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SLICES FOR MAXIMAL PARABOLIC SUBALGEBRAS OF A
SEMISIMPLE LIE ALGEBRA ∗

FLORENCE FAUQUANT-MILLET AND POLYXENI LAMPROU

Abstract. Let p denote a maximal (truncated) parabolic subalgebra of a simple
Lie algebra g. In [F. Fauquant-Millet and A. Joseph, Semi-centre de l’algèbre en-
veloppante d’une sous-algèbre parabolique d’une algèbre de Lie semi-simple, Ann.
Sci. École. Norm. Sup. (4) 38 (2005) no.2, 155-191] it was shown in many cases
that the Poisson centre Y (p) is a polynomial algebra. We construct a slice for
the coadjoint action of p, thus extending a theorem of Kostant. The role of the
principal sl2-triple is played by an adapted pair, a notion introduced in [A. Joseph
and P. Lamprou, Maximal Poisson commutative subalgebras for truncated para-
bolic subalgebras of maximal index in sln, Transform. Groups 12 (2007), no. 3,
549-571].

Key words : Slices, Truncated Parabolic Subalgebras, Poisson Centre.
AMS Classification : 17B35, 16W22.

1. Introduction

Throughout this paper, we are working over an algebraically closed field k of
characteristic 0.

1.1. Let a be a finite dimensional algebraic Lie algebra, a∗ its dual space and S(a)
the symmetric algebra of a. Then if {x1, x2, . . . , xn} is a basis of a, S(a) identifies
with k[x1, x2, . . . , xn], the polynomial algebra with generators x1, . . . , xn, and with
the algebra of polynomials on a∗. For any two polynomials f, g in S(a) we define the
Poisson bracket of f and g by the formula :

{f, g} =
n∑
i=1

n∑
j=1

∂f

∂xi

∂g

∂xj
[xi, xj],

where [ , ] is the Lie bracket of a. For any two elements x, y ∈ a we have that
{x, y} = [x, y] and each g 7→ {g, f} is a derivation of the associative algebra S(a)
for fixed f ∈ S(a).

∗ This work was supported in part by the Israel Scientific Foundation grant 797/14 and in part
by LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investisse-
ments d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).
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We denote by ad the adjoint action of a on itself defined by its Lie bracket.

1.2. Denote by Y (a) the Poisson centre of S(a), that is the space :

Y (a) = {f ∈ S(a) | ∀ g ∈ S(a), {f, g} = 0}.

Note that Y (a) = S(a)a := {f ∈ S(a) | ∀x ∈ a, {x, f} = 0} and that Y (a) is a
subalgebra of S(a). We denote by Sy(a) the Poisson semicentre of S(a), Sy(a) :=
{f ∈ S(a) | ∀x ∈ a, {x, f} ∈ k f}; it is also a subalgebra of S(a). Clearly,
Y (a) ⊂ Sy(a) and this inclusion is in general strict. We will say that S(a) has no
proper semi-invariants when equality holds. It is the case for instance when a is a
truncated (bi)parabolic subalgebra of a semisimple Lie algebra, [5, lemme 2.5].

The Poisson centre Y (a) - and in particular whether or not it is a polynomial alge-
bra - has been studied in several cases, for example in the case where a is semisimple,
or a centralizer of a nilpotent element of a semisimple Lie algebra [17], or a (trun-
cated) (bi)parabolic subalgebra of a semisimple Lie algebra [4, 5, 8, 9].

1.3. Recall that a acts via the coadjoint action on a∗ and denote this action still
by ad. Set ind a = minξ∈a∗{codim (ad a) ξ} and call an element ξ in a∗ regular if
codim (ad a) ξ = ind a. Denote by a∗reg the set of regular elements of a∗.

1.4. Assume that Y (a) is a polynomial algebra in ` := ind a generators. Let
{f1, f2, . . . , f`} be a set of homogeneous generators in Y (a) and let deg fi denote
the degree of fi for all i, 1 ≤ i ≤ `.

In [14] an adapted pair for a was defined as a pair (h, y) ∈ a× a∗ such that :

(i) h is an ad-semisimple element, y is regular and (adh) y = −y.
(ii) Let V be an adh-stable subspace of a∗ such that (ad a) y⊕V = a∗. The adh-

eigenvalues mi, 1 ≤ i ≤ `, of an adh-stable basis of V are all non-negative

and satisfy :
ind a∑
i=1

deg fi =
ind a∑
i=1

(mi + 1).

1.5. Recall the Slice Theorem [14, Thm 6], which obtains from the analysis of
Kostant [16, Thm 5, Thm 7]:

Theorem. Assume that Y (a) is polynomial in ind a generators and let (h, y) be an
adapted pair for a in the sense of 1.4. Then :

(1) The map Y (a) −→ R[y+ V ] defined by restriction of functions is an isomor-
phism of algebras, where R[y+V ] denotes the algebra of regular functions on
y + V .

(2) One has mi + 1 = deg fi, for all i, 1 ≤ i ≤ ind a, up to a permutation of
indices.



SLICES FOR MAXIMAL PARABOLIC SUBALGEBRAS 3

A linear subvariety y + V satisfying (1) of the above theorem is called a Weier-
strass section [6] or an algebraic slice [13, 7.6]. When a = g is a finite dimensional
semisimple Lie algebra, it is well-known that the Poisson centre Y (g) is polynomial
in ind g = rk g generators (for an exposition see [2, 7.3.8]). The above theorem is
known as the Kostant Slice Theorem. In this case V = gx, the centralizer of x in g,
where {x, h, y} is a principal sl2 - triple with [h, x] = x, [h, y] = −y and [x, y] = h.

Let G be the adjoint group of g. The affine space y + gx is called a slice for the
coadjoint action of g [13, 7.3] since every G - orbit in G(y + gx) meets transversally

y + gx at exactly one point and G(y + gx) = g∗ where G(y + gx) is the Zariski
closure of G(y + gx). Moreover in that particular case, G(y + gx) = g∗reg. (Note that
in general, A(y + V ) is a proper subset of a∗reg, where A is the adjoint group of a).

1.6. In [15], under further assumptions on a, namely that a is unimodular and that
its fundamental semi-invariant is an invariant, the authors showed that condition
(i) of the definition of an adapted pair implies condition (ii) and actually (2) of the
Theorem 1.5. Furthermore, as a consequence of [3, Thm. 1.11 (i)], any Lie algebra a
such that S(a) has no proper semi-invariants is unimodular. Thus a truncated para-
bolic subalgebra a of a semisimple Lie algebra g is unimodular and its fundamental
semi-invariant is an invariant.

Since in this work we are interested precisely in truncated parabolic algebras, we
will reformulate the definition of an adapted pair and the Slice Theorem, following
[15].

Definition. An adapted pair for a is a pair (h, y) ∈ a × a∗ such that h is an ad -
semisimple element, y is regular and (adh) y = −y.

Then Theorem 1.5 becomes :

Theorem. [15, Corollary 2.3] Let a be a finite dimensional unimodular Lie algebra
whose fundamental semi-invariant is an invariant (for example a is a truncated par-
abolic) and suppose that a admits an adapted pair (h, y). Let V be a subspace of a∗

such that (ad a) y ⊕ V = a∗ and let mi, 1 ≤ i ≤ ` := ind a be the adh-eigenvalues of
an adh-stable basis of V . If Y (a) is polynomial in ` generators, then

(1) The map Y (a) −→ R[y+ V ] defined by restriction of functions is an isomor-
phism of algebras.

(2) The degrees of a set of homogeneous generators of Y (a) are the mi + 1, 1 ≤
i ≤ `.

If moreover S(a) has no proper semi-invariants then, after [6, Lemma 3.2] the
Weierstrass section y + V is a slice for the coadjoint action of a, in the sense of 1.5.
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1.7. Suppose that we have constructed an adapted pair (h, y) for a and retain the
notations and hypotheses of Theorem 1.6. By the above, if Y (a) is polynomial, the
degrees of a set of generators are {mi + 1 | 1 ≤ i ≤ `}. This fact gives us indications
for the polynomiality or non-polynomiality of Y (a). If for example mi < 0 for some
i, or if we can choose different complements V, V ′ on which ad h has different set of
eigenvalues we conclude that Y (a) is not polynomial. For the truncated parabolic
subalgebras we know by [4] that Y (a) is included, up to a double gradation which
respects the degrees, in a polynomial algebra whose degrees of generators are known,
hence we have some information about the possible degrees of invariants. If this
information is contradicted by the set {mi | 1 ≤ i ≤ `} again we may conclude that
Y (a) is not polynomial. In any case, the existence of an adapted pair restricts us to
searching for invariants having a defined set of degrees.

