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Hemodynamic-Informed Parcellation of fMRI

Data in a Joint Detection Estimation

Framework
Lotfi CHAARI, Solveig BADILLO, Thomas VINCENT, Ghislaine DEHAENE-LAMBERTZ,

Florence FORBES and Philippe CIUCIU

Abstract

Identifying brain hemodynamics in event-related functional MRI (fMRI) data is a crucial issue

to disentangle the vascular response from the neuronal activity in the BOLD signal. This question is

usually addressed by estimating the so-called Hemodynamic Response Function (HRF). Voxelwise or

region-/parcelwise inference schemes have been proposed to achieve this goal but so far all known

contributions commit to pre-specified spatial supports for the hemodynamic territories by defining these

supports either as individual voxels or a priori fixed brain parcels. In this paper, we introduce a Joint

Parcellation-Detection-Estimation (JPDE) procedure that incorporates an adaptive parcel identification

step based upon local hemodynamic properties. Efficient inference of both evoked activity, HRF shapes

and supports is then achieved using variational approximations. Validation on synthetic and real fMRI

data demonstrates the JPDE performance over standard detection estimation schemes and suggests it as

a new brain exploration tool.

I. INTRODUCTION

Within-subject analysis in event-related BOLD fMRI mainly relies on (i) the detection of evoked activity

to localize which parts of the brain are activated by a given stimulus type, and on (ii) the estimation of

the dynamics of the brain response also known as the Hemodynamic Response Function (HRF). Most

approaches to detect neural activity rely on a single a priori HRF model for the whole brain although

there has been evidence that this response can vary between cortical regions and across subjects [1] and
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that an accurate HRF model may significantly improve detection performance. To capture this variability,

robust HRF estimation is necessary which can be achieved only in voxels or regions that elicit an evoked

response to a given stimulus [2]. So far, many works have addressed this issue either by considering

linear or nonlinear HRF models [3–5], parametric, semi-parametric or non-parametric (i.e. FIR models)

descriptions [6–8], and by performing univariate (voxelwise) [4, 7], multivariate (regionwise) [9, 10] or

even multiscale, i.e. spatially adaptive inference [11]. However, to the best of our knowledge, all these

existing works assume the spatial support of the HRFs, either defined at the voxel or region-level, to be

pre-specified. The proposed methodology takes place in the Joint Detection-Estimation (JDE) framework

introduced in [9] and extended in [10, 12, 13] to account for spatial correlation between voxels. Standard

JDE-based inference requires a pre-specified decomposition of the brain into functionally homogeneous

parcels (groups of connected voxels) but with no guarantee of their optimality. These parcels should be

small enough to guarantee the invariance of the HRF within each parcel, but large enough to contain

reliable information for its inference [14]. Several attempts have been conducted to provide a robust

parcellation such as in [15–19]. However, these approaches do not fully account for hemodynamics

variability. Here, we introduce the concept of hemodynamic territory as a set of parcels which share a

common HRF pattern. To determine such sets, we incorporate an additional layer in the JDE hierarchy,

namely an adaptive parcel identification step based upon local hemodynamic properties. In this novel Joint

Parcellation-Detection-Estimation (JPDE) model (Section II), for all the parcels of a given territory, HRFs

are voxelwise but defined as local stochastic perturbations of the same HRF pattern. Then, hemodynamics

estimation reduces to the identification of a limited number (say K) of such HRF patterns and parcel

identification reformulates as a clustering problem where each voxel is assigned an HRF group among

K. The HRF group assignment variables are governed by a hidden Markov model to enforce spatial

correlation, i.e. favor group assignments that are spatially homogeneous. Finally, the overall scheme

iteratively identifies hemodynamic territories as pairs of one HRF pattern and a set of parcels assigned

to the corresponding HRF group.

The proposed approach thus makes the JDE framework fully adaptive and more flexible. It is based

on a variational Expectation Maximization (EM) algorithm (Section III) to derive estimates of the HRF

patterns, the response amplitude, the corresponding labels (activating/non-activating voxels) and the HRF

group labels. Results on artificial and real fMRI data demonstrate that the JPDE approach outperforms

the standard JDE (see Section IV).
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II. A JOINT PARCELLATION-DETECTION-ESTIMATION MODEL

A. Observed and missing variables

We extend the parcel-based JDE model of [9, 10] to a whole-brain one, with a set of J voxels denoted by

V , and recast it in a missing data framework. The resulting model is referred to as the Joint Parcellation-

Detection-Estimation model (JPDE). At voxel j, the fMRI time series yj is measured at times {tn, n =

1:N}, where tn = nTR, N being the number of scans and TR the time of repetition. The whole set

of time series is denoted by Y = {yj , j ∈ V}. The number of different stimulus types or experimental

conditions is M . At each voxel j, we assume a voxel dependent HRF hj ∈ RD+1 with H = {hj , j ∈ V}
the set of all HRFs. Each hj is associated with a HRF group among K. These groups or HRF classes

are specified by a set of hidden labels Z = {zj , j ∈ V} where zj ∈ {1 : K} and zj = k means that

voxel j belongs to the k-th group. An estimation of Z corresponds then to a partition of the brain into

K hemodynamic territories whose connected components define a parcellation. The link to the observed

BOLD data is specified via the following forward model:

yj = Sjhj + P`j + bj , with Sj =

M∑
m=1

amj Xm (1)

where Sjhj is the summation of the stimulus-induced components of the BOLD signal. The binary matrix Xm =

{xtn−d∆t
m , n = 1 . . . N, d = 0 . . . D} is of size N × (D+ 1) and provides information on the stimulus occurrences

for the m-th experimental condition, ∆t < TR being the sampling period of the unknown HRFs. The scalar amj ’s

are weights that model the transition between stimulations and the neuro-vascular response. They are generally

referred to as Neural Response Levels (NRL). We denote by A = {am,m = 1 : M} with am =
{
amj , j ∈ V

}
the

response amplitudes, amj being the amplitude at voxel j for condition m. Similarly to the HRF’s, each NRL is

assumed to be in one of I groups specified by activation class assignment variables Q = {qm,m = 1 : M} where

qm =
{
qmj , j ∈ V

}
and qmj represents the activation class at voxel j for condition m. The number of classes

considered here is I = 2 for non-activated (i = 0) and activated (i = 1) voxels. Finally, the rest of the signal is

made of vector P`j , which corresponds to low frequency drifts with P a N ×O matrix, `j ∈ RO a vector to be

estimated and L = {`j , j ∈ V}. Regarding the observation noise, the bj’s are assumed to be independent with

bj ∼ N (0,Γ−1
j ). The set of all unknown precision matrices is denoted by Γ = {Γj , j ∈ V}.

B. Hierarchical model of the complete data distribution

With standard additional assumptions [9, 10, 12, 13], the joint model distribution writes

p(Y ,A,H,Q,Z) = p(Y |A,H) p(A |Q) p(Q) p(H |Z) p(Z).

In the above expression, parameters have not been specified for simplicity. Each term in the product is

then defined as follows.
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Fig. 1. Graphical model describing dependencies between latent and observed variables involved in the JPDE generative model

with J voxels. Circles and squares indicate random variables and model parameters, respectively. Observed variables and fixed

parameters are shaded. We used standard graphical notations where plates represent multiple similar nodes with their number

given in the plate.

TABLE I

ACRONYMS USED IN THE JDE MODEL PRESENTATION AND INFERENCE.

