepts and 

relationships of IoT-O are described using different use 

cases. An autonomic service making use of IoT-O and 

inference rules for resource architecture dynamic 

reconfiguration was explained as well.  

As future work, we propose to calculate the overhead 

cost of the our solution and the resulting overload. We 

propose also to validate IoT-O in various vertical M2M 

domains such as e-health, transport, and smart grid. A set of  

contributions will be sent to OneM2M for integrating IoT-O 

concepts into the standard to move forward towards 

semantic data interoperability. 
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