1.8. When a is a truncated parabolic subalgebra of a semisimple Lie algebra g, we
know in many cases that Y (a) is polynomial; for example, by [4] this is always true
when g has only components of type A or C and by [17], this is also the case when the
truncated parabolic is the centralizer of the highest root vector and g is simple not
of type E8. We will construct an adapted pair for all maximal parabolic subalgebras
where we know (by the criterion of [4], also given in Theorem 2.2.3) that the Poisson
centre is polynomial. (This was done already in [12], in the case of the centralizer.)

Acknowledgements. We thank A. Joseph for suggesting this problem to us and
in general for introducing us to truncated parabolic subalgebras and adapted pairs
many years ago.

2. The truncated parabolic subalgebra and the centre of its
symmetric algebra

2.1. Truncated parabolic subalgebras of g.

2.1.1. Let g be a finite dimensional semisimple Lie algebra, h a fixed Cartan sub-
algebra of g, ∆ the root system of g with respect to h and π a chosen set of simple
roots. We will adopt the labeling of [1, Planches I-IX] for the simple roots in π.
Let ∆+ (resp. ∆−) denote the set of positive (resp. negative) roots. One has that
∆− = −∆+ and ∆ = ∆+ t ∆−. For any α ∈ ∆, let gα denote the corresponding
root space of g. Then g = n⊕ h⊕ n−, where n =

⊕
α∈∆+

gα and n− =
⊕

α∈∆−
gα. For all

α ∈ π, denote by α∨ the corresponding coroot. One has that h =
⊕
α∈π

k α∨.

2.1.2. For any subset π′ of π, we will denote by ∆π′ the set of roots generated by π′.
We also denote by ∆+

π′ , ∆−π′ the sets of positive and negative roots in ∆π′ respectively.
One defines the standard parabolic subalgebra pπ′ to be the algebra pπ′ = n⊕h⊕n−π′
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where n−π′ =
⊕

α∈∆−
π′

gα. Its opposed algebra then is p−π′ = n−⊕h⊕nπ′ , with nπ′ defined

similarly. The dual algebra p∗π′ identifies with p−π′ via the Killing isomorphism ϕ.

2.1.3. For any parabolic subalgebra pπ′ of a simple Lie algebra g such that π′ ( π,
the Poisson centre of S(pπ′) reduces to scalars [8, 7.9]. In [4] and [5], the authors
study the Poisson semicentre Sy(pπ′) of S(pπ′). Since pπ′ is algebraic there exists
a canonical truncation pπ′,E of pπ′ such that Sy(pπ′) = Y (pπ′,E) = Sy(pπ′,E) [5,
2.4, 2.5, B.2]. In [5, Section 5] pπ′,E has been described explicitly. It has the form
pπ′,E = n⊕ hE ⊕ n−π′ , where hE is a truncation of h; it is called the truncated Cartan
subalgebra. Its description involves some combinatorics of the Dynkin diagram of g,
which we describe below.

2.1.4. Define an involution j on π by j = −w0, where w0 denotes the longest element
in the Weyl group of ∆. Extend the involution i = −w′0 of π′, where w′0 denotes the
longest element in the Weyl group of ∆π′ , on π \ π′ as follows. For all α ∈ π \ π′,
if j(α) ∈ π \ π′ set i(α) = j(α). If now j(α) ∈ π′ let r be the smallest integer such
that j(ij)r(α) /∈ π′ and set i(α) = j(ij)r(α). Let 〈ij〉 denote the group generated by
the element ij and E the set of 〈ij〉 - orbits in π. Set E1 := {Γ ∈ E | jΓ 6= Γ} and
E2 := {Γ ∈ E | jΓ = Γ}. One has E = E1

⊔
E2. Notice that an orbit Γ in E is also

an 〈i, j〉 (the group generated by i and j) - orbit if and only if Γ ∈ E2. The index of
pπ′,E is equal to the number of the 〈ij〉 - orbits in π, that is ind pπ′,E = CardE [8,
7.14].

2.1.5. Denote by ` the standard length function on the Coxeter group 〈i, j〉 and let
{$α}α∈π be the set of fundamental weights of g (sometimes we write {$i}αi∈π). For
all Γ ∈ E which does not lie entirely in π′, define hΓ =

∑
s∈〈i, j〉

(−1)`(s)ϕ−1($sα) for a

choice of α ∈ Γ. For simplicity, we will write hΓ =
∑

s∈〈i, j〉
(−1)`(s)$sα. Denote by E ′1

the subset of E1 of orbits which meet π \ π′. Define p′π′ to be the derived subalgebra
of pπ′ , p′π′ = [pπ′ , pπ′ ]. Set h′ = p′π′

⋂
h and hE = h′ +

∑
Γ∈E′1

k hΓ. It turns out that the

latter sum is direct. Then pπ′,E is the algebra pπ′,E = n⊕ hE ⊕ n−π′ .

2.1.6. When j = id, which is true in all cases outside type An, D2n+1 and E6, one
has that 〈ij〉 = 〈i, j〉 = 〈i〉, E1 = ∅ and E = E2. The involution i extends on π \ π′
by the identity. It then follows that for Γ ∈ E either Γ ⊂ π \ π′ or Γ ⊂ π′. In the
former case, Γ is a singleton. Moreover hE = h′.

2.1.7. For a truncated maximal parabolic pπ′,E associated to π′ = π \ {αs}, one has
always i(αs) = αs, even when j 6= id. Thus E ′1 = ∅ and then hE = h′.
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2.2. The Poisson centre of pπ′,E. As we already said, the algebra Sy(pπ′) =
Y (pπ′,E) has been studied in [4], [5]. More precisely, there have been found certain
upper and lower bounds for Sy(pπ′); when these bounds coincide, the algebra Sy(pπ′)
is polynomial in ind pπ′,E generators. In this case, the weights and the degrees of
a set of homogeneous generators have been computed explicitly. In this section, we
will briefly describe the criterion of [4], which implies the polynomiality of Y (pπ′,E).
We first need some further background, namely the notion of the Kostant cascade.

2.2.1. (See also [7, 2.2]). Let g be as in section 2.1.1 and set D = {λ ∈ h∗R | (λ, α) ≥
0, ∀α ∈ π} where h∗R is the real subspace of h∗ generated by π. Given λ ∈ D, define
∆±λ = {α ∈ ∆± | (λ, α) = 0}, ∆λ = ∆+

λ ∪∆−λ . Let ∆ =
⊔
i

∆i be a decomposition of

∆ to irreducible root systems. Let βi be the unique highest root in ∆i. Then βi ∈ D
for all i, (∆i)βi is a root system and it decomposes into a union of irreducible root
systems (∆i)βi =

⊔
j

∆ij with βij the highest root of ∆ij. This procedure defines a

subset K of N∗ ∪N∗2 ∪ · · · and a maximal set βπ = {βK}K∈K of strongly orthogonal
positive roots. The set K can be endowed with a partial order ≤ as follows : for all
K, L ∈ K we say that K ≤ L if and only if L = K or L = {K,n1, n2, . . . , ns}, with
ni ∈ N∗ for all i, 1 ≤ i ≤ s and s ≥ 1. The set K - called the Kostant cascade - is
described in [7, Table III] for every simple Lie algebra g.

The set βπ of strongly orthogonal positive roots for a simple Lie algebra g, which
may be also found in [7, Tables I and II], is given for the reader’s convenience in
Table I where the indexation of the simple roots is as in [1, Planches I-IX].

If the initial root system ∆ is irreducible of type A, C, E6, F4, G2, the subsystems
are also irreducible and hence the Kostant cascade K and the set βπ are totally
ordered. Thus in these cases, the elements βK , K ∈ K, may be simply indexed by N,
and are denoted by βi, 1 ≤ i ≤ card(K). We understand βi < βj if and only if i < j.