Acronym Definition

JDE Joint Detection-Estimation

HRF Hemodynamic Response Function

FIR Finite Impulse Response

NRL Neural Response Level

PPM Posterior Probability Map

TTP HRF Time-to-Peak: ∆t× arg max
d

{hd∆t}d=0:D

1) Likelihood:

Akin to [9, 12, 13, 20], an autoregressive (AR) noise model has been adopted to account for serial

correlations in fMRI time series. We will assume a noise model bj ∼ N (0,Γ−1
j ) with Γj = σ−2

j Λj

where Λj is a tridiagonal symmetric matrix which depends on the AR(1) parameter ρj [9]: (Λj)1,1 =

(Λj)N,N = 1, (Λj)n,n = 1 + ρ2
j for n ∈ {2 : (N − 1)} and (Λj)n+1,n = (Λj)n,n+1 = −ρj for

n ∈ {1 : (N − 1)}. These parameters are assumed voxel-specific due to their tissue-dependence [7, 21].
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TABLE II

NOTATIONS FOR VARIABLES AND PARAMETERS USED IN THE MODEL FOR A SET V OF J VOXELS.

Notation Definition Dimension
V

ar
ia

bl
es

yj ∈ RN Observed BOLD signal at voxel j N

Y = {yj , j ∈ V} ∈ RJ×N Observed BOLD signals J ×N

bj ∈ RN Acquisition noise vector at voxel j N

hj = {hd∆t, d = 0 : D} ∈ RD+1 HRF sampled at ∆t D + 1

H = {hj , j ∈ V} ∈ RJ×(D+1) HRFs J × (D + 1)

amj ∈ R NRL at voxel j for condition m 1

am = {amj , j ∈ V} ∈ RJ NRLs for condition m J

A = {am,m = 1 : M} NRLs M × J

qmj ∈ {0, 1} Activation class for voxel j and condition m 1

qm = {qmj , j ∈ V} ∈ {0, 1}J Activation classes for condition m J

Q = {qm,m = 1 : M} Activation classes M × J

zj ∈ {1 : K} HRF group for voxel j 1

Z = {zj , j ∈ V} HRF groups J

U
nk

no
w

n
Pa

ra
m

et
er

s

`j ∈ RO Low frequency drifts for voxel j O

L = {`j , j ∈ V} Low frequency drifts J ×O

Γj ∈ RN×N Noise precision matrix for voxel j N ×N

Γ = {Γj , j ∈ V} Noise precisions matrices J ×N ×N

µm = {µm0, µm1} ∈ R2 Mixture model means for NRLs in condition m 2

µ = {µm,m = 1 : M} NRLs means M × 2

vm = {vm0, vm1} ∈ R2
+ Mixture model variances for NRLs in condition m 2

v = {vm,m = 1 : M} NRLs variances M × 2

βm ∈ R+ Potts regularization parameter for condition m 1

β = {βm,m = 1 : M} regularization parameters M

βz ∈ R+ Potts regularization parameter for HRF groups 1

ν = {νk, k = 1 : K} ∈ RK
+ HRF prior parameters (isotropic covariances) K

h̄ = {h̄k, k = 1 : K} ∈ R(D+1)×K HRF patterns (D + 1)×K

σ2
h ∈ R+ HRF smoothing parameter 1

Fi
xe

d Xm ∈ {0, 1}N×(D+1) Binary stimulus occurrence matrix for condition m N × (D + 1)

P ∈ RN×O Low frequency orthonormal function basis N ×O

Denoting yj = yj − P`j − Sjhj , the likelihood can be factorized over voxels as follows:

p(Y |A,H;L,Γ) ∝
∏
j∈V

detΛ
1/2
j σ−N

j exp
(
−
yt

jΛjyj

2σ2
j

)
. (2)

2) Neuronal response levels:

The NRLs are assumed to be statistically independent across conditions: p(A;θa) =
∏M
m=1 p(a

m;θm)
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where θa = {θm,m = 1 : M} and θm gathers the parameters for the m-th condition. A mixture model

is then adopted by using the allocation variables qmj to segregate non-activated voxels (qmj = 0) from

activated ones (qmj = 1). For the m-th condition, and conditionally to the assignment variables qm,

the NRLs are assumed to be independent: p(am | qm;θm) =
∏
j∈V p(a

m
j | qmj ;θm) with p(amj | qmj =

i;θm) ∼ N (µmi, vmi) and θm = {µmi, vmi, i = 0, 1}. We also denote µ={µmi,m = 1 : M, i = 0, 1}

and v = {vmi,m = 1 : M, i = 0, 1}. For non-activating voxels (i = 0) we set µm0 = 0, for all

m = 1 : M . The other parameters are unknown and have to be estimated.

3) Activation classes:

As in [10], we assume prior independence between the M experimental conditions regarding the

activation class assignments. It follows that p(Q) =
M∏
m=1

p(qm;βm) where we assume in addition that

p(qm;βm) is a Markov random field, namely a Potts model. Such prior modeling assumption is consistent

with the physiological properties of the fMRI signal where the activity is known to be correlated in

space [7, 22]. Here, the prior Potts model with interaction parameter βm [10] is expressed, omitting the

intractable normalizing constant, as:

p(qm;βm) ∝ exp
(
βmU(qm)

)
with U(qm) =

∑
(j,j′)∈V2,j∼j′

I(qmj = qmj′ ) (3)

and where for all (a, b) ∈ R2 , I(a = b) = 1 if a = b and 0 otherwise. The notation j ∼ j′ means that

the summation is over all neighboring voxels. The neighboring system may cover a 3D scheme through

the brain volume. The unknown parameters are denoted by β = {βm,m = 1 : M}. In what follows, we

will consider a 6-connexity 3D neighboring system.

4) HRF groups: In order to promote parcellation connexity, we also introduce here a spatial Markov

prior, namely a K-class Potts model with interaction parameter βz:

p(Z;βz) ∝ exp
(
βzU(Z)

)
with U(Z) =

∑
(j,j′)∈V2,j∼j′

I(zj = zj′). (4)

It results from the above model that neighboring voxels tend to belong to the same HRF group, sharing

thus the same HRF pattern.

5) HRF patterns: In contrast to [9, 10, 13] where a unique HRF shape is considered for a whole

parcel, the distribution of hj is expressed, for each voxel j, conditionally to the HRF group variable zj :

p(H|Z) =
∏
j∈V p(hj | zj) with p(hj | zj = k) ∼ N (h̄k, Σ̄k). Here, the mean vector h̄k can be seen

as the HRF pattern for group k and Σ̄k regulates the stochastic perturbations around h̄k. In practice,

we will consider Σ̄k = νkI(D+1). In addition, smooth h̄k’s are favored by controlling their second order
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derivatives with the following prior: h̄k ∼ N (0, σ2
hR) withR = (∆t)4 (Dt

2D2)−1 where D2 is the

second-order finite difference matrix and σ2
h is a hyperparameter to be estimated or fixed. Moreover,

h̄k0 = h̄kD∆t = 0 as in [9, 10, 13].

Using notation h̄ =
{
h̄k, k = 1 : K

}
and ν = {νk, k = 1 : K}, the parameters are then denoted by

Θ =
{
Γ,L,µ,v,β, βz, σ

2
h,ν, h̄

}
and belong to a set Θ. In the following developments, the h̄k’s will

be considered as random parameters following the prior specified above with hyperparameter σ2
h.

