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A spatial image polynomial decomposition with application to video
classification
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aXLIM Laboratory, UMR CNRS 7252 Bd Marie et Pierre Curie, 86962 Chasseneuil France
bLIIAN laboratory - Faculty of Science Dhar EL Mahraz USMBA, 30003 Fez Morocco

Abstract. This paper addresses the use of orthogonal Polynomial Basis transform in video classification due to its
multiple advantages, especially for multiscale and multiresolution analysis similar to the wavelet transform. In our
approach, we benefit from these advantages to reduce the resolution of the video by using a multiscale/multiresolution
decomposition, to define a new algorithm which decomposes a color image into geometry and texture component by
projecting the image on a bivariate polynomial basis and considering the geometry component as the partial recon-
struction and the texture component as the remaining part, and finally to model the features (like motion and texture)
extracted from reduced image sequences by projecting them into a bivariate polynomial basis in order to construct
a hybrid polynomial motion texture video descriptor. To evaluate our approach, we consider two visual recognition
tasks, namely the classification of dynamic textures and recognition of human actions. The experimental section shows
that the proposed approach achieves a perfect recognition rate in the Weizmann database and highest accuracy in the
Dyntex++ database compared to existing methods.
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1 Introduction

Video actions classification is one of the topics of current research in computer vision and pattern

recognition. They can be found in many applications such as human action recognition,1 anomaly

detection,2 face recognition3 and dynamic texture.4 Its ultimate objective is to develop a video

model that is efficient, fast and simple to implement against complex motions and an amazing

increase in database sizes. To achieve these objectives, we propose a new fast video classifica-

tion tool that models the motion and texture of the video block after reducing image sizes by using

polynomial basis transformations. Since this technique offers a compact and hierarchical represen-

tation of images, and offers several advantages like multiscale and multiresolution decomposition,

it has become among the best known methods in the analysis and modeling of videos compared
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with histograms of the orientation of gradient HOG,5 histograms of the orientations of optical flow

HOF6 or spatio-temporal local binary patterns LBP-TOP.7

The remainder of this paper is organized as follows: Section 2, discusses the most recent and

popular video classification descriptor in the literature based on modeling of motion and texture

features to describe the action in video; Section 3, presents our algorithm based on the polynomial

transform and used in a video classification, firstly presenting the Polynomial Transform, then the

decomposition step. After that, the use of our image decomposition to construct a video descriptor

for human action recognition and dynamic texture classification; and finally Section 4, describes

and discusses the proposed approach compared to existing methods in the state of the art.

2 Related Work

The main idea of this paper is to fuse the motion features and the color texture feature after extract-

ing from video database to perform action classification (like human action and dynamical texture),

so we review representative works based on modeling of these two different features respectively.

2.1 Motion Modeling Methods

Efros et al8 proposed a descriptor based on blurred measures optical flow to recognize the actions

of the players at a football and tennis match : firstly, Lucas and Kanade optical flow algorithm9

is used to extract the motion information between two consecutive frames. Then, the half-wave

rectification technique is adopted to decompose the vector field U and V to four components. The

components are then blurred with a Gaussian smoothing. The vector image with four components

forms the motion descriptor. The descriptors obtained in this way are compared by a normalized

correlation. Using this measure, a motion similarity matrix is constructed and the classification is
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performed using a k-nearest neighbour classifier. This method is extended by Danafar and al10 by

using a shape estimation. They used Harris detector to find the area where the silhouette is located.

The background and silhouette are separated by using K-means algorithm. The silhouette is then

divided into three horizontal parts: head and shoulders, body and arm then legs. The local optical

flow for each part of the silhouette is modeled by the method proposed by Efros et al8 to recognize

simple behaviors. Mikolajczyk and Uemura11 use optical flow information to form a vocabulary

forest of local motion-appearance features to recognize actions.

Recently, some frequency transformation approaches,12 wavelet-based approaches,13, 14 and

polynomial transformation approaches15, 16 have been shown to offer good recognition accuracy.