In other types, the order ≤ on K is not a total order. For the elements βK , K ∈ K,
we use the notations βi, βi′ , for type Bn or D2n+1, or βi, βi′ and βi′′ for type D2n, E7

or E8 with order relation βi < βj if and only if i < j, and βi < βi′ , βi′′ .
For any rational number r ∈ Q denote by [r] the integer such that, r−1 < [r] ≤ r.
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Type The set βπ of strongly orthogonal positive roots
An βi = αi + · · ·+ αn+1−i; 1 ≤ i ≤ [(n+ 1)/2] with βn+1

2
= αn+1

2
if n is odd

Bn
βi = α2i−1 + 2α2i + · · ·+ 2αn; 1 ≤ i ≤ [(n+ 1)/2] with βn+1

2
= αn if n is odd

βi′ = α2i′−1; 1 ≤ i′ ≤ [n/2]
Cn βi = 2αi + · · ·+ 2αn−1 + αn; 1 ≤ i ≤ n, with βn = αn

Dn

βi = α2i−1 + 2α2i + · · ·+ 2αn−2 + αn−1 + αn; 1 ≤ i ≤ [n/2]− 1
βi′ = α2i′−1; 1 ≤ i′ ≤ [n/2]− 1
and βn−1

2
= αn−2 + αn−1 + αn if n is odd, βn

2
= αn if n is even

β(n−2
2

)′′ = αn−1 if n is even

E6

β1 = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6

β2 = α1 + α3 + α4 + α5 + α6

β3 = α3 + α4 + α5

β4 = α4

E7

β1 = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7

β2 = α2 + α3 + 2α4 + 2α5 + 2α6 + α7

β3 = α2 + α3 + 2α4 + α5

β4 = α3

β2′ = α7, β3′ = α5, β3′′ = α2

E8

β1 = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8

β2 = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7

β3 = α2 + α3 + 2α4 + 2α5 + 2α6 + α7

β4 = α2 + α3 + 2α4 + α5

β5 = α3

β3′ = α7, β4′ = α5, β4′′ = α2

F4

β1 = 2α1 + 3α2 + 4α3 + 2α4

β2 = α2 + 2α3 + 2α4

β3 = α2 + 2α3

β4 = α2

G2
β1 = 3α1 + 2α2

β2 = α1

Table I

2.2.2. We will slightly digress in order to introduce the sets HβK , K ∈ K and some
of their properties that will be useful in the sequel. For A ⊂ ∆, denote by −A =
{α ∈ ∆ | −α ∈ A}.

For all K ∈ K set HβK = {γ ∈ ∆K | (γ, βK) > 0} and H−βK = −HβK . By [7,
Lemma 2.2], we have the following :

(1) HβK = ∆+
K \ (∆+

K)βK .
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(2) ∆+ =
⊔
L∈K

HβL and ∆− =
⊔
L∈K

H−βL .

(3) If α ∈ HβK \ {βK}, then βK − α ∈ HβK \ {βK}.
(4) Given α, α′ ∈ HβK , if α + α′ ∈ ∆, then α + α′ = βK .
(5) If α ∈ HβK , α

′ ∈ HβL are such that α + α′ ∈ ∆, then K ≤ L (resp. L ≤ K)
and α + α′ ∈ HβK (resp. α + α′ ∈ HβL). In particular, if α + α′ = βK , then
K = L and α, α′ ∈ HβK \ {βK}.

(6) |HβK ∩ π| = 1 if ∆K is not of type A and 2 if it is. In fact,

Hβi ∩ π =

 {αi, αn+1−i}, in type A.
{α2i}, in type BD.
{αi}, in type C.

2.2.3. Recall that {$α}α∈π is the set of fundamental weights of g and j = −w0 is
the Dynkin diagram involution. Let P+(π) :=

⊕
α∈π

N$α denote the set of dominant

weights of g and set Bπ := P+(π) ∩ Nβπ. Define P+(π′), Bπ′ accordingly. Then Bπ
is the set of weights of the Poisson semicentre Sy(b), where b = n ⊕ h is the Borel
subalgebra. In this case, Sy(b) is a polynomial algebra in rk g generators [7]. The
generators of the free semigroup Bπ may be found in [7, Tables I and II] and in [4,
Table].

Set for all Γ ∈ E :

εΓ =

{
1/2, if Γ = jΓ,

∑
α∈Γ

$α ∈ Bπ ,
∑

α∈Γ∩π′
$′α ∈ Bπ′ ,

1, otherwise.

Theorem. [4, Thm. 7.3]. If εΓ = 1 for all Γ ∈ E, then the algebra Y (pπ′,E) is
polynomial in |E| = ind pπ′,E generators. In particular, when g is simple of type A
or C, then εΓ = 1, for all Γ ∈ E.

Remarks.

(1) The bounds for Sy(pπ′) that we mentioned in the beginning of 2.2 coincide
precisely when εΓ = 1 for all Γ ∈ E.

(2) Examples where the bounds do not coincide but Y (pπ′, E) is still polynomial
are known (see for instance [7] for the Borel case or [12] for the centralizer of
the highest root vector, which is a particular truncated parabolic algebra).

(3) In [20] there has been found an example where Y (pπ′,E) is not polynomial.
This is the case of the maximal parabolic subalgebra of g of type E8 with
π′ = π \ {α8} (in the Bourbaki notation [1, Planche VII]). In this case,
pπ′,E = gxβ , where β is the unique highest root of g and xβ ∈ gβ \ {0}.
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3. The construction of an adapted pair

Recall the definition of an adapted pair of Section 1.6. In [11], an adapted pair
is constructed for all truncated (bi)parabolic subalgebras of sln. In the following
sections we will construct an adapted pair - whenever possible - for all maximal
truncated parabolic subalgebras in the remaining types when the bounds of [4] co-
incide. By a maximal parabolic we mean that π′ = π \ {αs}.

Remark. The reason that we restrict ourselves to the maximal parabolic case unlike
the case of sln where an adapted pair has been constructed for all parabolic subalge-
bras is that for sln the truncated Cartan subalgebra is never too small. By contrast,
when j = id and so hE = h′, the truncated Cartan subalgebra may be very small or
even {0} in the case of the truncated Borel. We will see in Section 10, that even for
maximal truncated parabolics with Poisson centre polynomial, adapted pairs may
not exist.

It is convenient from now on to replace pπ′,E with its opposed algebra p−π′,E. Identify

(p−π′,E)∗ with pπ′,E through the Killing form. Then p−π′,E acts on pπ′,E via the coadjoint

action. If h⊥E is the orthogonal complement of hE in h with respect to the Killing form,
then we can identify (p−π′,E)∗ with g/(h⊥E ⊕ m−), where m− is the nilradical of p−π′,E
and then the coadjoint action is computed through commutation in g mod h⊥E⊕m−.

3.1. Heisenberg sets. For A ⊂ ∆, set gA :=
⊕
α∈A

gα, which is a subspace of g and

a Lie subalgebra of g if A is additively closed in ∆.

Definition. For any γ ∈ ∆, a subset Γγ of ∆ is called a Heisenberg set of centre
γ if γ ∈ Γγ and for all α ∈ Γγ\{γ}, there exists a unique α′ ∈ Γγ such that α+α′ = γ.

Remark. For a fixed γ, there exist several Heisenberg sets Γγ of centre γ. All of
them are included in a maximal one, namely the set of all decompositions of γ into
the sum of two roots in ∆. (Note that an 〈ij〉-orbit in π was also denoted by Γ; we
will be very careful not to have any confusion).

Example. Recall the sets HβK , K ∈ K defined in 2.2.2. One has that HβK is a
Heisenberg set of centre βK by 2.2.2 (3) and actually it is the maximal Heisenberg
set of centre βK , which is included in ∆+. Moreover, by 2.2.2 (4), gHβK is a Heisen-
berg Lie algebra of centre gβK . For an arbitrary Γγ it is no longer true that gΓγ is
a Heisenberg Lie algebra or even a Lie subalgebra of g; however, inspired by this
example, we called the sets Γγ Heisenberg sets.



10 FLORENCE FAUQUANT-MILLET AND POLYXENI LAMPROU

If Γγ is a Heisenberg set of centre γ, then −Γγ = Γ−γ is a Heisenberg set of centre
−γ. We set Γ0

γ := Γγ \ {γ}. Similarly, we define H0
βK

.

