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MINIMALITY OF p-ADIC RATIONAL MAPS WITH GOOD REDUCTION

AIHUA FAN, SHILEI FAN, LINGMIN LIAO, AND YUEFEI WANG

ABSTRACT. A rational map with good reduction in the field Qp of p-adic numbers defines
a 1-Lipschitz dynamical system on the projective line P1(Qp) over Qp. The dynamical
structure of such a system is completely described by a minimal decomposition. That is
to say, P1(Qp) is decomposed into three parts: finitely many periodic orbits; finite or
countably many minimal subsystems each consisting of a finite union of balls; and the
attracting basins of periodic orbits and minimal subsystems. For any prime p, a criterion
of minimality for rational maps with good reduction is obtained. When p = 2, a condition
in terms of the coefficients of the rational map is proved to be necessary for the map
being minimal and having good reduction, and sufficient for the map being minimal and
1-Lipschitz. It is also proved that a rational map having good reduction of degree 2, 3 and
4 can never be minimal on the whole space P1(Q2).

1. INTRODUCTION

The present study contributes to the theory of p-adic dynamical systems which has
recently been intensively and widely developed. For this development, one can consult the
books [3, 6, 27] and their bibliographies therein.

For a prime number p, let Qp be the field of p-adic numbers and Zp be the ring of
integers in Qp. Ergodic theory on the ring Zp is extremely important for applications to
automata theory, computer science and cryptology, especially in connection with pseudo-
random numbers and uniform distribution of sequences. The minimality, or equivalently
the ergodicity with respect to the Haar measure, of non-expanding dynamical systems on
Zp are extensively studied in [2, 8, 9, 12, 13, 14, 17, 18, 19, 21, 22, 25], and so on.

The dynamical properties of the fixed points of the rational maps have been studied in
the space Cp of p-adic complex numbers [5, 23, 24, 28] and in the adelic space [10]. The
Fatou and Julia theory of the rational maps on Cp, and on the Berkovich space over Cp, are
also developed [7, 6, 20, 26, 27]. However, the global dynamical structure of rational maps
on Qp remains unclear, though the rational maps of degree one are totally characterized in
[15] .

Let φ ∈ Qp(z) be a rational map of degree d ≥ 2. Then φ induces a dynamical system
on the projective line P1(Qp) over Qp, denoted by (P1(Qp), φ). Let E ⊂ P1(Qp) be a
subset such that φ(E) ⊂ E. Then restricted to E, φ defines a subsystem (E, φ|E). The
subsystem (E, φ|E) is called minimal if for any point x ∈ E, the orbit of x under φ is dense
in E. In this article, we suppose that φ has good reduction (see the definition below). The
minimality of (P1(Qp), φ) and its subsystems will be fully investigated. As we will see,
any rational map φ having good reduction is 1-Lipschitz continuous on P1(Qp) which is
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equipped with its spherical metric. This suggests that (P1(Qp), φ) shares many properties
with the polynomial dynamics on Zp, which are 1-Lipschtz with respect to the metric
induced by the p-adic absolute value.

Let � denote the reduction modulo p from Zp to Zp/pZp such that a 7→ a with a ≡
a (mod p). For a polynomial f(z) =

∑d
i=0 aiz

i ∈ Zp[z], the reduction of f modulo p is
defined as

f(z) =

d∑
i=0

aiz
i.

Note that φ can be written as a quotient of polynomials f, g ∈ Zp[z] having no common
factors, such that at least one coefficient of f or g has absolute value 1. Let Fp = Zp/pZp
be the finite field of p elements. The degree of a rational map φ, denoted by deg φ, is the
maximum of the degrees of its denominator and numerator without common factors. The
reduction of φ modulo p is the rational function (of degree at most deg φ)

φ(z) =
f(z)

g(z)
∈ Fp(z),

obtained by canceling common factors in the reductions f(z), g(z). If deg φ = deg φ, we
say φ has good reduction. If deg φ < deg φ, we say φ has bad reduction.

Assume that φ has good reduction. Let ρ(·, ·) be the spherical metric on P1(Qp) (see
the definition in Section 2). Then the map φ is 1-Lipschitz continuous (everywhere non-
expanding [27, p.59]):

ρ(φ(P1), φ(P2)) ≤ ρ(P1, P2) for all P1, P2 ∈ P1(Qp).
The 1-Lipschitz continuity of φ leads us to investigate the minimality and minimal de-
composition of the dynamical system (P1(Qp), φ), as in the case of polynomial dynamical
systems on Zp studied in [14].

Let P1(Fp) be the projective line over Fp. The reduction φ induces a transformation
from P1(Fp) into itself. We denote by φk the k-th iteration of φ. A criterion of the mini-
mality of the system (P1(Qp), φ) is given in the following theorem.

Theorem 1.1. Let φ ∈ Qp(z) be a rational map of deg φ ≥ 2 with good reduction. Then
the dynamical system (P1(Qp), φ) is minimal if and only if the following conditions are
satisfied:

(1) The reduction φ is transitive on P1(Fp).
(2) (φ(p+1))′(0) ≡ 1 (mod p) and |φ(p+1)(0)|p = 1/p.
(3) For the case p = 2 or 3, additionally, |φ(p+1)p(0)|p = 1/p2.

Under the spherical metric ρ(·, ·), P1(Qp) can be considered as an infinite symmetric
tree (see Figures 1 and 2). This tree is in fact an infinite (p+ 1)-Cayley tree. The centered
vertex which is the root of the tree, is called Gauss point. Other vertices correspond to
balls with radius strictly less than one (with respect to the spherical metric). The points
in P1(Qp) are the boundary points of the tree. A vertex is said to be at level n (n ≥ 1),
if there are n edges between the vertex and the Gauss point. Then for n ≥ 1, there are
(p + 1)pn−1 vertices at level n. Since a rational map with good reduction is 1-Lipschitz
continuous with respect to the spherical metric, it will induce an action on the tree under
which the Gauss point is fixed and the sets of vertices at the same level are invariant.

Remark that if we consider φ as action on the tree, the condition (1) in Theorem 1.1
means that φ is transitive on the set of vertices at level 1, the conditions (1) and (2) imply
that φ is transitive on the set of vertices at level 2, while the condition (3) implies that φ
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FIGURE 1. Tree structure of P1(Q2). The points of P1(Q2) are consid-
ered as the boundary points of the infinite tree.

is transitive on the set of vertices at level 3 if conditions (1) and (2) are also satisfied. We
will see in Theorem 4.1 that the transitivity of φ on these finite levels is sufficient for the
minimality of φ on the whole space. The conclusion of Theorem 1.1 can be interpreted as
follows.

The dynamical system (P1(Qp), φ) is minimal if and only φ is transitive on the set of
vertices at level 2 for p ≥ 5, and at level 3 for p = 2 or 3.

When the system (P1(Qp), φ) is not minimal, we describe the dynamical structure of
the system by showing all its minimal subsystems.

Theorem 1.2. Let φ ∈ Qp(z) be a rational map of deg φ ≥ 2 with good reduction. We
have the following decomposition

P1(Qp) = P
⊔
M
⊔
B

where P is the finite set consisting of all periodic points of φ,M =
⊔
iMi is the union of

all (at most countably many) clopen invariant sets such that eachMi is a finite union of
balls and each subsystem φ :Mi →Mi is minimal, and points in B lie in the attracting
basin of a periodic orbit or of a minimal subsystem. Moreover, the length of a periodic
orbit has one of the following forms:

k or k`, if p ≥ 5,

k or k` or kp, if p = 2 or 3,
where 1 ≤ k ≤ p+ 1 and ` | (p− 1).