III. VARIATIONAL EM ESTIMATION

We propose to use an EM framework to deal with the missing data A ∈ A, H ∈ H, Q ∈ Q, Z ∈ Z .

From a methodological viewpoint, the adopted approach will be similar to the one in [12, 13]. For the

sake of self contentedness, we recall below the main principle (see also [23]).

A. Variational Expectation-Maximization

Let D be the set of all probability distributions on A × H × Q × Z . EM can be viewed [24] as an

alternating maximization procedure of a function F on D, for all p̃ ∈ D,

F(p̃,Θ) = Ep̃
[
log p(Y ,A,H,Q,Z |Θ)

]
+ G(p̃) (5)

where Ep̃
[
.
]

denotes the expectation with respect to p̃ and G(p̃) = −Ep̃
[
log p̃(A,H,Q,Z)

]
is the entropy

of p̃. This function is called the free energy. It can be equivalently expressed in terms of the log-likelihood

as F(p̃,Θ) = log p(Y |Θ) − KL(p̃ || p(A,H,Q,Z |Y ,Θ)) where KL(p̃ || p(A,H,Q,Z |Y ,Θ)) is

the Kullback-Leibler (KL) divergence between p̃ and p(A,H,Q,Z |Y ,Θ) with

KL(p̃ || p(A,H,Q,Z |Y ,Θ)) =

∫
p̃(A,H,Q,Z) log

p̃(A,H,Q,Z)

p(A,H,Q,Z |Y ,Θ)
dA dH dQ dZ. (6)

Hence maximizing the free energy with respect to p̃ amounts to minimizing the Kullback-Leibler diver-

gence between p̃ and the posterior distribution of interest p(A,H,Q,Z |Y ,Θ). Since the KL divergence

is always non-negative, and because the KL divergence of the posterior distribution to itself is zero, it

follows easily that the maximum free energy over all p̃ ∈ D is the log-likelihood. The link to the EM

algorithm follows straightforwardly. At iteration (r), denoting the current parameter values by Θ(r−1),

the alternating procedure proceeds as follows:

E-step: p̃(r)
A,H,Q,Z = arg max

p̃∈D
F(p̃,Θ(r−1)) = p(A,H,Q,Z |Y ,Θ(r−1))) (7)

M-step: Θ(r) = arg max
Θ∈Θ

F(p̃
(r)
A,H,Q,Z ,Θ) = Ep̃(r)

[
log p(Y ,A,H,Q,Z |Θ)

]
. (8)
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However, the optimization step in Eq. (7) leads to p̃
(r)
A,H,Q,Z = p(A,H,Q,Z |Y ,Θ(r−1)), which is

intractable for our model. Hence, we resort to a variational EM (VEM) variant in which the intractable

posterior is approximated by constraining the space of possible p̃ distributions in order to make the

maximization procedure tractable. In that case, the free energy optimal value reached is only a lower

bound on the log-likelihood. The most common variational approximation consists of optimizing over

the distributions in D that factorize as a product of four pdfs on A, H, Q and Z , respectively.

B. Variational Joint Parcellation-Detection-Estimation

We resort to an iterative variational EM procedure as in [13]. At each iteration (r), with Θ(r−1) denoting

the current parameter values, the intractable posterior p(A,H,Q,Z |Y ,Θ(r−1)) is approximated as a

product of four pdfs, p̃(r)
H , p̃(r)

A , p̃(r)
Q and p̃(r)

Z respectively on A, H, Q and Z . Our E-step becomes then

an approximate E-step, which is decomposed into four sub-steps that consist of updating the four pdfs

above in turn using four equivalent expressions of F when p̃ factorizes. At iteration (r) with current

estimates denoted by p̃(r−1)
H , p̃

(r−1)
A , p̃

(r−1)
Q , p̃(r−1)

Z and Θ(r−1), the updating rules become:

VE-H: p̃
(r)
H = arg max

pH
F(p̃

(r−1)
A pH p̃

(r−1)
Q , p̃

(r−1)
Z ,Θ(r−1))

VE-A: p̃
(r)
A = arg max

pA
F(pA p̃

(r)
H p̃

(r−1)
Q p̃

(r−1)
Z ,Θ(r−1))

VE-Q: p̃
(r)
Q = arg max

pQ
F(p̃

(r)
A p̃

(r)
H pQ p̃

(r−1)
Z ,Θ(r−1))

VE-Z: p̃
(r)
Z = arg max

pZ
F(p̃

(r)
A p̃

(r)
H p̃

(r)
Q pZ ,Θ

(r−1)).

In other words, the factorization is used to maximize the free energy by alternately maximizing it with

respect to p̃H , p̃A, p̃Q and p̃Z while keeping the other distributions fixed. The steps above can then be

equivalently written in terms of minimizations of some Kullback-Leibler divergences. The properties of

the latter lead to the following solutions:

VE-H: p̃
(r)
H (H) ∝ exp

(
Ep̃(r−1)

A p̃
(r−1)
Z

[
log p(H |Y ,A,Z; Θ(r−1)

])
(9)

VE-A: p̃
(r)
A (A) ∝ exp

(
Ep̃(r)H p̃

(r−1)
Q

[
log p(A |Y ,H,Q; Θ(r−1))

])
(10)

VE-Q: p̃
(r)
Q (Q) ∝ exp

(
Ep̃(r)A

[
log p(Q |Y ,A; Θ(r−1))

])
(11)

VE-Z: p̃
(r)
Z (Z) ∝ exp

(
Ep̃(r)H

[
log p(Z |Y ,H; Θ(r−1))

])
. (12)

The corresponding M-step is (since Θ and G(p̃
(r)
A,H,Q,Z) are independent, see Eq. (5)):

VM: Θ(r) = arg max
Θ

Ep̃(r)A p̃
(r)
H p̃

(r)
Q p̃

(r)
Z

[
log p(Y ,A,H,Q,Z; Θ)

]
. (13)
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Compared to [13], this implies adding an E-sub-step for the HRF group assignments (p̃(r)
Z updating)

and specifying its impact on the other E-sub-steps. The E-Q sub-step (p̃(r)
Q updating) is not actually

impacted by the HRF groups addition and can be found in [13]. The E-A sub-step (p̃(r)
A updating) is

also very close to the one involved in [13]: similar updating formulas are obtained by replacing the HRF

of [13] by voxel dependent HRFs.

It follows from standard algebra that at all iterations (r), p̃(r)
H and p̃

(r)
A are both Gaussian distributions:

p̃
(r)
H =

∏
j∈V p̃

(r)
hj

and p̃(r)
A =

∏
j∈V p̃

(r)
aj , where p̃(r)

hj
∼ N (m

(r)
hj
,Σ

(r)
hj

) and p̃(r)
aj ∼ N (m

(r)
aj ,Σ

(r)
aj ). More

specifically, the VE-steps write as follow:

• VE-H step: Developing the right hand side of (9), it comes that the Gaussian p̃(r)
hj

is defined by its

parameters Σ
(r)
hj

= (V1 + V2)−1 and m(r)
hj

= Σ
(r)
hj

(m1 +m2), where

V1 =
∑
m,m′

Σ
(r−1)
aj(m,m′)X

t
mΓ

(r−1)
j Xm′ + S̃t

jΓ
(r−1)
j S̃j ,

V2 =

K∑
k=1

p̃zj (k)(r−1)Σ̄
(r−1)−1
k ,

m1 = S̃t
jΓ

(r−1)
j (yj − P`(r−1)

j ), m2 =

K∑
k=1

Σ̄
(r−1)−1
k p̃zj (k)(r−1)h̄

(r−1)
k .