3.2. The following lemma can be found in [11, Lemma 8.5]:

Lemma. Let Γ± be subsets of ∆± and suppose there exist subsets S± of Γ± such
that Γ± =

∐
γ∈S±

Γγ, where Γγ is a Heisenberg set of centre γ, for all γ ∈ S±. Set

S = S+ t S− and O± =
∐
γ∈S±

Γ0
γ. Set also o =

⊕
γ∈S

g−Γ0
γ

= g−O+ ⊕ g−O−.

Assume further that the elements of S are linearly independent and that if α, β ∈
O± are such that α + β = γ, for some γ ∈ S±, then α, β ∈ Γ0

γ. Set

f =
∑
γ∈S

aγxγ,

where aγ are non-zero scalars for all γ ∈ S. Then the bilinear form Φf : g× g → k
defined by Φf (x, x

′) = K(f, [x, x′]) for all x, x′ ∈ g, where K is the Killing form on
g, is non-degenerate on o× o.

When S+ = βπ+ , S− = −βπ− for two subsets π+, π− ⊂ π and Γγ = Hγ for all
γ ∈ S, the above result follows from [19, Remarque 3.9].

3.3. Lemma. Suppose π′ ⊂ π is a subset of π and let pπ′,E be the corresponding
truncated parabolic subalgebra. Let S+, T+ ⊂ ∆+ and S−, T− ⊂ ∆−π′ be such that
the following conditions hold :

(1) For all γ ∈ S± there exist Heisenberg sets Γγ of centre γ such that,

Γ+ := ∆+ \ T+ =
⊔
γ∈S+

Γγ,

and

Γ− := ∆−π′ \ T
− =

⊔
γ∈S−

Γγ.

Set O± =
⊔

γ∈S±
Γ0
γ.

(2) If α, β ∈ O± are such that α + β = γ for some γ ∈ S± then α, β ∈ Γ0
γ.

(3) Set S = S+ t S−. Then S|hE is a basis of h∗E.
(4) Set T = T+ t T−. Then |T | = ind pπ′,E.

Then the element y :=
∑
γ∈S

xγ is regular and gT :=
⊕
α∈T

gα is a complement of the

ad p−π′,E - orbit of y in pπ′,E, that is

(ad p−π′,E) y ⊕ gT = pπ′,E.
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Proof. The proof is similar to that of [11, Theorem 8.6]. We will give it for complete-
ness. Retain the notations of Lemma 3.2. Note that gO+ ⊕ gO− identifies with o∗ via
the Killing isomorphism. Condition (1) implies the equalities pπ′, E = hE⊕o∗⊕gS⊕gT
and p−π′, E = hE⊕o⊕g−S⊕g−T . Conditions (2) and (3) and the expansion of y imply

by Lemma 3.2 that Φy is non-degenerate on o×o. Then o∗ ⊂ (ad o) y ⊂ (ad p−π′, E) y.
Condition (3) implies that gS = (ad hE) y and that hE = (ad g−S) y + o∗ ⊕ gS ⊕ gT .
Hence pπ′, E = hE ⊕ o∗ ⊕ gS ⊕ gT ⊂ (ad p−π′, E) y + gT . Finally, condition (4) forces

the latter sum to be direct, since dim gT = ind pπ′,E ≤ codim(ad p−π′,E) y. �

3.4. The corollary below follows from Theorem 1.6 and Lemma 3.3 :

Corollary. Suppose that the hypotheses of the previous lemma hold for pπ′,E and
define h ∈ hE by setting α(h) = −1 for all α ∈ S. Then (h, y) is an adapted pair for
pπ′,E. If, in addition, Y (pπ′,E) is polynomial in ind pπ′,E generators, then y+ gT is a
slice for the coadjoint action of p−π′,E.

3.4.1. In the following sections we construct an adapted pair for maximal parabolic
subalgebras for which Y (pπ′,E) is known to be polynomial, that is when Theorem 2.2.3
applies. By the above, it is enough to choose, when possible, two subsets S, T of
∆+ t∆−π′ which satisfy the conditions of Lemma 3.3.

As we will see, in most cases, we choose sets S+, T+, with T+ ⊂ π such that
S+ t T+ = βπ and S−, T−, with T− ⊂ −π′ such that S− t T− = −βπ′ . Then for all
β ∈ S, we take Γβ = Hβ, as defined in 2.2.2. By the easy observation that if β ∈ π,
then Hβ = {β}, we conclude that with these choices condition (1) of Lemma 3.3 is
satisfied by 2.2.2 (2). Moreover, condition (2) follows by 2.2.2 (5). Hence in these
cases, it only remains to verify conditions (3) and (4).

As adapted pairs were already constructed for all truncated biparabolic subalge-
bras of sln [11], we will not consider this case.

4. Type B

Let g be simple of type Bn (n ≥ 2) and π′ = π \ {αs}, for some 1 ≤ s ≤ n.
The truncated parabolic pπ′,E is then equal to pπ′,E = n⊕ h′ ⊕ n−π′ , where recall that
h′ is the Cartan subalgebra of the derived algebra of pπ′ . Its Levi factor lπ′ is the
product of two simple Lie algebras, one of type As−1 and the other of type Bn−s. In
particular, if s = 1 one has that lπ′ = so2n−1 and if s = n, lπ′ = sln.
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4.1. Orbits. Since w0 = − id one has that j = id and i is as follows :

i(αt) =

{
αs−t, 1 ≤ t ≤ s− 1
αt, s ≤ t ≤ n

Hence the 〈ij〉 - orbits of π are Γt = {αt, αs−t}, 1 ≤ t ≤ [ s
2
] and Γt = {αt}, s ≤ t ≤ n.

Then |E |= [ s
2
] + n− s+ 1.

By Theorem 2.2.3, if s is odd, Y (pπ′ E) is polynomial, since εΓ = 1 for all Γ ∈ E. If
s is even the theory of [4] does not guarantee us that Y (pπ′,E) is polynomial. However,
when s = 2, then pπ′,E equals the centralizer of the nilpotent element corresponding
to a non-zero highest root vector xβ1 , that is pπ′,E = gxβ1 , and by [17] Y (pπ′,E) is
polynomial. Moreover, in this case an adapted pair was constructed in [12].

Below, we will construct an adapted pair when s is odd and will give the adapted
pair of [12] for s = 2.

4.2. Construction of an adapted pair. Here we assume that π′ = π \ {αs} with
s odd. Note that in this case ind pπ′,E =|E |= n− s−1

2
.

4.2.1. The sets S and T . Recall the maximal set βπ of strongly orthogonal roots
we introduced in section 2.2.1 and in particular Table I. Denote by β0

π the set β0
π =

βπ \ (βπ ∩ π).
The subset π′ is a union of two connected components, π′1 of type As−1 and π′2

of type Bn−s. One has that βπ′1 = {β′i := αi + αi+1 + · · · + αs−i | 1 ≤ i ≤ s−1
2
}. In

particular, since s is odd β0
π′1

= βπ′1 .

Also, β0
π′2

= {β′′i := αs+2i−1 + 2αs+2i + . . . + 2αn | 1 ≤ i ≤ [n−s
2

]} and βπ′2 ∩ π
′
2 =

{αs−1+2i | 1 ≤ i ≤ [n+1−s
2

]}.
For S we choose S = S+ t S−, where S+ = β0

π and S− = (−βπ′1) ∪ (−β0
π′2

). For T

we choose T = T+ t T− where T+ = βπ ∩ π and T− = −(βπ′2 ∩ π
′
2).

4.2.2. Choice of Heisenberg sets. For all β ∈ S we take Γβ = Hβ, as defined in 2.2.2.
Notice that S+ t T+ = βπ and S− t T− = −βπ′ . By 3.4.1, conditions (1) and (2)
of Lemma 3.3 are satisfied. Condition (4) is also satisfied, since | T |= n − s−1

2
=

ind pπ′, E. It remains to verify condition (3).

4.2.3. Lemma. For the above choice of S, one has that S|hE is a basis for h∗E.

Proof. Let S = {sj | 1 ≤ j ≤ n− 1} and take for a basis of hE the set {α∨i | 1 ≤ i ≤
n, i 6= s}. It is enough to show that the determinant of the matrix (α∨i (sj))i, j is
non-zero.