The decomposition in Theorem 1.2 will be referred to as the minimal decomposition of
the system φ : P1(Qp)→ P1(Qp).

We remark that the possible lengths of periodic orbits were investigated in [29], see also
[27, pp.62-64].

A finite periodic orbit of φ is by definition a minimal set. But for the convenience
of the presentation of the paper, only the setsMi in the above decomposition are called
minimal components. What kind of set can be a minimal component of a good reduction
rational map? In a recent work [8], the authors showed that for any 1-Lipschitz continuous
map, a minimal component must be a Legendre set and that any Legendre set is a minimal
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component of some 1-Lipschitz continuous map. Recall that E ⊂ P1(Qp) is a Legendre
set (see [8, p. 778]) if for every integer n ≥ 0, every non-empty intersection of E with a
ball of radius p−n contains the same number of balls of radius p−(n+1).

We will show that for a rational map with good reduction, the minimal componentsMi

are Legendre sets of special forms. Further, the dynamics of the minimal subsystems are
adding machines. Let (ps)s≥1 be a sequence of positive integers such that ps|ps+1 for every
s ≥ 1. We denote by Z(ps) the inverse limit of Z/(psZ), called an odometer. The sequence
(ps)s≥1 is called the structure sequence of the odometer. The map z → z + 1 on Z(ps)

is the adding machine on Z(ps). The structures of minimal components are determined as
follows.

Theorem 1.3. Let φ ∈ Qp(z) be a rational map of deg φ ≥ 2 with good reduction.
Assume that E ⊂ P1(Qp) is a minimal component of φ. Then φ : E → E is conjugate to
the adding machine on an odometer Z(ps), where

(ps) = (k, k`, k`p, k`p2, · · · )

with integers k and ` satisfying that 1 ≤ k ≤ p+ 1 and ` | (p− 1).

In applications, one usually would like to construct or determine a minimal rational
(polynomial) map by its coefficients. However, this is far from easy, although a criterion of
the minimality of rational maps with good reduction is given in Theorem 1.1. For rational
maps of degree one, a complete description is given in [15]. Here we give the description
of rational maps of degree at least two with good reduction, but only for p = 2. It seems
to be a much more harder task for p ≥ 3.

For a rational map φ ∈ Qp(z) of degree at least 2, the number of periodic points of a
fixed period must be finite. Hence, there exists a z0 ∈ Qp such that z0, φ(z0), φ2(z0) are
distinct. Consider the linear fraction

g(z) =
(z − z0)(φ2(z0)− φ(z0))
(z − φ(z0))(φ2(z0)− z0)

.

Then g(z0) = 0, g(φ(z0)) =∞ and g(φ2(z0)) = 1. Let ψ = g◦φ◦g−1 be the conjugation
of φ by g. Then we have ψ(0) = ∞ and ψ(∞) = 1 and the rational function ψ can be
written as

ψ(z) =
a0 + a1z + · · ·+ ad−1z

d−1 + zd

b1z + · · ·+ bd−1zd−1 + zd

where ai, bj ∈ Qp(0 ≤ i < d, 1 ≤ j < d) and d ≥ 2 is the degree of φ. Therefore, without
loss of generality, we can always assume that φ(0) =∞ and φ(∞) = 1.

The following theorem provides, in some sense, a principle for constructing minimal
rational maps on P1(Q2). For a degree d ≥ 2 rational map of form

φ(z) =
a0 + a1z + · · ·+ ad−1z

d−1 + adz
d

b1z + · · ·+ bd−1zd−1 + bdzd
(1.1)

with ai, bj ∈ Q2 and ad = bd = 1, we set Aφ :=
∑
i≥0 ai, Bφ :=

∑
j≥1 bj , Aφ,1 :=∑

i≥0 a2i+1, Aφ,2 :=
∑
i≥0 a4i+1 and Aφ,3 :=

∑
i≥0 a4i+3.
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Theorem 1.4. Let φ be defined as (1.1). If φ has good reduction and is minimal on P1(Q2),
then 

ai, bj ∈ Z2, for 0 ≤ i ≤ d− 1 and 1 ≤ j ≤ d− 1,

a0 ≡ 1 (mod 2),

Bφ ≡ 1 (mod 2),

Aφ ≡ 2 (mod 4),

Aφ,1 ≡ 1 (mod 2),

b1 ≡ 1 (mod 2),

ad−1 − bd−1 ≡ 1 (mod 2),

a0b1(ad−1 − bd−1)(Aφ,2 −Aφ,3)Bφ+
2(b2 − a1 + ad−2 − bd−2 + bd−1 +Aφ,3) ≡ 1 (mod 4).

(1.2)

Conversely, the condition ( 1.2) implies that φ is 1-Lipschitz continuous and minimal on
P1(Q2).

Corollary 1.5. Let φ ∈ Q2(z) be a rational map of degree 2, 3 or 4 with good reduction.
Then the dynamical system (P1(Q2), φ) is not minimal.

A complete characterization of minimal polynomial maps on Zp in terms of their coeffi-
cients are given in [22] for p = 2 and in [12] for p = 3. However, there is still no complete
description for p ≥ 5. On the other hand, the characterizations of minimal Mahler se-
ries and van der Put series by their coefficients are investigated in [1, 3] and in [4, 21]
respectively.

The above condition (1.2) could be quickly checked by computer, since there are only
arithmetic operations ‘+,−,×’ in the equations of (1.2). By condition (1.2) and a quick
computer computation, we obtain a series of minimal rational maps in Q2(z) of degree 4
which is 1-Lipschitz but do not have good reduction. See the table in Section 5.2.

The paper is organized as follows. In Section 2, we give some preliminaries of P1(Qp),
including the spherical metric and the tree structure of P1(Qp). Section 3 is devoted to the
induced dynamical systems on the vertices. The proofs of Theorems 1.1–1.3 are given in
Section 4. In Section 5, we characterize the minimal rational maps with good reduction
in terms of their coefficients for the case p = 2. Theorem 1.4 and Corollary 1.5 will be
proved in this section. To illustrate our result, in the last section, we present two rational
maps with good reduction whose exact minimal decompositions are described when p = 3.

2. PROJECTIVE LINE

Any point in the projective line P1(Qp) may be given in homogeneous coordinates by
a pair [x1 : x2] of points in Qp which are not both zero. Two such pairs are equal if they
differ by an overall (nonzero) factor λ ∈ Q∗p:

[x1 : x2] = [λx1 : λx2].

The field Qp may be identified with the subset of P1(Qp) given by{
[x : 1] ∈ P1(Qp) | x ∈ Qp

}
.

This subset contains all points in P1(Qp) except one: the point of infinity, which may be
given as∞ = [1 : 0].
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1

FIGURE 2. Tree structure of P1(Q3). The points of P1(Q3) are consid-
ered as the boundary points of the infinite tree.

The spherical metric defined on P1(Qp) is analogous to the standard spherical metric
on the Riemann sphere. If P = [x1, y1] and Q = [x2, y2] are two points in P1(Qp), we
define

ρ(P,Q) =
|x1y2 − x2y1|p

max{|x1|p, |y1|p}max{|x2|p, |y2|p}
or, viewing P1(Qp) as Qp ∪ {∞}, for z1, z2 ∈ Qp ∪ {∞} we define

ρ(z1, z2) =
|z1 − z2|p

max{|z1|p, 1}max{|z2|p, 1}
if z1, z2 ∈ Qp,

and

ρ(z,∞) =

{
1, if |z|p ≤ 1,
1/|z|p, if |z|p > 1.