Above, S̃j =
∑M

m=1m
(r−1)
am
j

Xm and m
(r−1)
am
j

, Σ
(r−1)
aj(m,m′) denote respectively the m and (m,m′)

entries of m(r−1)
aj and Σ

(r−1)
aj .

• VE-A step : This step is similar to the one of the JDE model developed in [13] if we consider a

different HRF per voxel j. Using Eq. (10), standard algebra rules allow to identify the Gaussian

distribution p̃(r)
aj ∼ N (m

(r)
aj ,Σ

(r)
aj ), with

Σ(r)
aj

=

( ∑
i∈{0,1}

∆ij + H̃j

)−1

, m(r)
aj

= Σ(r)
aj

( ∑
i∈{0,1}

∆ijµ
(r−1)
i + G̃tΓ

(r−1)
j

(
yj − P`(r−1)

j

))
,

(14)

where a number of intermediate quantities need to be specified. First, µ(r−1)
i =

[
µ

(r−1)
1i , . . . , µ

(r−1)
Mi

]t

and G̃ = Ep̃(r)H

[
G
]

where G is the matrix G = [g1 | . . . | gM ] made of columns gm = Xmhj . The

m-th column of G̃ is then also denoted by g̃m = Xmm
(r)
hj
∈ RN . Then, ∆ij = diagM

[
p̃

(r−1)
qmj

(i)/v
(r−1)
mi

]
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and H̃j = Ep̃(r)hj

[
GtΓ

(r−1)
j G

]
is an M ×M matrix whose element (m,m′) is given by:

Ep̃(r)hj

[
gt
mΓ

(r−1)
j gm′

]
= Ep̃(r)hj

[
gm
]t

Γ
(r−1)
j Ep̃(r)hj

[
gm′
]

+ trace
(
Γ

(r−1)
j covp̃(r)hj

(gm, gm′)
)

= g̃t
mΓ

(r−1)
j g̃m′ + trace

(
Γ

(r−1)
j XmΣ

(r)
hj
Xt
m′
)
.

• VE-Q step: This step remains conceptually the same as for the JDE model developed in [13] where

no parcellation is estimated online. However, we provide below a slightly different and simpler

presentation. Note also that we have corrected here previous typos on p.6 and Appendix D of [13].

In contrast to [13], we assume from the start that for all m = 1 : M , p̃(r)
qm(qm) =

∏
j∈V

p̃
(r)
qmj

(qmj ) so

that the VE-Q step (11) actually divides into M × J successive sub-steps. More specifically, for

m = 1 : M , each VE-qm step is decomposed into J successive VE-qmj step. It comes, for j ∈ V :

p̃
(r)
qmj

(qmj ) ∝ exp(Ep̃(r)A p̃
(r)

q\m
p̃
(r)

qm\j

[
log p(qmj |Y ,A, qm\j , q

\m; Θ(r−1)
]
) (15)

where qm\j = {qmj′ , j′ 6= j} and q\m = {qm′ ,m′ 6= m}. Keeping only the terms that involve qmj , it

follows,

p̃
(r)
qmj

(qmj ) ∝ exp(Ep̃(r)
am
j

[
log p(amj |qmj ;µ(r−1)

m , v(r−1)
m

]
+ Ep̃(r−1)

qm
\j

[
log p(qmj |qm\j ;β

(r−1)
m

]
) (16)

∝ exp

−1

2
log v

(r−1)
mqmj

− 1

2

(m
(r)
am
j
− µ(r−1)

mqmj
)2 + Σ

(r)
aj(m,m)

v
(r−1)
mqmj

+ β(r−1)
m

∑
j′∈V,j′∼j

p̃
(r−1)
qm
j′

(qmj )

 (17)

For qmj = i, it follows

p̃
(r)
qmj

(i) ∝ N (m
(r)
am
j

;µ
(r−1)
mi , v

(r−1)
mi ) exp

−1

2

Σ
(r)
aj(m,m)

v
(r−1)
mi

+ β(r−1)
m

∑
j′∈V,j′∼j

p̃
(r−1)
qm
j′

(i)

 , (18)

where the Gaussian distribution with mean µmi and variance vmi is denoted by N ( . ;µmi, vmi).

Note that the above expression corresponds to a synchrone updating of each p̃qmj in turn from the

previous p̃(r−1)
qmj

’s. However in practice, as soon as p̃qmj is updated for some j, it will be taken into

account in the following updates of the subsequent p̃qm
j′

for j′ 6= j.

• VE-Z step: As for the VE-Q step, we look for a variational solution of the form p̃
(r)
Z (Z) =∏

j∈V p̃
(r)
zj (zj), which leads to J successive sub-steps performed in turn. For each j ∈ V , and
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k = 1 : K,

p̃(r)
zj (k) ∝ N (m

(r)
hj

; h̄
(r−1)
k , Σ̄

(r−1)
k ) exp

(
−1

2
trace(Σ

(r)
hj

Σ̄
(r−1)−1
k ) + β(r−1)

z

∑
j′∈V,j′∼j

p̃(r−1)
zj′

(k)

)
.

(19)

• VM step: For this maximization step, we can first rewrite Eq. (13) as

Θ(r) = arg max
Θ

[
Ep̃(r)A p̃

(r)
H

[
log p(Y |A,H;L,Γ)

]
+ Ep̃(r)A p̃

(r)
Q

[
log p(A |Q;µ,v)

]
+ Ep̃(r)Q

[
log p(Q;β)

]
+ Ep̃(r)Z

[
log p(Z;βz)

]
+ Ep̃(r)H p̃

(r)
Z

[
log p(H |Z;ν, h̄)

]
+ log p(h̄;σ2

h)
]
. (20)

Note that the prior on h̄ is taken into account in the last term. The maximization step can therefore

be divided into five sub-steps (two additional ones compared to [13]) involving separately (µ,v),

β, βz , (L,Γ), σ2
h and (ν, h̄). For some of the above sub-steps, a closed form can be derived for

the related parameters. For some others, numerical iterative procedures are requested. See [13] and

Appendix A for details.

IV. VALIDATION OF THE PROPOSED APPROACH

A. Validation on synthetic data

1) Case of study: Experiments have been carried out on artificial fMRI data generated according to

Eq. (1). We simulated a random mixed sequence of indexes coding for M = 2 different stimuli composed

of 30 trials each with a time of repetition set to TR = 1s. The resulting sequence was then multiplied

by stimulus-dependent and space-varying NRLs, which were drawn from the prior distribution p(A;θa).

To this end, 2D slices composed of 20 x 20 binary labels qm (activating and non-activating voxels) were

constructed for each stimulus type m (see Fig. 2[top]). Given these labels, the NRLs were simulated as

follows, for m = 1, 2: (amj | qmj = 0) ∼ N (0, 0.5) and (amj | qmj = 1) ∼ N (3.2, 0.5) (see Fig. 5[top]). As

regards HRFs, three groups (K = 3) were considered and spatially organized in three parcels of similar

size (labels Z) as shown in Fig. 3. Within each parcel, all voxels share the same HRF prior parameters

(h̄k, Σ̄k). The mean HRF shapes {h̄k, k = 1 : K} are depicted in Fig. 4 (ground truth) and show strong

fluctuations across parcels in terms of peak positions and widths. Isotropic prior covariance matrices

{Σ̄k = νkID+1, k = 1 : K} were considered to draw voxel-specific HRFs according to p(hj |zj = k)

where νk has been set to 0.02.