For example, in13 wavelets are used for proposing local descriptors utilizing the capability in com-

pacting and discriminating data, whereas in14 wavelet processing techniques are applied to solve

the problem of real time processing as well as to filter the original signal in order to achieve better

classification. For polynomial-based approaches, the descriptors are based on using the orthog-

onal polynomial basis to describe the motions, and it has been applied very recently for action

modeling. The mathematical background to generate a Bivariate Polynomial Basis as following :

First, a Bivariate Polynomial (BP) of degree d is a function of x = (x1, x2) ∈ R2 given by

P (x) =
∑

(d1,d2)∈[0;d]2

d1+d2≤d

ad1,d2 x
d1
1 xd22 (1)

with any ad1,d2 ∈ R.

Considering a finite set of pairs D = {(d1, d2)} ⊂ N2, we represent by ED the space of all BP
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such as ad1,d2 ≡ 0 if (d1, d2) /∈ D and by KD the subset of monomials

KD =
{
Kd1,d2(x) = xd11 xd22

}
(d1,d2)∈D (2)

Obviously KD satisfies the linear independence and spanning conditions and so, KD is a basis of

ED, the canonical basis. In our context of color image decomposition, we look for bases with more

suitable properties such as orthogonality or normality. So, to construct a discrete orthonormal BP

finite basis we first have to consider the underlying discrete domain

Ω =
{
x(u,v) =

(
x1,(u,v), x2,(u,v)

)}
(u,v)∈D (3)

where D will now represent the set of pairs associated to Ω. Starting from KD we intend to

construct a new orthonormal basis applying the Gram-Schmidt process. That implies that we need

some product and norm for functions defined on Ω. Given two bivariate functions, F and G, their

discrete extended scalar product is defined by

〈F |G〉 =
∑

(u,v)∈D

ω(x(u,v)) F (x(u,v))G(x(u,v)) (4)

with ω a real positive function over Ω [Legendre, Chebichev, Hermite, ...]. Then, the actual con-

struction process of an orthonormal basis

BD,ω = {Bd1,d2}(d1,d2)∈D (5)
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is a recurrence upon (d1, d2)

Td1,d2(x) = Kd1,d2(x)−
∑

(l1,l2)≺2(d1,d2)

〈Kd1,d2|Bl1,l2〉ωBl1,l2(x) (6)

Bd1,d2(x) =
Td1,d2(x)

|Td1,d2|ω
(7)

where ≺2 is the lexicographical order and | |ω the norm induced by 〈 | 〉ω. The resulting set of B

polynomials verifies

〈Bd1,d2|Bl1,l2〉ω =


0 if (d1, d2) 6= (l1, l2)

1 if (d1, d2) = (l1, l2)

(8)

and so BD,ω is effectively an orthonormal basis with respect to a weighting function ω. A special

case, later used in this paper, is the complete base where D exactly represents the set of pairs

associated to Ω, that is

D = [0;N1]× [0;N2] (9)

The space ED being dense in the space of functions over Ω, it allows to well approximate any

bivariate function I by an appropriate combination of elements of a BD,ω orthonormal basis

PI(x) =
∑

{(d1,d2)}⊂D

bd1,d2 Bd1,d2(x) (10)

where bd1,d2 is the scalar resulting of the projection bd1,d2 = 〈I|Bd1,d2〉ω. In fact, with a complete
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orthonormal basis, the polynomial approximation of I is a first order osculatory polynomial inter-

polation : for all points of the domain we have PI(x) = I(x). An other nice property is that the

projection on polynomial Bd1,d2 can be considered as an approximation of the partial derivation

∂d1∂d2 . Finally and in practice, the discrete projection process supposes that both I and Bd1,d2

can be evaluated on the common domain Ω. So, the set of collocation points can be obtain by

uniform or non-uniform discretization of given intervals. For example, with [−1; 1]2 and referring

to equation (9), the collocation points obtained by uniform discretization are

x1,(u,v) = −1 +
2u

N1

x2,(u,v) = −1 +
2v

N2

(11)

Based on this background, Druon et al15 in 2009 are used the orthogonal polynomial basis for hu-

man action recognition. They introduced a polynomial modeling method based on projection into a

bivariate polynomial basis and used the polynomial coefficients to analyze the displacement fields

from experimental fluid mechanics. Encouraged by their positive results, O. Khil et al16 in 2013

are based on this formalism to create a spatio-temporal descriptor for human action recognition.