First of all notice that for all i, with 1 ≤ i ≤ [n/2], βi = ci$2i − $2i−2, where
cn/2 = 2 when n is even and ci = 1 otherwise. (Here we have set $0 = 0.) Similarly,
β′′i = di$s+2i − $s+2i−2, with dn−s

2
= 2 if n is odd and di = 1 otherwise. Then
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up to a sign we have: det (α∨i (sj)) = det

(
A B
0 C

)
, where A = (α∨2i(βi)) is an

upper triangular matrix with ci, 1 ≤ i ≤ [n/2] on the diagonal. Then up to a sign
det (α∨i (sj)) = c[n/2] det C.

On the other hand C =

(
D 0
0 F

)
, where D = (α∨s+2i(β

′′
j )) is an upper triangular

matrix with di on the diagonal, hence det D = d[n−s
2

] det F .

Finally, F = −(α∨2i−1(β′j)) and each of the α2i−1, 1 ≤ i ≤ s−1
2

, lies in exactly one

Hβ′j
by 2.2.2 (6). Recall that {β′i | 1 ≤ i ≤ s−1

2
} is the set βπ′1 of strongly orthogonal

roots of π′1, which is of type As−1. In particular, they are totally ordered by the order
defined in 2.2.1. With the notations of 2.2.1, ∆+

i+1 = ∆+
β′i

and ∆+
i+1 ⊂ ∆+

i for all i,

with 1 ≤ i ≤ s−1
2

(where we set ∆+
1 = ∆+

π′1
). Moreover, by 2.2.2 (1) and the above,

Hβ′i
⊂ ∆+

β′i−1
= ∆+

i . Let αtj ∈ Hβ′j
, with {αtj | 1 ≤ j ≤ s−1

2
} = {α2i−1 | 1 ≤ i ≤ s−1

2
}.

Then up to a sign, det F = det (α∨ti(β
′
j)) and the latter is an upper triangular matrix

with 1 on the diagonal. In particular, det F 6= 0. �

4.2.4. Now take π′ = π \ {α2}; as we already said, an adapted pair has been con-
structed in [12].

The sets S and T are given in [12, Tables] for Bn, n ≥ 3 as follows:

S = {α2, α3, . . . , αn−1, α1 + α2 + . . .+ αn}

and

T = {αi + 2(αi+1 + . . .+ αn), 1 ≤ i ≤ n− 1, −α1}.

5. Type D

As expected, type D is almost identical with B. We will give the details for
completeness.

Let g be simple of type Dn (n ≥ 4) and π′ = π \ {αs} for some 1 ≤ s ≤ n. If
1 ≤ s ≤ n− 3, then the Levi factor lπ′ of the truncated parabolic subalgebra pπ′, E is
the product of two simple Lie algebras, one of type As−1 and another of type Dn−s
(in particular, if s = 1, lπ′ is a simple Lie algebra of type Dn−1).

If s = n − 2, then the Levi factor lπ′ is the product of three simple Lie algebras,
of types An−3, A1 and A1.

Finally, if s = n− 1 or s = n, then lπ′ is a simple Lie algebra of type An−1.

5.1. Orbits. Recall that j = id if n is even and, if n is odd, j is the involution of
π that interchanges αn−1 and αn and fixes the rest of the simple roots. By Theo-
rem 2.2.3 one can show that Y (pπ′, E) is polynomial (that is εΓ = 1 for all Γ ∈ E) if
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s is odd or s = n− 1 and s is even. Since the cases s = n, n− 1 are symmetric, we
may consider that s is odd. Note that then n, n− s have different parity.

We will compute the 〈ij〉 - orbits in π when s is odd.
Assume first that 1 ≤ s ≤ n − 2. The 〈ij〉 - orbits of π are Γt = {αt, αs−t},

1 ≤ t ≤ s−1
2

, Γt = {αt}, s ≤ t ≤ n− 2 and Γn−1 = {αn−1, αn}. Then |E| = n− s+1
2

.
Assume that s = n and is odd. The 〈ij〉 - orbits in π are Γt = {αt, αn−t},

2 ≤ t ≤ n−1
2

and Γ1 = {α1, αn−1, αn}. Then |E| = n−1
2

.
In [17], the authors show that for s = 2, Y (pπ′,E) is also polynomial; an adapted

pair is constructed in [12] in this case - we give it at the end of this section.

5.2. Construction of an adapted pair.

5.2.1. The sets S and T . Assume first that 1 ≤ s ≤ n− 2 and s is odd. Denote by
π′1 the connected component of π′ of type As−1 and by π′2 the connected component
of π′ of type Dn−s. Recall the sets βπ of strongly orthogonal positive roots (see
Table I) and β0

π as defined in 4.2.1. Note in particular that |β0
π| = n−1

2
if n odd and

|β0
π| = n

2
− 1 if n even and that n, n− s have different parity.

Set β0
π = {βi | 1 ≤ i ≤ n−1

2
} if n is odd and β0

π = {βi | 1 ≤ i ≤ n
2
− 1} if n is even.

Then, in the former case, we have β0
π′2

= {β′′i | 1 ≤ i ≤ n−s
2
− 1} and in the latter

β0
π′2

= {β′′i | 1 ≤ i ≤ n−s−1
2
}. The roots β′′i are given by the formulae of Table I for

type D by shifting i→ s+ i. Also βπ′1 = β0
π′1

= {β′i | 1 ≤ i ≤ s−1
2
}, where the β′i are

given by the formulae of Table I for Type A by setting n = s− 1.
Set now S+ = β0

π if n is odd and S+ = β0
π t {αn} if n is even. Set also S− =

(−β0
π′1

) t (−β0
π′2

) if n is even and S− = (−β0
π′1

) t (−β0
π′2

) t {−αn} if n is odd.

Set T+ = βπ ∩ π if n is odd and T+ = (βπ ∩ π) \ {αn} if n is even. Set also
T− = −(βπ′2 ∩ π

′
2) \ {−αn} if n is odd and T− = −(βπ′2 ∩ π

′
2) if n is even. Take

T = T+ t T−. In both cases, |T | = n− s+1
2

= ind pπ′,E.

Assume now that s = n and is odd. Then π′ is of type An−1. Let {βi | 1 ≤ i ≤ n−1
2
}

be the elements in βπ as noted in Table I and βπ′ = {β′i := αi + . . . + αn−i | 1 ≤ i ≤
n−1

2
}.

We choose S+ = {βi | 1 ≤ i ≤ n−1
2
} = β0

π, S− = −βπ′ and S = S+ t S−. For T±

we choose T+ = βπ ∩ π = {α2i−1, 1 ≤ i ≤ n−1
2
}, T− = ∅ and T = T+.

Then | T |= n−1
2

=| E |= ind pπ′, E.

5.2.2. Choice of Heisenberg sets. For each β ∈ S, set Γβ = Hβ with the notation
of 2.2.2. As in type B, we have that S+ t T+ = βπ and S− t T− = −βπ′ . Then
conditions (1) and (2) of Lemma 3.3 are immediate, condition (4) is verified above.
Finally, condition (3) also follows by arguments similar to the proof of Lemma 4.2.3.
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5.2.3. Finally take π′ = π \ {α2}, and n ≥ 4, which is the case when the truncated
parabolic subalgebra coincides with the centralizer of the highest root vector. An
adapted pair has been constructed in [12]. The sets S and T are given in [12, Tables]
for Dn, n ≥ 4 as follows:

S = {α2, α3, . . . , αn−2, α1 + α2 + . . .+ αn−1, α1 + α2 + . . .+ αn−2 + αn}
and

T = {αi + 2αi+1 + . . .+ 2αn−2 + αn−1 + αn, 1 ≤ i ≤ n− 2, αn, −α1}.

6. Type C

Let g be a simple Lie algebra of type Cn (n ≥ 3) and π′ = π\{αs}, with 1 ≤ s ≤ n.
Then π′ = π′1 ∪ π′2, where π′1 is of type As−1 and π′2 is of type Cn−s. The Levi factor
lπ′ of the truncated parabolic pπ′, E is the product lπ′ = sls × sp2(n−s). By Theorem
2.2.3, Y (pπ′,E) is polynomial in ind pπ′,E generators for all s, with 1 ≤ s ≤ n.

6.1. Orbits. The involutions of the Dynkin diagram j and i are given by j = id
and :

i(αt) =

{
αs−t, 1 ≤ t ≤ s− 1.
αt, s ≤ t ≤ n.