Remark that the restriction of the spherical metric on the ring Zp := {x ∈ Qp, |x| ≤ 1}
of p-adic integers is same as the metric induced by the absolute value | · |p.

A rational map φ ∈ Qp(z) induces a transformation on P1(Qp). Rational maps are
always Lipschitz continuous on P1(Qp) with respect to the spherical metric (see [27, The-
orem 2.14.]). In particular, rational maps with good reduction are 1-Lipschitz continuous.

Lemma 2.1 ([27], p.59). Let φ ∈ Qp(z) be a rational map with good reduction. Then the
map φ : P1(Qp) 7→ P1(Qp) is 1-Lipschitz continuous:

ρ(φ(P ), φ(Q)) ≤ ρ(P,Q), ∀P,Q ∈ P1(Qp).

For a ∈ P1(Qp) and an integer n ≥ 1, denote by

Bn(a) := {x ∈ P1(Qp) : ρ(x, a) ≤ p−n}

the ball of radius p−n centered at a. The projective line P1(Qp) consists of p+ 1 disjoint
balls of radius p−1,

P1(Qp) = B1(∞)
⊔( ⊔

0≤i≤p−1

B1(i)
)
.
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For each integer n ≥ 1, every ball of radius p−n consists of p disjoint balls of radius
p−n−1. For example, B1(∞) consists of B2(1/p), B2(2/p), · · · , B2((p− 1)/p), B2(∞).

As mentioned in Section 1, the projective line P1(Qp) over Qp could be considered as
an infinite (p + 1)-Caylay tree: the branch index of each vertex is p + 1, i.e. each vertex
is an endpoint of p + 1 edges. There is a centered vertex which is called Gauss point.
Excluding Gauss point, each vertex corresponds to a ball in P1(Qp) of radius strictly less
then one (with respect to the spherical metric). The Gauss point can be considered as the
ball of radius 1 centered at the origin which is actually the whole space P1(Qp). The set
of edges of the tree consists of the pairs of balls (B,B′) of radius ≤ 1 such that

B′ ⊂ B, r(B) = p · r(B′)
where r(B) and r(B′) are the radii of balls B and B′ respectively.

The points in P1(Qp) are the boundary points of the tree. Remind that a vertex is
said to be at level n(n ≥ 1) if there are n edges between Gauss point and the vertex. A
vertex at level n corresponds a ball of radius p−n. The projective line P1(Qp) consists of
(p + 1)pn−1 disjoint balls of radius p−n. There are (p + 1)pn−1 vertices at level n. For
example, see Figures 1 and 2 for the tree structures of P1(Q2) and P1(Q3).

3. INDUCED DYNAMICS

For each positive integer n, P1(Qp) consists of (p + 1)pn−1 disjoint balls of radius
p−n. Denote by Bn the set of the (p + 1)pn−1 disjoint balls of radius p−n. In general,
any 1-Lipschitz continuous map φ : P1(Qp) → P1(Qp) induces a transformation on Bn.
Denote by φn the induced map of φ on Bn, i.e.

φn(Bn(x)) = Bn(φ(x)), ∀x ∈ P1(Qp).

As P1(Qp) is considered as an infinite tree, for each positive integer n, there is a one-to-
one correspondence between Bn and the vertices of the tree at level n. The 1-Lipschitz
continuous map φ induces a transformation on the tree under which the set of vertices of
each level is invariant.

Many properties of the dynamics φ on P1(Qp) are linked to those of φn on Bn.

Proposition 3.1. Let φ : P1(Qp) → P1(Qp) be a 1-Lipschitz continuous map. Then the
system (P1(Qp), φ) is minimal if and only if the finite system (Bn, φn) is minimal for all
integers n ≥ 1.

The equivalence in Proposition 3.1 is similar to that for 1-Lipschitz continuous maps
on the ring Zp or on a discrete valuation domain (see [1, p. 111], [2, Theorem 1.2] and [8,
Corollary 4]).

Proof. The “ only if ” part of the statement is obvious, we prove only the “ if ” part. Sup-
pose that (P1(Qp), φ) is not minimal. Then there exist an open set S and a point z ∈
P1(Qp) such that φk(z) /∈ S for all integers k ≥ 1. Since the set S is open, there exists
a ball Bn0

(z0) ⊂ S for some z0 ∈ P1(Qp) and some integer n0 large enough. Recall
that (Bn, φn) is minimal for all integers n > 0. So there exists an integer k0 such that
φk0n0

(Bn0
(z)) = Bn0

(z0). This implies ρ(φk0(z), z0) ≤ p−n0 , which contradicts the fact
that φk0(z) /∈ S. �

Recall that a rational map with good reduction is 1-Lipschitz continuous. For a rational
map φ ∈ Qp(z) with good reduction, to study the minimality of the system (P1(Qp), φ),
it suffices to study the induced dynamics (Bn, φn) for all integers n ≥ 1.
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Now let us first study the dynamics (B1, φ1) at level 1. Note that each point in P1(Fp)
corresponds to a ball in B1. The induced map φ1 of φ can be considered as the reduction φ
acting on P1(Fp). The map φ : P1(Fp)→ P1(Fp) admits some periodic orbits. A periodic
orbit is call a cycle of φ. The points outside any cycle will be mapped into some cycle after
several iterations.

Let (x1, · · · , xk) ⊂ P1(Fp) be a cycle of φ. To simplify notation, we consider a trans-
formation f ∈ PGL2(Zp) with f(x1) = 0, where x1 is a point in the ball corresponding to
x1. Replacing x1 and φ with 0 and f ◦ φ ◦ f−1 respectively, we may assume that x1 = 0.
Under this assumption, we will see in the following that φk acting on pZp is conjugate to
a power series acting on Zp.

For two rational maps θ, ω ∈ Qp(z) with good reduction, the composition θ◦ω has good
reduction, and θ ◦ ω = θ ◦ω (see [27, p.59, Theorem 2.18]). So φk has good reduction and
0 is a fixed point of φk. We write φk in the form

φk(z) =
a0 + a1z + · · · anzn

b0 + b1z + · · · bnzn

with coefficients a0, · · · ad, b0, · · · bd ∈ Zp and at least one coefficient in Zp \ pZp. The
fact that 0 is a fixed point of φk implies that φk(0) = a0/b0 ≡ 0 (mod p). Since φk has
good reduction, we have a0 ∈ pZp and b0 ∈ Zp \ pZp. Otherwise, the numerator and
denominator of the reduction have the common factor z, which implies deg φk < deg φk.
Multiplying numerator and denominator by b−10 , we may thus write φk in the form

φk(z) =
a0 + a1z + · · · anzn

1 + b1z + · · · bnzn
.

Then by the following Lemma 3.2, φk is 1-Lipschitz from pZp to itself and

φk(z) = a0 + λz + λ2z
2 + λ3z

3 + · · · ,

with λi ∈ Zp for all i ≥ 2.

Lemma 3.2. Let φ ∈ Qp(z) be a rational map of the form

a0 + a1z + · · · anzn

1 + b1z + · · · bnzn
, with aj , bj ∈ Zp.

Then φ is 1-Lipschitz on pZp. Furthermore,

φ(z) = a0 + λz + λ2z
2 + λ3z

3 + · · · (3.1)

with λi ∈ Zp for all i ≥ 2.