Their descriptor is based on two polynomial transformations: Spatial transformation is defined

by projecting of displacement fields on a bivariate orthogonal polynomial basis and the temporal

transformation is defined by projecting the temporal evolution of spatial polynomial coefficients

on the univariate polynomial dimension basis.

2.2 Texture Modeling Methods

For a dynamic texture (DT) classification, several studies were carried out in the literature in var-

ious applications like video indexing,17 spatial-temporal segmentation,18 synthesis videos,19 etc.
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They can be defined as a varying spatio-temporal phenomenon and having a spatial and temporal

repeatability. Among the recent techniques developed for DT recognition, Xu et al20 have pro-

posed a model based on a dynamic Fractal analysis to model DT with a multi-slice volumetric

and dynamic Fractal spectrum. In,21 Zaho et al. proposed a method for dynamic texture recogni-

tion. Their approach is based on modeling of texture with the LBP22 in space-time volume. LBP

method is also used in23 to solve the unreliable information problem of LBP features by applying

a Principal Histogram Analysis and a super histogram of each of all LBP histograms patch.

In more recent work, few authors were able to develop a descriptor that can classify the global

video actions whatsoever human actions or dynamic textures. In24 Ehsan et al used a directional

spatio-temporal oriented gradients over nine symmetric planes for the classification of dynamic

textures, human gestures and human actions. They proved the relevance of their descriptor and

compared their method with the majority of descriptors existing in the action classification field.

Another method was based on non-linear Stationary Subspace Analysis to separate a stationary

part of the video from its non-stationary parts as proposed by Mahsa et al in.25 Their technique is

used especially for signals and has adapted to the video action classification.25

2.3 Texture Extraction Models

Yves Meyer26 has proposed a model of image decomposition using the algorithm of Rudin-Osher-

Fatemi.27 According to this model, an image is split in two parts, one containing the structure u,

the other one containing the texture u. The result is provided by the minimization of the functional

F(u, v) = ‖f‖F + λ ‖g‖G (12)

7



where f ∈ F , g ∈ G and λ is the parameter of the model. More precisely, F is the space

of functions with bounded variations and G the space of oscillating functions with the property

that more a function is oscillating, more its standard norm ‖g‖G will be low. This model can be

solved numerically due to the formulation proposed in J-F.Aujol,28, 29 by the introduction of an

additional parameter µ corresponding to the maximum norm of textures in the space G. The use

of non-linear projectors defined by A.Chambolle30 provides the decomposition of the image by an

iterative algorithm (see28, 29 for more details).

A. Buades31 has created a method that, as we know, is the fastest and most efficient implemen-

tation of the theory given Yves Meyer.26 It is a fast approximate solution to the original variational

problem obtained by applying non-linear filtering to the image. For each image pixel, a decision

is made whether it belongs to the geometric part or to the texture part. This decision is made by

computing a local total variation of the image around the point, and comparing it to the local total

variation after a low pass filter has been applied. In fact, edge points in an image tend to have a

slowly varying local total variation when the image is convoluted by a low pass filter while textural

points instead show a strong decay of their local total variation. After the selection of the points be-

longing to the geometrical part, the texture part is considered as the difference between the original

image and the geometrical part. (See Figure 1 for image decomposition with Buades31 method).

In fact, there is no unique decomposition and the algorithm relies on an important parameter, the

scale parameter which is directly related to the granularity of textures distinguished.