November 12, 2015 DRAFT



12

m = 1 m = 2

Ground Truth

JPDE

JDE

Fig. 2. Reference activation labels and Posterior Probability Maps (PPM) for JPDE and JDE (a single parcel is assumed for JDE).

Ground truth Estimated mask Initialization mask

Ì

Ê

Ë Ì

Ê

Ë Ì

Ê

Ë

Fig. 3. Ground truth (left), JPDE estimated (middle) and the initial parcellation (right) masks.

As regards parcellation, Fig. 3[middle] shows the ability of JPDE to recover the spatial support of

hemodynamic territories with high accuracy (1% of misclassified voxels and a DICE index [25] of 0.993)
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from an arbitrary initialization (Fig. 3[right]). The HRF variability does not seem to affect the activation

maps which are equally well estimated in the JPDE and JDE cases (Fig. 2[middle] and Fig. 2[bottom]).

However, a clear difference is seen on the estimated HRFs, which are depicted in Fig. 4 together with

the ground truth: the three parcel-specific HRF estimates using JPDE are plotted in addition to the JDE-

based HRF time course obtained by merging all parcels of the arbitrary initial parcellation. Three JDE

experiments have therefore been conducted, where each of the three ground truth HRFs in Fig. 4 has

been used as global reference HRF in a separate experiment. The estimated HRFs are then compared

to the ground truth and the one estimated with JPDE for the corresponding parcel. It turns out that the

JPDE estimation is accurate for all parcels although the parcels cover different proportions of activation

areas (i.e. the amount of useful signal varies from one parcel to another). In contrast, JDE provides an

intermediate HRF shape that lies between those of the three parcels. This explains the observed differences

between the two models in terms of NRL estimates and points out the JDE sensitivity to the choice of

the a priori parcellation. When the parcellation is imperfect, JDE enforces fitting a wrong HRF model

to the real data, and therefore a wrong activation dynamics. In contrast, JPDE is able to automatically

refine an initial candidate for the parcellation and provides reliable detection and estimation results.

Interestingly, the NRL differences in Fig. 5 (see the JPDE-JDE plots in Fig. 5[bottom]) show that NRL

estimates with JPDE have higher values, which means that JPDE allows retrieving stronger activation

dynamics closer to the ground truth.

The most significant NRL differences lie in parcels 2 and 3 where the JDE HRF estimate differs the

most from the ground truth. In terms of Mean Square Error (MSE), reported values confirm the improved

performance of JPDE over JDE: MSEm=1
JDE = 0.0182 vs MSEm=1

JPDE = 0.0107 and MSEm=2
JDE = 0.0183

vs MSEm=2
JPDE = 0.0141.

2) Robustness study: The aim of this part consists of assessing the robustness of the JPDE model

to the initial conditions. To this end, we first investigated the robustness of JPDE to the input SNR in

terms of estimation error on the output NRLs. We then investigated the robustness of JPDE to the initial

parcellation in terms of DICE coefficient for the estimated output parcellation. These first two experiments

were conducted on 50 Monte Carlo (MC) runs in order to compute mean estimate and standard deviations

values. A third set of experiments was designed to measure the impact of the overlapping percentage

between the parcellation and activation maps in order to study how the presence of activations within

each parcel helps achieving good parcellation results.

a) Robustness to input SNR: In this experiment, 50 MC simulations have been used to evaluate the

output MSE on estimated NRLs for five different input SNR values. Fig. 6 shows the evolution of the

November 12, 2015 DRAFT



14

%
∆

B
O

L
D

si
gn

al h̄1

Time (s)

%
∆

B
O

L
D

si
gn

al h̄2

Time (s)

%
∆

B
O

L
D

si
gn

al h̄3

Time (s)
Fig. 4. Reference and estimated HRF patterns {h̄k, k = 1 : K} for K = 3 parcels using JPDE and JDE.
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m = 1 m = 2

Ground truth

JPDE

JDE

JPDE-JDE

Fig. 5. Reference and estimated NRLs using JPDE (3 parcels) and JDE (1 parcel).
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mean MSE on estimated NRLs in addition to the standard deviation over this mean value with respect

to the input SNR. Mean MSE and standard deviations are displayed separately for each experimental

condition m. Our results indicate low error level on estimated NRLs. The obtained curves also show that

the standard deviation around the mean estimated value decreases as well as this mean value as soon as

the input SNR increases. These results are consistent with those observed in out previous work on the

JDE model [13]. Note that for this experiment, a 3-parcel model has been used with the same ground

truth parcellation and activation masks in Fig 3 and Fig 2, respectively.

M
SE

SNR (dB)

Fig. 6. Evolution of the mean MSE and standard deviation on estimated NRLs with JPDE, for 5 different input SNR values

and for the two experimental conditions.

b) Robustness to initial parcellation: Here, we investigated the sensitivity of the proposed JPDE

model to the initial parcellation mask. The accuracy of the parcellation mask, which was given as input

to JPDE, may actually have a strong impact on the final estimate of the parcellation. The accuracy

was measured in terms of DICE coefficients for each estimated mask. More specifically, different DICE

levels between the ground truth and the initial parcellation have been tested to cover a large number

of situations. Over 50 MC runs, for each DICE level, different initial parcellation masks were given to

the JPDE algorithm. These masks were generated in a pseudo-random way so as to guarantee a random

border between two parcels in a 2-parcel model, while approximately ensuring connexity and the same

DICE coefficient value for each such generated mask. Fig. 7 shows a reference parcellation mask and

three examples of generated masks with two parcels, all sharing approximately the same value of DICE
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coefficient. More details about this pseudo-random synthesis are given in Appendix B.

Reference

Realization 1 Realization 2 Realization 3 Realization 4

Dice = 0.37

Dice = 0.65

Dice = 0.84

Fig. 7. Reference parcellation mask (top row) and pseudo-randomly generated parcellations with a 2-parcel model. Displayed

masks for three DICE coefficient groups. Each row illustrates different generated masks sharing the same DICE coefficient.

Fig. 8 shows the DICE coefficient (mean value and standard deviation) for the estimated parcellation

with respect to the DICE level for the initial parcellation. Through the illustrated curve, one can easily

notice that the output mean DICE value increases with the input DICE, which was expected since an

accurate initialization naturally leads to an accurate final estimate. As regards standard deviations around

the mean DICE values, they remain almost the same. One can notice a slightly higher standard deviation

value for the second mask (DICE=0.65). This could be explained by the fact that the red parcel of this

example mainly covers an activated area from the first experimental condition (m = 1). The pseudo-
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random generation for this example can then involve more or less activated voxels from the second

experimental condition (m = 2). This coverage effect is addressed in the following section.

O
ut

pu
t

D
IC

E

Input DICE

Fig. 8. Output DICE coefficient for the estimated parcellation with respect to the input DICE over 50 MC runs for the three

initial parcellation masks in Fig. 7 .

c) Activation coverage: Next, we investigated the impact of the amount of activations inside target

parcels. Owing to the hierarchical model adopted for JPDE, parcels are estimated (parcellation task) from

the HRF patterns (estimation task), which are strongly linked to the accuracy of detected activations (de-

tection task). These three tasks are thus strongly linked one to the other within the JPDE formulation.