Proof. The Taylor expansion of φ around z = 0, which in this case can be obtained by
simple long division, gives

φ(z) = a0 + λz +
A(z)

1 + zB(z)
z2

with A(z), B(z) ∈ Zp[z] and λ = φ′(0) ∈ Zp. Observe that on pZp, we have

1

1 + zB(z)
= 1− zB(z) + z2(B(z))2 − z3(B(z))3 + · · · .

Hence we can write φ(z) as the form (3.1). Obviously, φ induces a 1-Lipschitz map on
pZp. �
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Now we study the dynamical system (pZp, φk). For simplicity, we write ϕ instead of
φk. Note that every power series

ϕ(z) =

∞∑
i=0

λiz
i ∈ Zp[[z]]

converges on pZp. If λ0 ∈ pZp, then ϕ(pZp) ⊂ pZp and ϕ induces a 1-Lipschitz map
from pZp to itself.

In the remainder of this section we assume ϕ(z) =
∑∞
i=0 λiz

i ∈ Zp[[z]] with λ0 ∈ pZp.
The dynamical system (pZp, ϕ) is conjugate to a system (Zp, χ) by the transformation
f(z) = z/p, i.e.

pZp
ϕ //

z/p

��

pZp

z/p

��
Zp χ

// Zp,

where χ(z) =
∑∞
i=0 p

i−1λiz
i ∈ Zp[[z]] converges on Zp and induces a map from Zp to

itself.
The dynamical system of χ on Zp and its induced dynamics on Zp/pnZp was studied

in [16]. Actually, the convergent series with coefficient in the integral ring OK of a finite
extension K of Qp were studied as dynamical systems on OK in [16]. The system (Zp, θ)
is a special case when K = Qp.

In the following we shall translate results about θ in the language of results about ϕ.
For more details on this subject, the reader may consult [14, 16].

For each n ≥ 1, denote by ϕn the induced map of ϕ on pZp/pnZp, i.e.,

ϕ(x mod pn) ≡ ϕ(x) (mod pn),

for all x ∈ pZp. In the sprit of Proposition 3.1, the minimality and minimal decomposition
of the system (pZp, ϕ) can be deduced form its induced dynamics (pZp/pnZp, ϕn). So we
need to study the finite systems (pZp/pnZp, ϕn). To this end, the main idea, which comes
from [11, 29], is to study the behaviour of systems (pZp/pnZp, ϕn) by induction. We
refer the reader to [14, 16] for the application of this idea to give a minimal decomposition
theorem for any convergent power series in Zp[[z]].

A collection σ = (x1, · · · , xk) of k distinct points in pZp/pnZp is called a cycle of ϕn
of length k or a k-cycle at level n, if

ϕn(x1) = x2, · · · , ϕn(xi) = xi+1, · · · , ϕn(xk) = x1.

Set

Xσ :=

k⊔
i=1

Xi where Xi := {xi + pnt+ pn+1Zp; t = 0, 1, · · · , p− 1} ⊂ pZp/pn+1Zp.

Then

ϕn+1(Xi) ⊂ Xi+1 (1 ≤ i ≤ k − 1) and ϕn+1(Xk) ⊂ X1.

In the following we are concerned with the behavior of the finite dynamics ϕn+1 on the
set Xσ and determine all cycles in Xσ of ϕn+1, which will be called lifts of σ. Remark
that the length of any lift σ̃ of σ is a multiple of k.
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Let Xi = xi + pnZp be the closed disk of radius p−n corresponding to xi ∈ σ and

Xσ :=

k⊔
i=1

Xi

be the clopen set corresponding to the cycle σ.
Let ψ := ϕk be the k-th iteration of ϕ. Then, any point in σ is fixed by ψn, the n-th

induced map of ψ. For any point x ∈ Xσ , we have (ψ(x)− x)/pn ∈ Zp. Let

αn(x) := ψ′(x) =

k−1∏
j=0

ϕ′(ϕj(x)) (3.2)

βn(x) :=
ψ(x)− x

pn
=
ϕk(x)− x

pn
. (3.3)

One can check that αn(x) (mod p) is always constant on Xσ . We should remark that
under the condition that αn ≡ 1 (mod p), βn (mod p) is also constant on Xσ[14, 16] . We
distinguish the following four behaviours of ϕn+1 on Xσ:

(a) If αn ≡ 1 (mod p) and βn 6≡ 0 (mod p), then ϕn+1 restricted to Xσ preserves a
single cycle of length pk. In this case we say σ grows.

(b) If αn ≡ 1 (mod p) and βn ≡ 0 (mod p), then ϕn+1 restricted to Xσ preserves p
cycles of length k. In this case we say σ splits.

(c) If αn ≡ 0 (mod p), then ϕn+1 restricted to Xσ preserves one cycle of length k and
the remaining points of Xσ are mapped into this cycle. In this case we say σ grows tails.

(d) If αn 6≡ 0, 1 (mod p), then ϕn+1 restricted to Xσ preserves one cycle of length k
and p−1

` cycles of length k`, where ` is the order of αn in the multiplicative group Fp\{0}.
In this case we say σ partially splits.

For n ≥ 1, let σ = (x1, . . . , xk) ⊂ pZp/pnZp be a k-cycle and let σ̃ be a lift of σ
which is a of ϕn+1 contained in Xσ . To illustrate the change of nature for a cycle to its
lifts, we shall show the relationship between (αn, βn) and (αn+1, βn+1). For the calcu-
lation of (αn+1 mod p, βn+1 mod p) from (αnmod p, βnmod p), the interested reader
may consult to [14, Lemma 2] and [16, p.1636]. The following propositions predict the
behaviours of the lifts of a cycle σ.

Proposition 3.3 ([14] Proposition 1, and [16] Proposition 4.4). Let σ be a cycle of ϕn.
(1) If σ grows or splits, then any lift σ̃ grows or splits.
(2) If σ grows tails, then the single lift σ̃ also grows tails.
(3) If σ partially splits, then the lift σ̃ of the same length as σ partially splits, and the

other lifts of length k` grow or split.

Proposition 3.4 ([14, 16]). Let σ be a growing cycle of ϕn and σ̃ be the unique lift of σ.
(1) If p > 3 and n ≥ 1, then σ̃ also grows.
(2) If p = 3 and n ≥ 2, then σ̃ also grows.
(3) If p = 2 and σ̃ grows, then the lift of σ̃ grows.

For more details of Proposition 3.4, we refer the reader to [14, Proposition 2] for the
first two assertion, and to [14, Corollary 1] for the third assertion. Remark that the results
in Proposition 3.4 are presented only for polynomials in Zp[z]. Actually, these results also
hold for convergent series in Zp[[z]] (see [16, Propositions 4.7, 4.8, 4.10, 4.11] for a more
general setting).

Let E ⊂ pZp be a ϕ-invariant compact open set. Let

E/pnZp := {x ∈ Zp/pnZp : ∃ y ∈ E such that x ≡ y (mod pn)}.
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It is now well known that the subsystem (E,ϕ) is minimal if and only if the induced map
ϕn : E/pnZp → E/pnZp is minimal for any n ≥ 1 (see [1, p. 111], [2, Theorem 1.2] and
[8, Corollary 4]). Then by Proposition 3.4, a criterion of the minimality of the system ϕ
on pZp can be obtained.