3 Action Recognition Method

In this section, we describe our algorithm based on the polynomial transform and used for classi-

fication of videos. Firstly, we define the multiscale/multiresolution decomposition used to reduce
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(a) (b) (c)

(d) (e) (f)

Fig 1 A. Buades method with scale parameter set to 3 : (a and d) original images, (b and e) images of geometry, (c
and f) images of texture.

video resolution. Then, we introduce our polynomial image decomposition method32 to decom-

pose a color image into geometry and texture component by projecting the image on a bivariate

polynomial basis and considering the geometry component as the partial reconstruction and the

texture component as the remaining part. Finally, we define how to model the features extracted

from the reduced image to construct a hybrid polynomial motion texture video descriptor.

3.1 Polynomial Transform

Now we describe the Polynomial Transform algorithm which is founded on piecewise discrete

polynomial approximation and the principle of Wavelet Packet. At a given level of this multires-

olution transform, lets consider a function U defined on a domain Ω of size n1 × n2, and a basis

BM,ω defined on a support M of size h1 × h2, the transform process is defined as follows :

1. definition of a covering set of the discrete domain Ω with sub-domains ΩM of size h1 × h2

2. for each sub-domain ΩM , projection of the corresponding restriction UM in the basis BM,ω
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that provides the coefficients bM,d1,d2 = 〈UM |Bd1,d2〉ω

3. for all pair (d1, d2) the reordering of the global set of coefficients bM,d1,d2 into h1 × h2 new

functions Ud1,d2 defined on domains of size n1|h1 × n2|h2

(a) (b)

Fig 2 First level of Polynomial Transform : (a) original image and (b) 4× 4 Hermite complete basis transform

This method provides some flexibility especially in the choice of the resolution factors, depending

of the sub-domains size and of their offset, the transform can be perform with juxtaposed or over-

lapped sub-domains. Moreover, the choice of the weighting function ω allows, at the same time,

to perform a multi-scale and a multiresolution transformation. As an illustration, Figure 2 shows

an example of a first level transformation using a 4× 4 Hermite complete basis.

3.2 Image Decomposition by Partial Reconstruction

A Polynomial Transform performed with a complete basis is perfectly reversible. However, it is

possible to obtain many kind of approximations by selecting the coefficients during the reconstruc-

tion phase, i.e. partial reconstruction. This choice of coefficients may follow various strategies,

among them we have : (a) brutal restriction to a given subset, for example the polynomials of de-

gree less than a threshold; (b) restriction based on energies, for example by using the normality of

the basis to assimilate the absolute value of its coefficients to a part of the energy of a sub-domain,
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then sort the coefficients and finally retain a fixed number of these coefficients or those satisfying

a certain condition (cf. Principle Component Analysis (PCA)).

In our case, to decompose the image into geometric and texture component, we assume that

the geometrical part is given by a partial reconstruction Ĩ of the original image I in an overlapped

Polynomial Transform context. As seen before, this transform is very flexible, so there are many

conceivable solutions. In order to get a compromise between quality and computation time, we

choose to use an Hermite basis, to set the sub-domain size to 3 × 3, with an offset of 2, and to

select the three dominant coefficients for each sub-domain. The partial reconstruction of a color

image I = (Ij)j=1···3, i.e. the construction of the geometrical part, can then be summarize by

Ĩj(x) =
1

c(x)

∑
{ΩM3x}

Ψ(ΩM)ω(xM)
∑

(d1,d2)∈Pj,M

bj,d1,d2(Ij,M)Bd1,d2(xM)

 (13)

where x is a point referring to the global image domain Ω, xM is the same point referring to a given

sub-domain ΩM , Ij,M the restriction of Ij to sub-domain ΩM , Pj,M the set of selected polynomials

for Ij,M approximation, ω the weighting function of the scalar product and bj,d1,d2 the coefficient of

the projection of Ij,M on the basis polynomial Bd1,d2 . A degree of anisotropy Ψ(ΩM) is assigned

to each sub-domain ΩM and c(x) is the sum of x contributions, c(x) =
∑
{ΩM3x}Ψ(ΩM)ω(xM).