For this reason, and as already shown in previous works on the standard JDE model [9, 10, 13], precise

HRF estimation is mainly expected in activated brain areas, and vice versa, improved activation detection

should be achieved from more accurate HRF estimates. In the same vein, precise delineation of parcels is

mainly expected if the latter embed evoked brain activity. The presence of activations within each target

parcel is therefore an important concern that is now investigated. To this end, several simulations have

been conducted using different configurations for the reference parcellation masks. A 2-parcel model has

been used with the same activation maps as in Fig.2. The overlapping percentage between the two parcels

and the activation maps changes over simulations. Fig. 9 shows the three parcellation masks we used.

They are superimposed to the global activation maps (m = 1 and m = 2). Note that this global maps

have been obtained with a logical “OR” applied to the two activation label maps so that a voxel is said

activated if it induces evoked activity for at least one experimental condition (m = 1 or m = 2).
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15 % / 85 % 35 % / 65 % 50 % / 50 %

Fig. 9. Overlaps between the parcellation masks (green parcel delimited by the white line) and the global activation map (red).

Solid black line delineates the boundary between the two parcels. The overlapping percentage is reported for each mask.

We then focused on the parcellation results and evaluated them in terms of output DICE coefficients.

Fig. 10 provides the output DICE curve with respect to the overlapping percentage between the parcels

and the activation labels. Masks with different overlapping levels were used for simulating the data.

Slightly different masks were given as initialization to the JPDE algorithm based on the pseudo-random

generation detailed in Section IV-A2b. One can easily notice that a fair partition (50%/50%) of activations

across parcels helps us achieving better parcellation performance compared to a non-uniformly distributed

case (15%/85% for example). This results is thus coherent with our expectations: the presence of

activations helps us uncovering accurate brain parcellations based on hemodynamic properties.

B. Validation on real data

This section is devoted to the validation of the proposed JPDE model on real fMRI data.

We analyzed fMRI data acquired on a 6-year old child in the context of a study designed to investigate

the large-scale organization of spoken language areas in dyslexic children [26]. The paradigm consisted

of a slow event-related design comprising 40 short sentences in French (native language) and Japanese

(a foreign language that none of the children understood), randomly presented every 12 s. Each sentence

was repeated once in a row to study repetition effect [27] and the sentences were produced by different

native woman speakers. The mean sentence duration was similar in both languages (2707 ms vs 2724

ms). The paradigm comprised a single run which consisted of 4 different trials in each language, a trial

being composed of two consecutive instances of the same sentence. Hence, the total duration of the run

was 3 min 12 s during which 16 sentences were delivered to the child. In this period of time, N = 80
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Fig. 10. Output DICE with respect to the overlapping percentage of activations by the two parcels of a 2-parcel model. Used

parcellation masks are those in Fig. 9.

volumes were acquired. MRI structural (TR = 2300 ms, TE = 4.18 ms, matrix 256 x 256 x 176, voxel size

= 1x1x1 mm) and functional (TR = 2400 ms, TE = 30 ms, matrix, 64 x 64 x 40, voxel size =3x3x3mm)

whole brain data were acquired on a 3.0 Tesla Siemens Tim Trio scanner.

We compared the hemodynamic results we obtained using both the JDE and JPDE models in order

to investigate the improvements brought by the parcellation inference. Our comparison is based on two

key properties: (i) the brain regions known to be involved in language processing and (ii) the known

specificity of activation dynamics. As regards (i), the regions of interest typically lie along the superior

temporal sulcus (STS) as illustrated in Fig. 11, where they are superimposed on an anatomical slice of

the six-year old child. Six regions are emphasized, based on anatomical criteria:

• A central region located in the Heschl’s gyrus, and termed Heschl;

• A region located in the middle part of the STS, corresponding to the primary auditory cortex, termed

middle STS and denoted mSTS;

• Two regions in the posterior part of the STS, the most posterior being denoted pSTS and the other

one intermediate pSTS;

• Two regions in the anterior part of the STS, the most anterior one being denoted aSTS and the

other one intermediate aSTS.

As regards (ii), it has been shown in the literature [27] that infants present a gradient in the dynamics
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of activations along the superior temporal sulcus, meaning that some regions respond earlier than others

or that the time-to-peak (TTP) of the corresponding HRF profile is shorter1. This gradient has also been

replicated in children [28] and adults [29]. In each case, the fastest regions were found around Heschl’s

gyrus, with a slow-down along the dorso-ventral and rostral-caudal axes. The more anterior and posterior

parts of the STS are known to be the slowest ones. Our results will thus be interpreted with respect to

this state-of-the-art.

Fig. 11. The HRF profiles estimated in six regions along the Superior Temporal Sulcus using the JPDE (red) and JDE (green)

models. In the center, the STS mask is superimposed on an anatomical slice of the six-year old child (sagittal view, x=48). The

region centres are indicated by red marks.

For JDE-based inference, we used a parcellation of the STS (see Fig. 12(a)) generated by a spatially

1The TTP corresponds to the time to reach the maximum of the HRF curve

November 12, 2015 DRAFT



22

constrained hierarchical clustering (Ward) algorithm of functional features (effects maps), the latter being

extracted from a classical GLM analysis [14]. The number of parcels was set to 10. After fitting the

JDE model to the fMRI data, parcel-specific HRF shapes were computed (see Fig. 11). For JPDE-

based inference, the initial parcellation was set up using the same ascendant hierarchical clustering

except that some noise was randomly introduced (cf. Fig. 13(a)): the number of parcels K in this initial

parcellation was varied from 10 to 20 corresponding to a slight over-segmentation compared to the JDE

setup. Our motivation for changing K was to assess the robustness of JPDE for retrieving a coherent

parcellation from this noisy initial guess and to see to what extent the corresponding HRF shapes were

well recovered (Fig. 11). In what follows, we report the best results we got, namely for K = 13 and

discuss hereafter how to cope with this issue.

First, it is worth noting that the JPDE model was able to recover a regular parcellation, as shown

in Fig. 13(b)). Hence, the parcellation yielded by the JPDE model not only differs from its noisy

initialization (Fig. 13 (a)) but also from the fixed parcellation used in JDE (Fig. 12 (a)).

Second, significant differences between the two models can be seen on the HRF profiles, whose

discrepancies are reported in Fig. 11. Such differences are actually related to the parcel support changes

between the two competing approaches. In Fig. 11, for the sake of clarity, we show HRF profiles for only

six parcels along the STS. We observed similar time courses in the center of the STS, namely in Heschl’s

gyrus and middle STS, whereas we found medium to large shape differences in its anterior and posterior

parts. We noticed the presence of a second HRF peak about 18 to 20 s after the first sentence onset. This

peaks occurs because of the sentence repetition effect 12 s after the presentation of the first stimulus. In

what follows, we will restrict our TTP analysis to the study of the first peak although a specific extension

of the JDE formulation has been proposed in the past to deal with repetition suppression effect [30].