Corollary 3.5. The dynamical system (pZp, ϕ) is minimal if and only if
(1) the finite system (pZp/p3Zp, ϕ3) is minimal for p = 2 or 3;
(2) the finite system (pZp/p2Zp, ϕ2) is minimal for p ≥ 5.

As we investigate the induced dynamical systems level by level, the possible periods of
ϕ on pZp can also be obtained, as a consequence of Proposition 3.4.

Corollary 3.6. Let ϕ(z) =
∑∞
i=0 λiz

i ∈ Zp[[z]] with λ0 ∈ pZp and consider the dynami-
cal system (pZp, ϕ).

(1) If p > 3, the period of a periodic orbit must be a factor of p− 1.
(2) If p = 3, the period of a periodic orbit must be 1, 2 or 3.
(3) If p = 2, the period of a periodic orbit must be 1 or 2.

Furthermore, the dynamical structure of ϕ on pZp is fully illustrated by the following
minimal decomposition.

Theorem 3.7 ([16], Theorem 1.1). Let ϕ(z) =
∑∞
i=0 λiz

i ∈ Zp[[z]] with λ0 ∈ pZp.
Suppose ϕn 6= id for all n ≥ 1. We have the following decomposition

pZp = P
⊔
M
⊔
B,

where P is the finite set consisting of all periodic points of ϕ,M =
⊔
iMi is the union

of all (at most countably many) clopen invariant sets such that eachMi is a finite union
of balls and each subsystem ϕ : Mi → Mi is minimal, and the points in B lie in the
attracting basin of P

⊔
M.

The setsMi in the above decomposition are called minimal components. To completely
characterize the dynamical system (pZp, ϕ), each minimal component is described as the
adding machine on an odometer by giving the structure sequence of the odometer.

Theorem 3.8 ([16], Theorem 1.1). Let ϕ(z) =
∑∞
i=0 λiz

i ∈ Zp[[z]] with λ0 ∈ pZp. If
E ⊂ pZp is a minimal clopen invariant set of ϕ, then ϕ : E → E is conjugate to the
adding machine on the odometer Z(ps), where

(ps) = (`, `p, `p2, · · · )
where ` ≥ 1 is an integer dividing p− 1.

4. PROOF OF THEOREMS 1.1–1.3

Proof of Theorem 1.1. We begin with proving the “ if ” part of the theorem. The reduction
φ is minimal on P1(Fp) which implies that φ1 is minimal on B1. Let ψ = φp+1 be the
p+1-th iteration of φ. Then the ballB1(0) = pZp is an invariant set of ψ. By the argument
of Section 3, ψ can be written as a power series with coefficients in Zp which converges
on pZp, i.e.

ψ(z) = λ0 + λ1z + λ2z
2 + λ3z

3 + · · ·
with λi ∈ Zp for all i ≥ 1 and λ0 ∈ pZp. Noting that φ is 1-Lipschitz, ψ is also 1-
Lipschitz. The minimality of the dynamical system (pZp, ψ) leads to ψ is isometric on
pZp, see [3, 8]. So φ is isometric on P1(Qp) with respect to the spherical metric. Hence,
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ψ is minimal on each ball of radius 1/p which implies the minimality of (P1(Qp), φ). It
suffices to show that the dynamical system (pZp, ψ) is minimal.

For n = 1, the cycle (0) is the unique cycle of ψ1. The condition (φ(p+1))′(0) ≡
1 (mod p) implies that the cycle (0) grows or splits. By the condition |φ(p+1)(0)|p =
1/p, the cycle (0) grows which then means that the dynamical system (pZp/p2Zp, ψ2) is
minimal.

For the cases p > 3, it follows from Corollary 3.5 that the dynamical system (pZp, ψ)
is minimal.

Note that (φp(p+1))′(0) ≡ (φ(p+1))′(0) ≡ 1 (mod p). For the cases p = 2 or 3, the
additional condition implies that the unique lift of (0) at level 2 grows. Thus the system
(pZp/p3Zp, ψn) is minimal. By Corollary 3.5, the dynamical system (pZp, ψ) is minimal.

Now we prove the “ only if ” part. Let φ be a minimal rational map with good reduc-
tion. By Proposition 3.1, the system (Bn, φn) is minimal for all integers n ≥ 1. The
minimality of system (B1, φ1) implies that the reduction φ is minimal on P1(Fp), while
the minimality of system (B2, φ2) implies that the cycle (0) of ψ1 = φp+1

1 grows. Hence
we obtain (φ(p+1))′(0) ≡ 1 (mod p) and |φ(p+1)(0) − 0|p = 1/p. Furthermore, by the
minimality of system (B3, φ3), the unique lift of (0) of φ(p+1) at level 2 grows. So we
have |φp(p+1)(0)|p = 1/p2. �

In the above proof of Theorem 1.1, we have indeed established the following result.

Theorem 4.1. Let φ : P1(Qp) 7→ P1(Qp) be a rational map of deg φ ≥ 2 with good
reduction. Then the dynamical system (P1(Qp), φ) is minimal if and only if the following
condition is satisfied:

(1) the system (B3, φ3) is minimal for p = 2 or 3,
(2) the system (B2, φ2) is minimal for p ≥ 5.

Proof of Theorem 1.2. The space P1(Qp) is a union of p + 1 balls with radius p−1. Each
ball can be identified with a point in P1(Fp). The reduction map φ on P1(Fp) admits
some cycles. By iteration of φ, the points outside the cycles are attracted by the cycles.
The ball corresponding to such a point will be put into the third part B in the minimal
decomposition.

Let (x1, · · · , xk) ⊂ P1(Fp) be a cycle of φ. Without loss of generality, we assume
x1 = 0. Let ψ = φk be the k-th iteration of φ. Then the ball B1(0) = pZp is an invariant
set of ψ. Noting that φ is a rational map of deg φ ≥ 2, φn is a rational map of degree
(deg φ)n. So φn 6= id for all n ≥ 1. By Theorem 3.7, the dynamical system (pZp, ψ)
has a minimal decomposition which then gives a minimal decomposition of the system
(
⊔k
i=1B1(xi), φ).
Applying the same argument to all the cycles of φ, we obtain the minimal decomposition

of the whole system (P1(Qp), φ).
Moreover, by Corollary 3.6, the possible lengths of periodic orbits are obtained. �

Proof of Theorem 1.3. Let k denote the length of the induced periodic orbit of φ on the
minimal set E at the first level. Each point at this first level corresponds to a point in
P1(Fp). So k ≤ p+ 1.

Without loss of generality, we assume that 0 ∈ E. The set B1(0) ∩ E is invariant by
φk. Consider the dynamical system (B1(0) ∩ E, φk). Noting φ have good reduction, by
(3.1) and Theorem 3.8, we deduce that φk : B1(0) ∩ E → B1(0) ∩ E is conjugate to the
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adding machine on the odometer Z(ps), where

(ps) = (`, `p, `p2, · · · )
with ` | (p − 1), which implies φ : E → E is conjugate to the adding machine on the
odometer Z(ps), where

(ps) = (k, k`, k`p, k`p2, · · · ).
�

5. MINIMAL RATIONAL MAP FOR THE CASE p = 2

5.1. Minimal Conditions. Let

φ(z) =
a0 + a1z + · · ·+ ad−1z

d−1 + adz
d

b1z + · · ·+ bd−1zd−1 + bdzd

be a rational map of degree d ≥ 2 with ai, bj ∈ Q2 and ad = bd = 1. Recall that
Aφ =

∑
i≥0 ai, Bφ =

∑
j≥1 bj , Aφ,1 =

∑
i≥0 a2i+1, Aφ,2 =

∑
i≥0 a4i+1 and Aφ,3 =∑

i≥0 a4i+3.
Since φ(0) = ∞, for the convenience of calculation, we shall select a suitable coordi-

nate. Let

ψ(z) :=
1

φ(z)
=

b1z + · · ·+ bd−1z
d−1 + bdz

d

a0 + a1z + · · ·+ ad−1zd−1 + adzd
(5.1)

and

ϕ(z) := φ(
1

z
) =

ad + ad−1z + · · ·+ a1z
d−1 + a0z

d

bd + bd−1z + · · ·+ b1zd−1
. (5.2)

Then we have φ3 = φ ◦ ϕ ◦ ψ.