The degree of anisotropy is evaluated according to

Ψ(ΩM) =
1

1 + λr
(14)

where λ is the largest eigenvalue of a color structure tensor composed with the approximations of
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partial derivatives, projections on the basis polynomials of degree one

S =


∑

j (bj,1,0)2 ∑
j bj,1,0 bj,0,1∑

j bj,0,1 bj,1,0
∑

j (bj,0,1)2

 (15)

The balance between isotropic and anisotropic reconstruction is adjust by the parameter r that

controls the degree of anisotropy in a range of 0.25 for isotropic (gaussian) to 2 for highly isotropic.

By doing that, we assure a real color process and avoid marginal treatment deficiencies. Finally,

the texture component IT is simply deduce from the partial reconstruction by considering that it is

the residual part of the image

IT = I − Ĩ (16)

The results of image decomposition into geometry and texture components by partial reconstruc-

tion after an Hermite Polynomial Transform as defined in equation(13), with the parameter r of

equation (14) set to 0.75, are shown in Figure 3.

(a) (b) (c)

(d) (e) (f)

Fig 3 Our decomposition method with r = 0.75 : (a and d) original images, (b and e) images of geometry, (c and f)
images of texture.
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3.3 Construction of Video Descriptor

Our video descriptor is based on the modeling of motion and texture information that define the

dynamic of the objects from video scene. The motion feature has been chosen because it defines a

very important source of visual information. It provides information about the three-dimensional

structure of the scene, the trajectory of objects and the activity occurring in the scene. Estimation

of all this information requires a precise and relevant measurement of motion in image sequences.

To do this, we start by extracting the motion, notably optical flow, with a method based on color

structure tensor,33 that describes the average local information of orientations and preserves the

structure of the motion. A structure tensor corresponds to the product of the gradient vector by

its transposed vector. Also, if one is located in a three-dimensional space, the corresponding

structure tensor is a real symmetric matrix 3 × 3. The color structure tensor can be constructed

by a global displacement tensor from the individual component tensors34(e.g. displacement tensor

for each color component). This method allows to evaluate the co-variance between successive

frames by describing the spatio-temporal structure of a given neighborhood. In addition, it provides

information relative to the local velocity.

Depending on the good results obtained from the use of Polynomial transform for image de-

composition, we intended to develop a classifier for dynamic texture relying on the modelization

of texture and motion. To achieve this, we introduced a new algorithm based almost entirely on the

projections into polynomial basis in all its stages and summarized as : pretreatment step, primitives

extraction step and primitives modeling step.

For a pretreatment step, we have solved the problem of using video database of large sizes

thanks to a multiresolution/multi-scale decomposition as defined in the subsection (3.1) extended
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(a) (b)

Fig 4 A three-dimensional multiresolution decomposition : (a) A 3D volume with size 288 × 352 × 8, (b) Reduced
image after a multiresolution decomposition by projecting (a) into a three-dimensional Hermite basis with degree
dB = 1 and support 3× 5× 8 (a patch of color blue).

in 3 dimensions. That which allowed us to reduce the video resolution and therefore reduce the

computing time to build the descriptive vector so it can be used within a system of dynamic texture

recognition. According to these transformations, we obtain an image representation with different

scales as shown in Figure 2 for the two dimensional case. In our case, we arrived to represent a

video block of 288 × 352 × 120 to images sequences fairly small of size 71 × 96. This can be

achieved by projecting the video block into a trivariate polynomial basis with patch 5 × 3 × 8 as

shown in Figure 4, which is why the concept of reducing the image size has been introduced.