Hence the 〈ij〉 = 〈i〉 - orbits of the Dynkin diagram are

Γt =

{
{αt, αs−t}, 1 ≤ t ≤ [s/2].
{αt}, s ≤ t ≤ n.

They are |E| = n− s+ 1 + [s/2] in number, hence ind pπ′,E = n− s+ 1 + [s/2].

6.2. Construction of an adapted pair.

6.2.1. The sets S and T . In types Bn and Dn we had that

S ∪ T = βπ ∪ (−βπ′).
In type Cn such a choice would not work; notice in particular that βπ′2 ⊂ βπ.

Recall that β0
π′1

denotes the set βπ′1 \ (βπ′1 ∩ π
′
1).

Denote by βi the elements in βπ, and β′i the elements in βπ′1 . For all i with
1 ≤ i ≤ n− 1 set γi = βi − αi.

We will distinguish the following two cases :
(i) If s is odd, we choose

S+ = {γ2i−1; 1 ≤ i ≤ [n/2]},
S− = {−γ2j; (s+ 1)/2 ≤ j ≤ [(n− 1)/2]} ∪ (−βπ′1)
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and
T+ = {β2i−1; 1 ≤ i ≤ [(n+ 1)/2]},
T− = {−β2j; (s+ 1)/2 ≤ j ≤ [n/2]}.

(ii) If s is even set t := [s/4] and choose

S+ = {γ2i−1; 1 ≤ i ≤ t, β2t+1, γ2j; t+ 1 ≤ j ≤ [(n− 1)/2]},
S− = {−γ2j−1; s/2 + 1 ≤ j ≤ [n/2]} ∪ (−β0

π′1
)

and

T+ = {β2i−1; 1 ≤ i ≤ t, β2j; t+ 1 ≤ j ≤ [n/2]},
T− = {−β2j−1; s/2 + 1 ≤ j ≤ [(n+ 1)/2],−β′s/2}.

6.2.2. Choice of Heisenberg sets. Set S = S+ t S−. For every γ ∈ S, we will define
a Heisenberg set of centre γ, Γγ.

For all γ ∈ S∩(βπ∪(−βπ′)), we set Γγ = Hγ. For the rest of the roots in S, namely
the γi, (resp. −γi) we define Γγi := H0

βi
tHβi+1

(resp. Γ−γi = H0
−βitH−βi+1

= −Γγi).
It is better to view these sets schematically, using certain (shifted) Young tableaux
that we define right below. These diagrams were used in [18] for a different purpose.

We display the positive roots in a shifted diagram T (Cn) of shape (2n − 1, 2n −
3, . . . , 1), that is we assign to each box (i, j) of T (Cn) the positive root ti, j, where :

ti, j =

{
αi + · · ·+ 2(αj + · · ·+ αn−1) + αn, i ≤ j ≤ n− 1.
αi + · · ·+ α2n−j, n ≤ j ≤ 2n− i.

For example, the diagram for C3 is :

2α1 + 2α2 + α3 α1 + 2α2 + α3 α1 + α2 + α3 α1 + α2 α1

2α2 + α3 α2 + α3 α2

α3

Notice that for all i, with 1 ≤ i ≤ n, the i - th line of T (Cn) is the Heisenberg set
Hβi , with the centre βi lying on the (i, i) box, i.e. Hβi = {ti, j | i ≤ j ≤ 2n− i} and
ti, i = βi. The right corners of the diagram correspond to the simple roots.

One has that γi = βi − αi = ti, i+1 for all i, with 1 ≤ i ≤ n − 1. Then Γγi is the
set Γγi = {t`,m | ` ∈ {i, i + 1}, m ≥ i + 1}. We will show that it is a Heisenberg
set of centre ti, i+1. Then of course, Γ−γi = −Γγi will be a Heisenberg set of centre−γi.

Lemma. Let Γγi be the set Γγi = {t`,m | ` ∈ {i, i + 1}, m ≥ i + 1}. For all j, with
i+ 1 ≤ j ≤ 2n− i− 1, one has :

ti+1, j + ti, 2n+1−j = ti, i+1.

In particular, Γγi is a Heisenberg set of centre ti, i+1(= γi).
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Proof. For j ≤ n− 1 one has :

ti+1, j + ti, 2n+1−j = αi+1 + · · ·+ 2(αj + · · ·+ αn−1) + αn + αi + · · ·+ αj−1

= αi + 2(αi+1 + · · ·+ αn−1) + αn

= ti, i+1.

For j = n we have :

ti+1, n + ti, n+1 = (αi+1 + · · ·+ αn) + (αi + · · ·+ αn−1) = ti, i+1.

The cases j = n+ 1 and j ≥ n+ 2 follow by similar calculations. We conclude that
for every t ∈ Γγi \ {γi}, there exists a (unique) t′ ∈ Γγi \ {γi}, such that t + t′ = γi
and Γγi is a Heisenberg set. �

6.2.3. Decomposition into Heisenberg sets. We will show that the sets Γ± :=
⊔

γ∈S±
Γγ

defined in the previous section complement T± in ∆+ (resp. ∆−π′), i.e.

∆+ = Γ+ t T+, ∆−π′ = Γ− t T−.
This easily follows by the decomposition in 2.2.2 (2). Indeed, take for example the

case s odd. Then Γ+ =
[n/2]⊔
i=1

(H0
β2i−1

tHβ2i
). Clearly, a complement of this in ∆+ is

T+.
Similarly,

Γ− =

(s−1)/2⊔
i=1

H−β′i

 t
 [(n−1)/2]⊔
i=(s+1)/2

(H0
−β2i
tH−β2i+1

)

 .

Again, a complement of this set in ∆−π′ is T−.
The case s even follows similarly.

6.2.4. We will show that condition (2) of Lemma 3.3 holds.
Set O± =

∐
γ∈S±

Γ0
γ.

Lemma. If any two roots α, β ∈ O± satisfy α + β = γ, for some γ ∈ S± then
α, β ∈ Γ0

γ.

Proof. We will prove the statement for O+. Suppose that α + β = γ and γ ∈ S+.
Since Γγ is a Heisenberg set, it is enough to show that α ∈ Γ0

γ (or β ∈ Γ0
γ). Notice

that the elements of S+ are all of the form γi or βi ∈ βπ. In the latter case, lemma
follows by 2.2.2 (5).

Let us suppose that γ = γi = βi − αi. Then γ ∈ H0
βi

and again by 2.2.2 (5),
α ∈ Hβi (or β ∈ Hβi). Let us assume the former holds.
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Since all roots γ, α, β are positive, we have γ > α (here > denotes the usual
partial order of the root lattice). Since both γ, α are in Hβi and γ ∈ H0

βi
, one has

that α ∈ H0
βi

. But H0
βi
⊂ Γγ, hence α ∈ Γγ and then α ∈ Γ0

γ. �

6.2.5. Lemma. One has that S|hE is a basis for h∗E.

Proof. We take for a basis of hE the set {α∨i | 1 ≤ i ≤ n, i 6= s}. We need to show
that if S = {sj | 1 ≤ j ≤ n− 1} one has that det (α∨i (sj))i,j 6= 0. We may order the

sj ∈ S and the α∨i ∈ h∗E in a way such that the matrix (α∨i (sj))i,j is upper triangular
with diagonal elements non-zero. First notice that γi = $i+1 −$i−1, for all i, with
1 ≤ i ≤ n− 1, where we have set $0 = 0.

Assume that s is odd.

By rearranging the rows, we may write the matrix (α∨i (sj))i,j as

(
A B
0 C

)
by

taking A to be the [n/2] × [n/2] matrix A = (α∨2i(γ2j−1))
[n/2]
i, j=1. Then A is upper

triangular and has 1 on the diagonal, hence detA = 1 and det(α∨i (sj))i, j = detC.

Similarly, we may write C as C =

(
D 0
0 F

)
, with D the [(n− s)/2]× [(n− s)/2]

matrix D = −(α∨s+2i(γs+1+2(j−1)))
[(n−s)/2]
i,j=1 . Then detD = (−1)[(n−s)/2], hence detC =

detF up to a sign. Finally, F = −
(
α∨2i−1(β′j)

)(s−1)/2

i, j=1
. By 2.2.2 (6), one observes

that each of the simple roots α2i−1, 1 ≤ i ≤ (s − 1)/2 lies in exactly one Hβ′j
. A

similar argument as in the end of the proof of Lemma 4.2.3 allows us to conclude
that detF 6= 0.