Lemma 5.1. If φ has good reduction and (B1, φ1) is minimal, then
ai, bj ∈ Z2, for 0 ≤ i ≤ d− 1 and 1 ≤ j ≤ d− 1,
a0 ≡ 1 (mod 2),
Aφ ≡ 0 (mod 2),
Bφ ≡ 1 (mod 2).

(5.3)

Conversely, the condition (5.3) implies that φ is 1-Lipschitz continuous and (B1, φ1) is
minimal. Moreover, the Taylor expansion of φ3 at 0 is of the form

φ3(z) = φ(1) + λz + λ2z
2 + λ3z

3 + · · · ,
where λ, λ2, λ3 · · · ∈ Z2.

Proof. Assume that φ has good reduction, the coefficients ai and bj are in Z2. Otherwise,
the degree of the reduction map of φ is strictly less than d, which implies that φ has bad
reduction.

Let

φ(z) =
f(z)

g(z)
=
a0 + a1z + · · ·+ ad−1z

d−1 + zd

b1z + · · ·+ bd−1zd−1 + zd

be the reduction of φ modulo p. The condition that φ has good reduction implies that
the polynomials f, g have no common zero. As we have already indicated above, we can
assume φ(0) = ∞ and φ(∞) = 1. So we have a0 ≡ 1 (mod 2). The minimality of
the system (B1, φ1) means that φ(1) = 0. So we have f(1) = 0 which implies Aφ ≡
0 (mod 2). Since the polynomials f, g have no common zero, we have g(1) 6= 0 which
means that Bφ ≡ 1 (mod 2).
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Now we assume that the coefficients of φ satisfy the condition (5.3). By (5.3), we can
check directly that (B1, φ1) is minimal.

By Lemma 3.2, the conditions Aφ ≡ 0 (mod 2), and Bφ ≡ 1 (mod 2) imply that
φ(z + 1) is 1-Lipschitz from pZp to pZp and can be written as the form of (3.1). Recall
that φ3 = φ ◦ ϕ ◦ ψ and note that ψ(0) = 0 and ϕ(0) = 1. It suffices to prove that ψ
and ϕ − 1 are both 1-Lipschitz from pZp to itself and have the form (3.1). These can be
obtained by direct calculations and by applying Lemma 3.2. �

In the following lemma, we will calculate the derivative of φ3 at 0. Using the chain rule,
we obtain

(φ3)′(0) = ψ′(0) · ϕ′(0) · φ′(1). (5.4)

For simplicity, we denote A′φ :=
∑
i≥1 iai and B′φ :=

∑
i≥1 ibi. By calculation, we

have
η1 := ψ′(0) = b1/a0,

η2 := ϕ′(0) = ad−1 − bd−1,
and

η := φ′(1) =
A′φBφ −B′φAφ

B2
φ

.

Lemma 5.2. Assume that the rational map φ has good reduction. Then the system (B2, φ2)
is minimal if and only if

ai, bj ∈ Z2, for 0 ≤ i ≤ d− 1 and 1 ≤ j ≤ d− 1,
a0 ≡ 1 (mod 2),
Bφ ≡ 1 (mod 2),
Aφ ≡ 2 (mod 4)
Aφ,1 ≡ 1 (mod 2),
b1 ≡ 1 (mod 2),
ad−1 − bd−1 ≡ 1 (mod 2).

Proof. The rational map φ has good reduction and (B2, φ2) is minimal implies that (B1, φ1)
is also minimal. So pZp is φ3-invariant. By the classification of the lifts of the cycles,
(B2, φ2) is minimal if and only if

(B1, φ1) is minimal, (φ3)′(0) ≡ 1 (mod 2), and φ3(0)φ(1) ≡ 2 (mod 4) (5.5)

under the condition that φ has good reduction.
By Lemma 5.1, (B1, φ1) is minimal if and only if a0 ≡ 1 (mod 2), Bφ ≡ 1 (mod 2)

and Aφ ≡ 0 (mod 2).
Recall that

(φ3)′(0) = ψ′(0) · ϕ′(0) · φ′(1) = b1
a0

(ad−1 − bd−1)
A′φBφ −B′φAφ

B2
φ

.

The second condition (φ3)′(0) ≡ 1 (mod 2) of (5.5) implies that

b1 ≡ 1 (mod 2),

(ad−1 − bd−1) ≡ 1 (mod 2),

and
A′φ ≡ 1 (mod 2).
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Since

A′φ =
∑
i≥0

(2i+ 1)a2i+1 +
∑
i≥1

2ia2i ≡
∑
i≥0

a2i+1 (mod 2),

we have Aφ,1 ≡ 1 (mod 2).
By the last condition φ(1) ≡ 2 (mod 4) in (5.5), we immediately get

Aφ ≡ 2 (mod 4).

�

For the proof of Theorem 1.4, we need calculate the second derivative of φ3 at 0. For
simplicity, denote A′′φ :=

∑
i≥2 i(i − 1)ai and B′′φ :=

∑
i≥2 i(i − 1)bi. Before the proof

let us first calculate the second derivatives ψ′′(0), ϕ′′(0) and φ′′(1):

ξ1 := ψ′′(0) =
2b2a

2
0 − 2a1b1a0
a30

,

ξ2 := ϕ′′(0) = 2(ad−2 − bd−2) + 2(b2d−1 − ad−1bd−1),

ξ := φ′′(1) =
A′′φB

2
φ −B′′φAφBφ + 2(Aφ(B

′
φ)

2 −A′φB′φBφ)
B3
φ

.

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Under the condition that φ has good reduction, Theorem 4.1 implies
that (P1(Qp), φ) is minimal if and only if (B3, φ3) is minimal which is equivalent to the
following three conditions

(B2, φ2) is minimal, (φ6)′(0) ≡ 1 (mod 2), and φ6(0) ≡ 4 (mod 8). (5.6)

In the following, we will characterize the three conditions of (5.6).
Firstly, the minimality of the system (B2, φ2) has already been characterized by coeffi-

cients in Lemma 5.2. Then we obtain all the conditions in (1.2) except the last one.
Secondly, if the first condition of (5.6) is satisfied then by (5.5),

(φ6)′(0) ≡ ((φ3)′(0))2 ≡ 1 (mod 2).

Thus the second condition of (5.6) is in fact included in the first condition of (5.6).
Finally, we are going to investigate the relation among the coefficients by using the last

condition φ6(0) ≡ 4 (mod 8) of (5.6) which will lead to the last condition of (1.2).
Note that all the Taylor’s coefficients of φ3 expanded at z = 0 belong to Z2. Hence for

z ∈ 2Z2, we have

φ3(z) ≡ φ(1) + (φ3)′(0)z +
(φ3)′′(0)

2
z2 (mod 8).