For the primitive extraction step, we applied the image decomposition method defined in the

subsection (3.2) on the reduced image sequences to extract the texture primitive. The motion is

extracted directly on the original reduced image sequences by applying the color structure tensor

method. Finally, the extracted texture component as well as the motion fields (u, v) would be

projected thereafter on a two-dimensional Hermite basis and concatenated into descriptive vector

for each video sequence as shown in Figure 5.
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4 Experimental Results

To evaluate the effectiveness and robustness of our approach, we consider two difficult visual tasks

of action recognition, namely the classification of dynamic textures and recognition of human

actions represented respectively by two databases Dyntex++35 and Weizmann36 (see Figure 6). A

support vector machine with Libsvm library and a radial basis function (RBF) kernel is trained for

classification.37

4.1 Human Action Recognition

In order to classify the human actions, we use the Weizmann database outcome of the work of

Gorelick and al,36 which is constituted of videos of a single person, consisting of 10 classes of

human actions and performed by 9 different persons. This database is widely used by many authors

for the validation of their results. We have chosen this database because it is relatively simple to

study as the background of the video is relatively constant on all the videos. In addition, the actions

are carried with a static camera (e.g. there is no camera motion or change of illumination).

There are two basic versions of Weizmann databases in the literature: A standard database of

basic 10− classes and a smaller version that does not include skipping class (Weizmann database

with 9 classes). In our approach, we use these two databases and we apply the procedure shown

Fig 5 Spatial Polynomial Motion texture descriptor(SPMT)
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(a) (b) (c)

(d) (e) (f)

Fig 6 Example of video action databases : (a) bend , (b) jump and (c) run for Weizmann databases. (d) Blossoming
tree in the wind, (e) flag and (f) underwater life Dyntex++ databases.

Fig 7 The recognition rate versus the support size of 3D Hermite basis for a multiresolution step in Weizmann dataset.

in Figure 5 for each video sequence. Similar to,38 all experience is performed using leave-one-out

strategy. Figure 7 shows the average recognition rate relative to the size of the patch S1, S2 and S3

for multiresolution decomposition step (where S1 = S2 = S3 = 3 in this case). The results of the

classification are shown in Table 1.

Since we need polynomials coefficients b0,0,0, one can use a trivariate basis of degree dB = 1

in order to reduce the resolution size of the images and finally to have the most minimal execution

time in multiresolution step. In order to get a compromise between quality and computation time
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Table 1 Classification results of the Weizmann database

Class
number

Method Accuracy
(%)

10 classes

Fusion (Gabor filter + LBP + HOG)38 97, 8
LBP-Top (Local Binary Patterns on Three Orthogonal Planes)21 95, 6
SIFT-3D (Scale Invariant Feature Transform)39 82, 6
HOG-3D (Histogram of Oriented Gradients 3D)5 84, 3
OF+CTM (Optical Flow and Correlated Topic Model )40 89.20
HOG-NSP (Histogram of Oriented Gradients with Nine Symme-
try Planes)24

95, 9

Our approach 100

9 classes
LBP-Top21 98, 7
Fusion38 100
Our approach 100

in the texture extracting step, we choose to use a Hermite basis, to set the sub-domain size to 5×5,

with an offset of 2. Subsequently, we model the U and V of motion and T of texture by projecting

them into a two-dimensional basis with the following settings:

• S1 = (height of image)/3 and S2 = (width of image)/3.

• dBU,V
= 6 and dBT = 4.

where dBU,V
and dBT are the degree of the two-dimensional basis to model U ,V and T respectively.

Fig 8 The recognition rate versus the image overlap in multiresolution decomposition step applied to Dyntex++
database.
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4.2 Recognition of Dynamic Textures

To illustrate the efficiency of our method, we will use it in a dynamic texture classification scheme

which is among challenging research themes in the image analysis field. The database used in

our application is Dyntex ++ database35 which is an improved version of the Dyntex database.41

Because it is composed of images that represent the textures in motion, it seems appropriate for the

present study. Since the videos are not evenly distributed among the 36 classes in this database, we

used the same experimental setting as that in42 in the evaluation (e.g without converting the video

sequences in grey level) to have the same sequence number of each class. We finally have 3600

dynamic textures, grouped into 36 classes and each sequence have a size of 50 × 50 × 50 pixels.