Assume that s is even and note that β2t+1 = 2$2t+1 − 2$2t. We may again write

the matrix as

(
A′ B′

0 C ′

)
by taking A′ to be the t× t matrix A′ = (α∨2i(γ2j−1))ti, j=1.

Then A′ is upper triangular and has 1 on the diagonal, hence detA′ = 1 and

det(α∨i (sj))i, j = detC ′. Similarly, we may write C ′ as C ′ =

(
D′ E ′

0 F ′

)
, with

D′ the matrix D′ = (α∨2i−1(γ2j−2))
[(n+1)/2]
i, j=t+1 , where here we have set γ2t := β2t+1.

Then detD′ = 2 hence detC ′ = 2 detF ′. Finally, by reasoning as before, we obtain
detF ′ 6= 0.

�

6.2.6. Finally, one may observe that in both cases, the set T has cardinality equal
to |T | = ind pπ′,E = n − s + 1 + [ s

2
]. We conclude that all conditions of Lemma 3.3

are satisfied.
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7. Type E6

Let g be of type E6 and let π′ = π \ {αs}, for 1 ≤ s ≤ 6, pπ′,E the corresponding
truncated parabolic subalgebra. The involution j on π is given as follows:

j(α1) = α6, j(α2) = α2, j(α3) = α5, j(α4) = α4.

By Theorem 2.2.3 Y (pπ′,E) is a polynomial algebra for s = 3, 4, 5. By [17], Y (pπ′,E)
is polynomial for s = 2 - an adapted pair has been constructed in this case in [12].
In the sections below, we construct an adapted pair for all pπ′,E, for s = 3, 4, 5 and
we give the construction of [12] for s = 2, for the sake of completeness. Note that
cases s = 3 and s = 5 are symmetric, thus it is enough to consider one of them - we
treat case s = 3 in Section 7.2.

Recall that we are using the notations of [1, Planches I-IX] and in particular we

denote by
acdef
b

the root aα1 + bα2 + cα3 + dα4 + eα5 + fα6. If b = 0, we simply

write acdef instead of
acdef

0
.

7.1. Let π′ = π \ {α2}. By [12], we may choose

S =

{
−α3,−α5,

01210
1

,
11110

1
,

01111
1

}
and

T =

{
11111, 11110, 01100,

12221
1

,
11211

1
,

12321
2

}
.

7.2. Let π′ = π \ {α3}. Then π′ has two connected components π′1 = {α1} of type
A1 and π′2 = {α2, α4, α5, α6} of type A4. The involution i is defined on π by

i(α1) = α1, i(α2) = α6, i(α3) = α3, i(α4) = α5.

The 〈ij〉 - orbits in π are the {α1, α2, α6}, {α3, α4, α5}. In particular, ind pπ′,E = 2.

7.2.1. Recall the set of strongly orthogonal roots βπ and Table I. For S± we choose
S+ = β0

π = {β1, β2, β3} and S− = −βπ′2 = {−β′′1 := −(α2 + α4 + α5 + α6),−β′′2 :=
−(α4 +α5)}. For T± we choose T+ = βπ ∩π = {β4 = α4} and T− = −βπ′1 = {−α1}.
One has |T | = ind pπ′,E, thus condition (4) of Lemma 3.3 holds.

For every γ ∈ S = S+ t S−, we choose the Heisenberg set of centre γ, Γγ = Hγ.
Note that S+ t T+ = βπ and S− t T− = −βπ′ . Then by 3.4.1, conditions (1) and
(2) of Lemma 3.3 are satisfied. Finally, an easy computation of the determinant
det (α∨i (sj)), with 1 ≤ i ≤ 6, i 6= 3 and S = {sj | 1 ≤ j ≤ 5} settles condition (3).
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7.3. Finally, let π′ = π \ {α4}. Then π′ has three connected components, π′1 =
{α1, α3}, π′2 = {α5, α6} both of type A2 and π′3 = {α2} of type A1. The involution i
is given by

i(α1) = α3, i(α2) = α2, i(α5) = α6, i(α4) = α4.

Hence there are four 〈ij〉 - orbits in π, namely {α1, α5}, {α3, α6}, {α2}, {α4}.

7.3.1. We choose for S± the sets S+ = {β1, 11110, 01111}, S− = −β0
π′ = {−β′1 :=

−(α1+α3), −β′′1 := −(α5+α6)} and for T± the sets T+ = {β2, β4, α6}, T− = {−α2}.
In particular |T | = 4 = |E|.

Remark. Recall Section 2.2.1. Note that ∆β1 = ∆ \ (Hβ1 t−Hβ1) is a root system
of type A5. The choice of {11110, 01111, −11000, −00011} coincides with the choice
of S for π of type A5 and π′ is equal to π without its third root as constructed in
[11].

7.3.2. For γ ∈ βπt(−βπ′) we set Γγ = Hγ. For the rest of the elements of S, namely
11110 and 01111 we choose

Γ11110 = {10000, 11000, 11100, 01110, 00110, 00010, 11110}
and

Γ01111 = {01000, 01100, 00111, 00011, 01111}.
They are clearly Heisenberg sets of centres 11110 and 01111 respectively. Conditions
(1) and (2) of Lemma 3.3 are easily checked by hand.

7.3.3. Set s1 = β1, s2 = 11110, s3 = 01111, s4 = −β′1, s5 = −β′′1 and h1 = α∨1 , h2 =
α∨2 , h3 = α∨3 , h4 = α∨5 , h5 = α∨6 . Then

det (hi(sj)) =

∣∣∣∣∣∣∣∣∣∣
0 1 −1 −1 0
1 −1 −1 0 0
0 0 1 −1 0
0 1 0 0 −1
0 −1 1 0 −1

∣∣∣∣∣∣∣∣∣∣
= 3 6= 0.

We conclude that S|hE is a basis for h∗. Hence all conditions of Lemma 3.3 are
satisfied.

8. Type E7

Let g be of type E7 and let π′ = π \ {αs}, for 1 ≤ s ≤ 7, pπ′,E the associated
parabolic. By Theorem 2.2.3 Y (pπ′,E) is a polynomial algebra for s = 2, 5. By [17],
Y (pπ′,E) is polynomial for s = 1 - an adapted pair has been constructed in this case
in [12]. In the sections below, we construct an adapted pair for all pπ′,E, for s = 2, 5
and we give the construction of [12] for s = 1.
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Again we are using the notations of [1, Planches I-IX] and we denote by
acdefg

b
the root aα1 + bα2 + cα3 + dα4 + eα5 + fα6 + gα7. As before, if b = 0, we simply

write acdefg instead of
acdefg

0
.

Recall that j = id.

8.1. Take π′ = π \ {α1}. By [12] one may choose

S =

{
−α2,−α4,−α6,

112111
1

,
112210

1
,

122110
1

}
and

T =

{
012221

1
,

012210
1

,
123321

2
,

012100
1

,
123221

1
,

122211
1

,
234321

2

}
.

8.2. Let π′ = π \ {α2} - then π′ is of type A6. One has that i is the involution
defined by

i(α1) = α7, i(α3) = α6, i(α4) = α5, i(α2) = α2.

The 〈ij〉 - orbits are {α1, α7}, {α2}, {α3, α6}, {α4, α5}, hence ind pπ′,E = 4.

8.2.1. For S± we choose S+ = β0
π = {β1, β2, β3} and S− = −βπ′ = {−β′1, −β′2, −β′3}

and for T± we choose T = T+ = βπ ∩ π = {α7, α2, α3, α5}. One has |T | = 4 =
ind pπ′,E. Then S+ t T+ = βπ and S− = −βπ′ .

8.2.2. For γ ∈ S we take Γγ = Hγ; by 3.4.1 condition (1) and (2) of Lemma 3.3
hold for these choices. Finally, S|hE is a basis for h∗E, by an easy calculation of the
determinant.

8.3. Now let π′ = π\{α5}. Then π′ has two connected components, π′1 = {α1, α2, α3, α4}
of type A4 and π′2 = {α6, α7} of type A2. We have that i is the involution given by

i(α1) = α2, i(α3) = α4, i(α5) = α5, i(α6) = α7.