Thus

φ6(0) ≡ φ(1) + (φ3)′(0)φ(1) +
(φ3)′′(0)

2
φ(1)2 (mod 8). (5.7)

Notice that φ(1) ≡ 2 (mod 4) and (φ3)′(0) ≡ 1 (mod 2). Then dividing both sides of
(5.7) by φ(1), we deduce that the condition φ6(0) ≡ 4 (mod 8) is equivalent to

1 + (φ3)′(0) +
(φ3)′′(0)

2
φ(1) ≡ 2 (mod 4),

which in turn, by noting that (φ3)′′(0)/2 ∈ Z2, is equivalent to

(φ3)′(0) + (φ3)′′(0) ≡ 1 (mod 4). (5.8)
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To continue, let us calculate (φ3)′(0) (mod 4), (φ3)′′(0) (mod 4) and simplify their
expressions. Using a0 ≡ 1 (mod 2) and Bφ ≡ 1 (mod 2), we have 1/a0 ≡ a0 (mod 4)
and B2

φ ≡ 1 (mod 4). Then

(φ3)′(0) ≡ a0b1(ad−1 − bd−1)(A′φBφ −AφB′φ) (mod 4).

Since Aφ ≡ 2 (mod 4) and α1 ≡ α2 ≡ 1 (mod 2), we have

(φ3)′(0) ≡ a0b1(bd−1 − bd−1)A′φBφ −AφB′φ (mod 4).

For the second derivative of φ3 at 0, by the chain rule, we have

(φ3)′′(0) = ηη2ξ1 + ηη21ξ2 + ξη21η
2
2 . (5.9)

Since η ≡ η1 ≡ η2 ≡ 1 (mod 2), we have η2 ≡ η21 ≡ η22 ≡ 1 (mod 4). Consequently, we
obtain

(φ3)′′(0) ≡ ηη2ξ1 + ηξ2 + ξ (mod 4). (5.10)

Apply the expressions of ξ, ξ1 and ξ2 to Equation (5.10). Using the facts that a0 ≡ b1 ≡
ad−1 − bd−1 ≡ 1 (mod 2) and Bφ ≡ 1 (mod 2), we deduce

(φ3)′′(0) ≡ 2ηη2(a0b2 − a1b1) + 2η(ad−2 − bd−2 + b2d−1 − ad−1bd−1)+
+A′′φBφ − 2A′φB

′
φ −AφB′′φ (mod 4)

≡ 2(b2 − a1 + ad−2 − bd−2 + bd−1) +A′′φBφ − 2A′φB
′
φ −AφB′′φ (mod 4).

Observing that B′′φ ≡ 0 (mod 2) and Aφ ≡ 0 (mod 2), we have

(φ3)′(0) + (φ3)′′(0)

≡ a0b1(ad−1 − bd−1)A′φBφ −AφB′φ + 2(b2 − a1 + ad−2 − bd−2 + bd−1)

+A′′φBφ − 2A′φB
′
φ (mod 4).

Since Aφ ≡ 2 (mod 4) and A′φ ≡ Aφ,1 ≡ 1 (mod 2), we get

(φ3)′(0) + (φ3)′′(0)

≡ a0b1(ad−1 − bd−1)A′φBφ + 2(b2 − a1 + ad−2 − bd−2 + bd−1) +A′′φBφ (mod 4).

Note that

A′φ ≡
∑
i≥0

a4i+1 + 2
∑
i≥0

a4i+2 −
∑
i≥0

a4i+3 (mod 4)

and

A′′φ ≡2
∑
i≥0

a4i+2 + 2
∑
i≥0

a4i+3 (mod 4).

Then

(φ3)′(0) + (φ3)′′(0)

≡a0b1(ad−1 − bd−1)(Aφ,2 −Aφ,3)Bφ + 2(b2 − a1 + ad−2 − bd−2 + bd−1)

+ 2
∑
i≥0

a4i+2 + 2(
∑
i≥0

a4i+2 +Aφ,3) (mod 4)

≡a0b1(ad−1 − bd−1)(Aφ,2 −Aφ,3)Bφ
+ 2(b2 − a1 + ad−2 − bd−2 + bd−1 +Aφ,3) (mod 4).

By (5.8), we obtain the last condition of (1.2). Hence, we obtain the first part of Theorem
1.4.
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For the other part of Theorem 1.4, note that the first four conditions of (1.2) imply the
1-Lipschitz continuity of φ. Further, φ3 can be written as a form of power series with
coefficients in Zp. Thus from the proof of Theorem 1.1, we deduce that the minimality of
φ is equivalent to the conditions (5.6). Hence the above proof of the first part leads to the
conclusion of the second part of the theorem. �

Proof of Corollary 1.5. Remark that the good reduction property and minimality of φ im-
ply that φ is isometric on P1(Q2).

For a rational map φ of degree 2 which has good reduction and is minimal on P1(Q2),
each point has either 0 or 2 pre-images since φ can not have critical point in P1(Q2). This
contradicts to the fact that φ is isometric.

For a rational map φ of degree 3 which is defined as (1.1), the good reduction property
and minimality give the reduction φ(z) = (z−1)f(z)

zg(z) , where f, g ∈ F2[z] are two quadratic
irreducible polynomials. However, 1+z+z2 is the unique quadratic irreducible polynomial
over F2. Hence, f = g, which contradicts that φ has good reduction.

For a rational map φ of degree 4 which is defined as (1.1), the good reduction property
and minimality give the reduction φ(z) = (z−1)f(z)

zg(z) , with f, g ∈ F2[z] being two different
cubic irreducible polynomials. It is known that 1 + z + z3 and 1 + z2 + z3 are the only
two cubic irreducible polynomials over F2. Hence, φ(z) can only have two cases:

φ(z) =
(z − 1)(1 + z + z3)

z(1 + z2 + z3)
or φ(z) =

(z − 1)(1 + z2 + z3)

z(1 + z + z3)
.

By simple calculations, in both cases, a3− b3 ≡ 0 (mod 2), which contradicts the seventh
equation in (1.2). �

5.2. Minimal rational maps of degree 4. This section is devoted to investigate the min-
imal rational maps of degree 4 which are 1-Lipschitz continuous and their induced orbits
on B3.

For a rational map

φ(z) =
a0 + a1z + · · ·+ ad−1z

d−1 + adz
d

b1z + · · ·+ bd−1zd−1 + bdzd

of degree d with ai, bj ∈ Q2 and ad = bd = 1. Assume that φ 1-Lipschitz continuous and
minimal on P1(Q2). The orbit of φ1 on B1 is 0 → ∞ → 1 → 0. For the convenience of
investigating the induced orbit on Bn with n ≥ 2, we choose the local coordinate around
∞ by f(z) = 1/z. Denote by B̃1(0) the image of B1(∞) under f . we have the following
communicating graph.

@
@
@
@
@
@R
B̃1(0)

B1(0)

ψ

φ

PPPPPq

φ

B1(∞)

?

��
��
�1φ

f

B1(1)

�
�
�
�
�
��

ϕ

�

Actually, the two balls B1(0) and B̃1(0) have no difference. To avoid confusion, the
elements in B̃1(0) are denoted by z̃, such as 1̃, 2̃.
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Let P̃1(Q2) be the disjoint union of B1(0), B̃1(0) and B1(1), i.e.

P̃1(Q2) = B1(0) t B̃1(0) tB1(1).