Thereafter, the data were randomly split into two equal size training and test sets. The random split

was repeated 10 times and the average classification accuracy is reported in Table (2).

In the step of multiresolution decomposition, we project each sequence on a trivariate polyno-

mial basis of degree dB = 1 with a patch of size 3× 3× 8 with overlapping temporal of 2 images

to reduce the images sizes 16 × 16 instead of 50 × 50. Then, in the texture extracting step, the

best results are obtained by projecting the reduced images into a Hermite bivariate basis of degree

dB = 2 and a patch S1 = 3, S2 = 3. Finally, the features extracted such as motion (U and V )

and texture (T ) are modeled by projecting them into a Hermite bivariate basis with the following

parameters:

• S1 = height of image and S2 = width of image.

• dBU,V
= 2 and dBT = 2.

The average recognition rate relative to overlap image number and the size of the patch for mul-

tiresolution step are shown respectively in Figure 8 and Figure 9.
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Fig 9 The recognition rate versus the support size of 3D Hermite basis for multiresolution step in Dyntex++ database.

Table 2 Classification results for Dyntex++ database.

VLBP (Volume Local Binary Patterns)43 61.1%

SIFT-3D (3 Dimensional Scale Invariant Feature Transform)39 63.7%

LBP-TOP(Local Binary Patterns on Three Orthogonal Planes)21, 24 71.2%

DFS (Dynamic Fractal Spectrum)20 89, 9%

HOG-NSP (Histogram of Oriented Gradients with Nine Symmetry Planes)24 90, 1%

NLSSA (Non-Linear Stationary Subspace Analysis)25 92.4%

Our method32 93, 13%

From Table 1, we can see that our descriptor is much better than the methods very well known

in the field of recognition of human action. We can also see in Table 2 that the descriptor is robust-

ness with the database Dyntex++ where the recognition rate can be ranked among the best rates

found in recent methods dealing with the classification of dynamic textures. As a final evaluation,

we compare the computational time of our motion texture descriptor against other state-of-the-art

video descriptors such as HOG-NSP,24 3D-SIFT39 and LBP-TOP21, 23 on a set of videos with res-

olution 160 × 120. For our descriptor, experiments were developed in C++/Matlab environment

and performed on an Intel 2.40GHz, whereas for all other descriptors, their experiences are devel-

oped and mentioned in.23 Table 3 presents the average run-time for all descriptors. The proposed

descriptor is more than 5, 5s times faster than LBP-TOP, HOG-NSP, 3D-SIFT and Morphological
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Table 3 Average run-time (sec) for computing of our descriptor, LBP-TOP21, 23 , HOG-NSP24 and 3D-SIFT39 descrip-
tors on a video with 160× 120.

Descriptor Our Descriptor LBP-TOP HOG-NSP 3D-SIFT MCA
Run-time (s) 5, 5 7, 4 8, 6 74, 7 7200

Component Analysis MCA44 because all main computations can be realized through convolutions.

Besides that, the computational time with MCA is around 2 hours, it serves to decompose an video

of the Dyntex database41 into geometric and texture component with size 648× 540 on a classical

computer, which is equal to 3, 65s if we use our polynomial decomposition method.

5 Conclusion

In this paper, we have proposed a new approach for texture extraction from color image sequence,

by using Polynomial Transformations. Partial reconstruction and global approximation are used

to build descriptors used in a classification process of dynamic textures. In addition to the sim-

plicity of implementation, we provide a computing time which is especially fast compared to most

of methods based on the theory of Yves Meyer due to the cost of the minimization of the total

variation. The experimental results show that the proposed approach achieves a very good recog-

nition rate for the Dyntex++ database. This shows the relevance of our texture extraction method

in the context of classification of dynamic textures. In some future, we will continue to improve

our image decomposition method in order to extract the noise coefficients ignored in the partial

reconstruction of the image. We will also investigate the abilities of a derived method which only

relies on three dimensional transformations in our classification process of dynamic textures.
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