Next, to assess the recovery of the temporal gradient along the STS, we compared the parcel-specific

TTPs between HRF estimates delivered by the two approaches. Fig. 12(c) and 13(c) report the TTP maps

in a given slice (sagittal view) for the JDE and JPDE models, respectively. The colors closer to red (resp.

purple) correspond to smaller (resp. larger) TTPs (i.e. to faster and slower responses, respectively). The

faster TTP is close to 5 s where the slower one is around 8.5 s. The JPDE model recovers a clear gradient

of response, from the middle STS regions (faster responses) to the anterior and posterior parts (slower

responses). In the posterior and anterior regions (pSTS and aSTS), the corresponding hemodynamic

responses are significantly slower than the one estimated by JDE inference (TTPJPDE = 8.5 s vs

TTPJDE = 6.5 s in pSTS, TTPJPDE = 7.5 s vs TTPJDE = 6 s in aSTS). The same observation is

replicated in the intermediate posterior STS region. Furthermore, a slower HRF was in the more anterior
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region (TTPJPDE = 8 s) than in the intermediate aSTS (TTPJPDE = 7 s). Hence, in these regions,

the JPDE model provides more coherent results with the existing literature. In contrast, this gradient

assumption is less tenable when analyzing the results delivered by the JDE inference. In particular,

JDE-based hemodynamic time courses revealed a TTP decrease down to 6 s in the anterior part of the

STS. Still in the same vein, the HRF is slower in the intermediate aSTS (TTPJDE = 8 s) than in the

aSTS (TTPJDE = 6 s).

(a) (b)

Fig. 12. Results obtained using the JDE model. (a): Parcellation provided as input mask to the JDE algorithm. (b): TTP map

indicating the time-to-peak in seconds for each parcel. The color bar encodes the shortest and longest TTPs in red and purple,

respectively.

(a) (b) (c)

Fig. 13. Results obtained using the JPDE model. (a): Initial parcellation provided as input to the JPDE algorithm. (b): Final

parcellation computed by the algorithm. (c): TTP map indicating the time-to-peak in each parcel of the final parcellation.

Globally, for K = 13 the JPDE approach recovers a more coherent final parcellation of fMRI data, with

corresponding HRF shapes more accurately estimated than the ones provided by the JDE model. Indeed,

using a small number of parcels could lead to an ”under-parcellation” effect where similar parcels are
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aggregated in a single one. On the other hand, if K is too large some parcels can be left empty. Indeed,

each voxel is allocated to a given parcel based on the maximum value of the p̃(r)
zj (k) for k = 1 . . . ,K.

If K is too large, some classes will be left empty even if their HRF pattern h̄(r)
k can be estimated. This

could be explained by resorting to (36) in Appendix A where it is clear that each voxel has its own

contribution in the estimation of all the HRF pattenrs h̄k, but with different proportions depending on the

value of p̃(r)
zj (k) for k = 1 . . . ,K. For this reason, the algorithm can end up with a number of non-empty

parcels smaller than K.

This raises the issue of automatically selecting the number of parcels, which can be considered in an

extension of the JPDE model in future work.

V. CONCLUSION

We proposed a JPDE framework that provides an automatic parcellation of the brain into homogeneous

hemodynamic territories directly from the fMRI data. The quality and reliability of such a parcellation

is at the core of robust neural activity detection and brain hemodynamics estimation. By enabling a fully

adaptive data-dependent identification of the parcels, the JPDE framework greatly extends the possibilities

of detection-estimation approaches by allowing interaction between detection and estimation, but also the

parcellation tasks. The gain in removing the commitment to a priori fixed territories has been confirmed

through experiments that showed that JPDE achieved better results than its JDE ancestor both on synthetic

and real data. Our real fMRI data experiments also showed that the proposed JPDE framework does not

only perform automatic parcellation, but also adds more regularity and accuracy in the estimation of the

hemodynamic profiles related to each parcel. However, the initial parcellation (in particular the number

of parcels) impacts the estimation of the final parcellation and the corresponding HRF curves. Thus,

an important remaining question raised by this new framework is related to the issue of choosing the

right number of HRF groups at best i.e. in a sparse manner so as to capture the spatial variability in

hemodynamic territories while enabling the reproducibility of parcel identification across fMRI datasets.

Another perspective to the present work would be to include anatomical priors in the model that could

be more sophisticated than the Potts one in order to mix functional and anatomical information in the

parcellation task.
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APPENDIX

A. VM step:

This appendix is devoted to the M-step of our VEM procedure. Specifically, this step involves different

sub M-steps related to (µ,v), (L,Γ), β, βz , σ2
h and (h̄,ν), respectively. The different sub-M steps are

summarized below.

1) VM-(µ,v) step:

By maximizing with respect to (µ,v), Eq. (20) reads:

(µ(r),v(r)) = arg max
(µ,v)

Ep̃(r)A p̃
(r)
Q

[
log p(A |Q;µ,v)

]
. (21)

Estimates of (µ,v) can be derived following the same procedure as in [13].

2) VM-(L,Γ) step:

For this maximization we need to compute:

(L(r),Γ(r)) = arg max
(L,Γ)

Ep̃(r)A p̃
(r)
H

[
log p(Y |A,H;L,Γ)

]
. (22)

By factorizing over voxels j, estimates of L and Γ can be derived following the same procedure as in

[13].

3) VM-β step:

By maximizing with respect to β, Eq. (20) reads:

β(r) = arg max
β

Ep̃(r)Q

[
log p(Q;β)

]
. (23)

Using an additional exponential prior (with parameter λβm
) akin to [13] in order to avoid over-estimation

of this parameter and hence having extra spatial regularization, this M-step can be reformulated as, for

each m = 1 : M ,

β(r)
m = arg max

βm

Ep̃(r)qm
[log p(qm;βm)] + log p(βm;λβm

). (24)

The optimal value of β(r) can be reached following the same iterative procedure as in [13]. However, we

provide here the specific implementation used in this paper. This step does not admit an explicit closed-

form expression but can be solved numerically using gradient ascent schemes. It is straightforward to

show that the maximization of (24) in βm admits a unique solution. Indeed, it is equivalent to solve,

β(r)
m = arg max

βm

βm(Ep̃(r)qm
[U(qm)]− λβm

)− logK(βm) (25)
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where K denotes the normalizing constant that depends on βm. The first and second derivatives with

regards to βm can be easily computed as respectively:

∇βm
= Ep̃(r)qm

[U(qm)]− Ep(qm;βm)[U(qm)]− λβm
(26)

∇2
βm

= −varp(qm;βm)[U(qm)] ≤ 0 (27)

where p(qm;βm) is the Potts model defined in (3) and varp(qm;βm) denotes the variance w.r.t. p(qm;βm).

The function to optimize is thus concave. Unfortunately, due to the intractable normalizing constant

K, the two expressions above are not directly available. It is then necessary to approximate the terms

involving the true MRF prior p(qm;βm). A simple solution is to use a Mean Field like approximation as

presented in [31] in which we remove the spatial interactions between neighboring voxels by replacing

the stochastic neighbors by fixed values:

pMF
qm (qm;βm) =

∏
j∈V

pMF
qmj

(qmj ;βm) (28)

with pMF
qmj

(qmj ;βm) defined by:

pMF
qmj

(qmj = i;βm) =

exp(βm
∑

j′∈V,j′∼j
p̃

(r)
qm
j′

(i))∑
l∈{0,1}

exp(βm
∑

j′∈V,j′∼j
p̃

(r)
qm
j′

(l))
(29)

It follows,

∇βm
≈

∑
(j,j′)∈V2,j∼j′

∑
i∈{0,1}

(
p̃

(r)
qmj

(i)p̃
(r)
qm
j′

(i)− pMF
qmj

(i;βm)pMF
qm
j′

(i;βm)
)
− λβm

(30)

≈ 1

2

∑
i∈{0,1}

∑
j∈V

p̃(r)
qmj

(i)

 ∑
j′∈V,j′∼j

p̃
(r)
qm
j′

(i)

− pMF
qmj

(i;βm)

 ∑
j′∈V,j′∼j

pMF
qm
j′

(i;βm)

− λβm
,

where we emphasize that the dependence in βm is in the second term, the other terms being constant.