Hence there are four 〈ij〉 - orbits in π, namely the {α1, α2}, {α3, α4}, {α5}, {α6, α7}.

8.3.1. One has that βπ′1 = {β′1 = α1+α2+α3+α4, β
′
2 = α3+α4} and βπ′2 = {β′′1 = α6+

α7}. For S± we choose S+ = β0
π = {β1, β2, β3} and S− = (−βπ′1) t (−βπ′2) = −βπ′ .

For T± we choose T = T+ = βπ ∩ π = {α2, α3, α5, α7}. We have |T | = 4 = |E|.
Again S+ t T+ = βπ and S− = −βπ′ . By taking Γγ = Hγ for all γ ∈ S, conditions
(1)–(4) of Lemma 3.3 follow as in the previous case.
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9. Type E8

Let g be of type E8 and let π′ = π \ {αs}, for 1 ≤ s ≤ 8. By Theorem 2.2.3,
Y (pπ′,E) is a polynomial algebra for s = 3. By [20], Y (pπ′,E) is not polynomial for
s = 8. Below, we construct an adapted pair for pπ′,E, for s = 3.

9.1. Let π′ = π \{α3} - it has two connected components, π′1 = {α1} of type A1 and
π′2 = {α2, α4, α5, α6, α7, α8} of type A6. Then j = id and i is the involution that
fixes α1 and α3 and interchanges α2 and α8, α4 and α7, α5 and α6. Thus there are
five 〈ij〉-orbits in π, namely {α1}, {α3}, {α2, α8}, {α4, α7}, {α5, α6}. One has that
ind pπ′,E = 5.

9.1.1. For S± we choose S+ = β0
π = {β1, β2, β3, β4} and S− = −βπ′2 = {−β′1, −β′2, −β′3}.

For T± we choose T+ = βπ ∩ π = {α2, α3, α5, α7} and T− = −βπ′1 = {−α1}. In
particular, |T | = 5 = ind pπ′,E. We take Γγ = Hγ for all γ ∈ S and we conclude as
in type E7.

10. Type F4

Let g be of type F4, π′ = π \ {αs}, where 1 ≤ s ≤ 4, pπ′,E the corresponding
truncated parabolic. Recall that we are using the labeling of [1, Planche VIII]. In
particular, we denote by abcd the root aα1 + bα2 + cα3 + dα4. Recall also the set of
strongly orthogonal roots of g listed in Table I, βπ = {β1 = 2342, β2 = 0122, β3 =
0120, β4 = 0100}.

By Theorem 2.2.3, Y (pπ′,E) is polynomial for s = 2, 3, 4. This is still true for
s = 1 by [17]; moreover, in this case, an adapted pair has been constructed in [12].
For the sake of completeness, we give the construction of [12] in Section 10.1 below.
We construct an adapted pair for s = 2, 4. However, we show with the help of a
computer that adapted pairs do not exist for s = 3.

Indeed, in this case Y (p−π′,E) is a polynomial algebra on three generators of degrees
3, 4 and 10. If (h, y =

∑
s∈S

xs) is an adapted pair for pπ′,E, then |S| = 3, h(s) = −1

for all s ∈ S and 2, 3, 9 are the eigenvalues of h on a complement of (ad p−π′,E) y.
For any h = λα∨1 + µα∨2 + να∨4 ∈ hE, its eigenvalues on the 28 root vectors of pπ′,E
are functions on λ, µ, ν and may be computed by hand. We computed all h having
{−1, −1, −1, 2, 3, 9} among their eigenvalues on pπ′,E. Then by setting S to be the
set of the three eigenvectors of eigenvalue −1, we showed that y fails to be regular,
and so adapted pairs do not exist.

Recall that j = id.

10.1. Let π′ = {α2, α3, α4}. Then by [12], we may choose S = {−0010, 1121, 1220}
and T = {2342, 1222, 0122, 0111}.
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10.2. Let π′ = {α1, α3, α4}, so that the Levi factor of pπ′,E is the product lπ′ =
sl2 × sl3. Equivalently, π′ consists of two connected components, namely π′1 = {α1}
of type A1 and π′2 = {α3, α4} of type A2. We then have three 〈ij〉 = 〈i〉 - orbits in
π, namely Γ1 = {α1}, Γ2 = {α2}, Γ3 = {α3, α4}. Hence ind pπ′,E = 3.

One has that βπ′ = βπ′1 t βπ′2 , with βπ′1 = {β′ := α1}, βπ′2 = {β′′ := α3 + α4}.

10.2.1. We choose for S the set S = {β1, β2 − α4 = β3 + α4︸ ︷︷ ︸
S+

,−β′′︸︷︷︸
S−

} and for T the set

T = {β2, β4︸ ︷︷ ︸
T+

, −β′︸︷︷︸
T−

}. Notice that |T | = 3 = ind pπ′,E, hence condition (4) of Lemma

3.3 holds.

10.2.2. Set Γβ1 = Hβ1 , Γβ2−α4 = H0
β2

⊔
Hβ3 and Γ−β′′ = −Hβ′′ . These are Heisen-

berg sets (for Γβ2−α4 see Lemma 6.2.2 - one may as well check by hand since the cardi-
nality of this set is only 7). Their union is disjoint since theHβ, β ∈ βπ, −Hβ, β ∈ βπ′
are disjoint. Finally, by comparison of Γ± :=

⊔
γ∈S±

Γγ and 2.2.2 (2), the complement

of Γ± in ∆+ (resp. ∆−π′) is T± and then condition (1) of Lemma 3.3 is satisfied. On
the other hand, condition (2) follows as in Lemma 6.2.4.

Remark. Notice that ∆ \ (Hβ1 t −Hβ1) (which is equal to ∆β1 with the notation of
2.2.1) is a root system of type C3 (with highest root 0122). The choice of the roots
β2−α4 and −(α3 +α4) coincides with the choice of S for π of type C3 and π′ is equal
to π without the last root.

10.2.3. It remains to verify condition (3) of Lemma 3.3.

Lemma. One has that S|hE is a basis for h∗E.

Proof. Let s1 = β1, s2 = β2 − α4, s3 = −β′′ be the elements of S and take {h1 =
α∨1 , h2 = α∨3 , h3 = α∨4 } a basis of hE. It is sufficient to check that the determinant
of (hi(sj))i,j is non zero. Indeed, one checks that

det (hi(sj)) =

∣∣∣∣∣∣
1 −1 0
0 1 −1
0 0 −1

∣∣∣∣∣∣ = −1 6= 0.

�

10.3. Let π′ = {α1, α2, α3}, so that the Levi factor of pπ′, E is of type B3. Then i =
id, hence the 〈ij〉 - orbits of the Dynkin diagram are the singletons, {αi}, 1 ≤ i ≤ 4
and so ind pπ′,E = 4.
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10.3.1. We choose S = {β1, β2 − α4 = β3 + α4︸ ︷︷ ︸
S+

, −β′1︸︷︷︸
S−

} and T = {β2, β4︸ ︷︷ ︸
T+

, −β′1′ , −β′2︸ ︷︷ ︸
T−

}.

Notice that |T | = 4 = ind pπ′,E, hence condition (4) of Lemma 3.3 holds.

10.3.2. We set Γβ1 = Hβ1 , Γ−β′1 = −Hβ′1
and Γβ2−α4 = H0

β2
t Hβ3 . It is clear

that Γβ1 t Γβ2−α4 (resp. −Γβ′1) complements T+ (resp. T−) in ∆+ (resp. ∆−π′).
Moreover, as before, these are Heisenberg sets, thus condition (1) of Lemma 3.3 is
satisfied. Condition (2) follows as in 6.2.4. Finally, condition (3) follows by an easy
computation as in 10.2.3.

11. Type G2

Let g be of type G2 with π = {α, β} a set of simple roots and α short. Then
Y (pπ′,E) is polynomial for both maximal truncated parabolics of g.

11.1. Let π′ = {α}. An adapted pair has been constructed in [12]. The choices for
S and T are {α + β} and {3α + 2β, 3α + β} respectively.

11.2. Let π′ = {β}. Take S = {β1 = 3α+ 2β} and T = {α, −β} and Γβ1 = Hβ1 . It
is immediate to verify conditions (1)-(4) of Lemma 3.3.
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