In both p̃
(r)
qmj

(i) and pMF
qmj

(i;βm), the Markov part is treated similarly using the best currently available

posterior variational approximation p̃(r−1)
qm or p̃(r)

qm . The main difference between p̃(r)
qmj

(i) and pMF
qmj

(i;βm) is

that pMF
qmj

(i;βm) does not involve directly terms that depend on the observed data Y which is consistent

with the fact that it represents an approximation of the prior MRF.

4) VM-βz step:

By maximizing with respect to βz , Eq. (20) reads:

β(r)
z = arg max

βz

Ep̃(r)Z

[
log p(Z;βz)

]
. (31)
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If one wants to penalize high values of βz to avoid over spatial regularization, an exponential prior can

also be used as for the M-β step. The above optimization procedure can therefore be reformulated as

β(r)
z = arg max

βz

Ep̃(r)Z
[log p(Z;βz)] + log p(βz;λz) (32)

where λz is the parameter of the exponential distribution. The same iterative procedure as for the M-β

step can be used to reach the optimal value of βz making use of the possibility to approximate the

gradient as

∇βz
≈

∑
(j,j′)∈V2,j∼j′

∑
k=1:K

(
p̃(r)
zj (k)p̃(r)

zj′
(k)− pMF

zj (k;βz)p
MF
zj′

(k;βz)
)
− λβz

,

with

pMF
zj (zj = k;βz) =

exp(βz
∑

j′∈V,j′∼j
p̃

(r)
zj′ (k))∑

l=1:K

exp(βz
∑

j′∈V,j′∼j
p̃

(r)
zj′ (l))

(33)

5) VM-(σ2
h, h̄,ν) step:

This maximization step can be reached by solving the following problem(
σ2
h

(r)
, h̄(r),ν(r)

)
= arg max

σ2
h,h̄,ν

Ep̃(r)H p̃
(r)
Z

[
log p(H |Z; h̄,ν)]

]
+ log p(h̄;σ2

h). (34)

Derivations with respect to the h̄k’s and νk’s provide the following equations for a given k

νk =

∑
j∈V

p̃
(r)
zj (k)

(
trace(Σ

(r)
hj

) + (m
(r)
hj
− h̄k)t(mhj

− h̄k)
)

(D + 1)
∑
j∈V

p̃
(r)
zj (k)

(35)

and

h̄k =

ID+1 +
νkR

−1/σ2
h∑

j∈V
p̃

(r)
zj (k)


−1 ∑

j∈V
p̃

(r)
zj (k)m

(r)
hj∑

j∈V
p̃

(r)
zj (k)

(36)

Then updated values ν(r)
k and h̄(r)

k can be obtained by solving equations (35) and (36). An estimation of

σ2
h follows as

σ
2(r)
h =

∑K
k=1 h̄

(r)t
k R−1h̄

(r)
k

K
(37)

However, as σ2
h plays the role of a smoothing parameter for the HRF shapes, it will be held fixed in the

present work.
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Note that in the more general case of non isotropic Σ̄k, we would get

Σ̄k =

∑
j∈V

p̃
(r)
zj (k)

(
Σ

(r)
hj

+ (m
(r)
hj
− h̄k)(m

(r)
hj
− h̄k)t

)
∑
j∈V

p̃
(r)
zj (k)

(38)

and

h̄k =

ID+1 +
Σ̄kR

−1/σ2
h∑

j∈V
p̃

(r)
zj (k)


−1 ∑

j∈V
p̃

(r)
zj (k)mhj∑

j∈V
p̃

(r)
zj (k)

. (39)

The first case (35) can be obtained from the general one by setting νk = trace(Σ̄k)/(D + 1).

B. Pseudo-random generation of parcellation masks

This appendix details the technique used to pseudo-randomly generate parcellation masks approximately

sharing the same DICE level. Starting from a reference initial parcellation mask such as the one in Fig. 7

(top), a 2× 2 neighbourhood is selected for each voxel j. Over these neighbouring voxels, the histogram

over the K classes is calculated. After normalization, we end up with a probability vector Pr ∈ RK

that sums to one. Each element Pr(k) indicates the probability that the current voxel belongs to class k.

For the target pseudo-random mask (Mask∗), the value of the current voxel Mask∗(j) is randomly drawn

from a multinomial distribution using the probability vector Pr. When K = 2, this simply reduces to

a random generation from a binomial distribution. This mask generation technique ensures the spatial

coherence of the parcels code between different realisations. The random effect will mainly impact voxels

at the parcel borders.
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Nicholas Ayache, Hervé Delingette, Polina Golland, and Kensaku Mori, Eds., vol. 7512 of Lecture Notes in Computer

Science, pp. 180–188. Springer Berlin Heidelberg, 2012.

[24] R.M. Neal and G.E. Hinton, “A view of the EM algorithm that justifies incremental, sparse and other variants,” in Lear.

in Graph. Mod., Jordan, Ed., pp. 355–368. 1998.

[25] T. Sørensen, “A method of establishing groups of equal amplitude in plant sociology based on similarity of species content,”

Kongelige Danske Videnskabernes Selskab. Biologiske Skrifter, vol. 4, pp. 1–34, 1948.

[26] K. Monzalvo, J. Fluss, C. Billard, S. Dehaene, and G. Dehaene-Lambertz, “Cortical networks for vision and language in

dyslexic and normal children of variable socio-economic status,” Neuroim., vol. 61, no. 1, pp. 258–274, February 2012.

[27] G. Dehaene-Lambertz, L. Hertz-Pannier, J. Dubois, S. Mériaux, A. Roche, and M. Sigman, “Functional organization of

perisylvian activation during presentation of sentences in preverbal infants,” Proc. Natl. Acad. Sci. USA, vol. 103, pp.

14240–14245, 2006.

[28] J. Brauer, J. Neumann, and A. D. Friederici, “Temporal dynamics of perisylvian activation during language processing in

children and adults,” Neuroim., vol. 41, no. 4, pp. 1484–1492, 2009.

[29] G. Dehaene-Lambertz, L. Hertz-Pannier, and J. Dubois, “Nature and nurture in language acquisition: anatomical and

functional brain-imaging studies in infants,” Trends in Neurosci., vol. 29, pp. 367–373, 2006.

[30] P. Ciuciu, S. Sockeel, T. Vincent, and J. Idier, “Modelling the neurovascular habituation effect on fMRI time series,” in

IEEE Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP), Taipei, Taiwan, Apr. 2009, pp. 433–436.

[31] G. Celeux, F. Forbes, and N. Peyrard, “EM procedures using mean field-like approximations for Markov model-based

image segmentation,” Patt. Rec., vol. 36, pp. 131–144, 2003.

November 12, 2015 DRAFT