Then we can define a map φ̃ from P̃1(Q2) to itself as follows:

φ̃(z) :=

 ψ̃(z), if z ∈ B1(0);
ϕ(z), if z ∈ B̃1(0);
φ(z), if z ∈ B1(1).

Instead of investigating the dynamical system (P1(Q2), φ), we study the dynamical
system (P̃1(Q2), φ̃), so that we can do modulo calculation by computer. We obtain all
rational maps of degree 4 with coefficients in {0, 1, 2, 3} which have good reduction and
are minimal on P1(Qp). We associate each of the 12 vertices at level 3 a label

{
i, where i ∈ {0, 1, 2 · · · 7}, if the vertex corresponds to the ball Bn(i),
ĩ, where i ∈ {0, 2, 4, 6}, if the vertex corresponds to the ball Bn(1/i).

The rational maps and their induced orbits at level 3 are showed in the following table.

Coefficients a0, a1, a2, a3, b1, b2, b3 Induced periodic orbits at level 3
1, 0, 1, 3, 3, 1, 0
1, 1, 1, 2, 3, 2, 3
1, 2, 1, 1, 3, 3, 2

1, 2, 3, 3, 3, 3, 0 0→ 0̃→ 1→ 6→ 6̃→ 3

1, 3, 1, 0, 3, 0, 1 → 4→ 4̃→ 5→ 2→ 2̃→ 7
1, 3, 3, 2, 3, 0, 3
3, 2, 1, 3, 1, 1, 0
3, 3, 1, 2, 1, 2, 3
1, 0, 1, 3, 1, 1, 2
1, 1, 1, 2, 1, 2, 1
1, 2, 1, 1, 1, 3, 0

1, 2, 3, 3, 1, 3, 2 0→ 0̃→ 1→ 6→ 2̃→ 3

1, 3, 1, 0, 1, 0, 3 → 4→ 4̃→ 5→ 2→ 6̃→ 7
1, 3, 3, 2, 1, 0, 1
3, 2, 1, 3, 3, 1, 2
3, 3, 1, 2, 3, 2, 1
1, 0, 1, 3, 1, 1, 0
1, 1, 1, 2, 1, 2, 3
1, 2, 1, 1, 1, 3, 2

1, 2, 3, 3, 1, 3, 0 0→ 0̃→ 1→ 2→ 6̃→ 3

1, 3, 1, 0, 1, 0, 1 → 4→ 4̃→ 5→ 6→ 2̃→ 7
1, 3, 3, 2, 1, 0, 3
3, 2, 1, 3, 3, 1, 0
3, 3, 1, 2, 3, 2, 3
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Coefficients a0, a1, a2, a3, b1, b2, b3 Induced periodic orbits at level 3
1, 0, 1, 3, 3, 1, 2
1, 1, 1, 2, 3, 2, 1
1, 2, 1, 1, 3, 3, 0

1, 2, 3, 3, 3, 3, 2 0→ 0̃→ 1→ 2→ 2̃→ 3

1, 3, 1, 0, 3, 0, 3 → 4→ 4̃→ 5→ 6→ 6̃→ 7
1, 3, 3, 2, 3, 0, 1
3, 2, 1, 3, 1, 1, 2
3, 3, 1, 2, 1, 2, 1
1, 0, 3, 1, 3, 1, 0
1, 1, 3, 0, 3, 2, 3
3, 0, 1, 1, 1, 3, 0

3, 0, 3, 3, 1, 3, 2 0→ 0̃→ 1→ 6→ 6̃→ 7

3, 1, 1, 0, 1, 0, 3 → 4→ 4̃→ 5→ 2→ 2̃→ 3
3, 1, 3, 2, 1, 0, 1
3, 2, 3, 1, 1, 1, 0
3, 3, 3, 0, 1, 2, 3
1, 0, 3, 1, 1, 1, 2
1, 1, 3, 0, 1, 2, 1
3, 0, 1, 1, 3, 3, 2

3, 0, 3, 3, 3, 3, 0 0→ 0̃→ 1→ 6→ 2̃→ 7

3, 1, 1, 0, 3, 0, 1 → 4→ 4̃→ 5→ 2→ 6̃→ 3
3, 1, 3, 2, 3, 0, 3
3, 2, 3, 1, 3, 1, 2
3, 3, 3, 0, 3, 2, 1
1, 0, 3, 1, 1, 1, 0
1, 1, 3, 0, 1, 2, 3
3, 0, 1, 1, 3, 3, 0

3, 0, 3, 3, 3, 3, 2 0→ 0̃→ 1→ 2→ 6̃→ 7

3, 1, 1, 0, 3, 0, 3 → 4→ 4̃→ 5→ 6→ 2̃→ 3
3, 1, 3, 2, 3, 0, 1
3, 2, 3, 1, 3, 1, 0
3, 3, 3, 0, 3, 2, 3
1, 0, 3, 1, 3, 1, 2
1, 1, 3, 0, 3, 2, 1
3, 0, 1, 1, 1, 3, 2

3, 0, 3, 3, 1, 3, 0 0→ 0̃→ 1→ 2→ 2̃→ 7

3, 1, 1, 0, 1, 0, 1 → 4→ 4̃→ 5→ 6→ 6̃→ 3
3, 1, 3, 2, 1, 0, 3
3, 2, 3, 1, 1, 1, 2
3, 3, 3, 0, 1, 2, 1

6. SOME EXAMPLES

Example 6.1. Let p = 3 and φ(x) = − 2z2+2z+1
z3−3z2+z+1 . The dynamical system (P1(Qp), φ)

is minimal.
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The reduction mod 3 of φ is

φ(z) =
z2 + z + 2

z3 + z + 1
.

So φ has good reduction. Consider the map φ : P1(F3)→ P1(F3).By a simple calculation,
we get φ(1) = ∞, φ(∞) = 0, φ(0) = 2, φ(2) = 1. Thus φ is transitive on P1(F3).
Further, using the software Mathmatica, we can check (φ4)′(1)) ≡ (φ4)′(0) ≡ 1 (mod 3).
Let σ = (1,∞, 0,−1) be the cycle at level 1. Since φ4(1) ≡ 7 (mod 33), σ grows. Let σ̂
be the lift of σ at level 2. By calculating φ12(1) ≡ 10 (mod 33), we deduce that σ̂ grows
which then implies that σ̂ grows forever. Therefore, the system (P1(Qp), φ) is minimal.

Example 6.2. Let p = 3 and φ(z) = 2z+3
(z−1)(z−2) . The dynamical system (P1(Qp), φ) is

not minimal and we decompose P1(Qp) as

P1(Qp) = B1(0)
⊔(

P1(Qp) \B1(0)
)
,

where B1(0) is a minimal component of φ and the points in P1(Qp) \B1(0) are attracted
into B1(0).

One can check that φ(z) = 2z
z2+2 . Then deg φ = deg φ, which implies that φ has good

reduction. First, we consider the map φ : P1(F3) → P1(F3). Since φ(1) = ∞, φ(2) =
∞, φ(∞) = 0 and φ(0) = 0, it follows that

φ(B1(1))) ⊂ B1(∞), φ(B1(2)) ⊂ B1(∞),

φ(B1(∞)) ⊂ B1(0) and φ(B1(0)) ⊂ B1(0).

So P1(Qp) \B1(0) lies in the attracting basin of B1(0). It suffices to study the subsystem
(B1(0), φ). We shall show that the system (B1(0), φ) is minimal. In fact, the derivative
of φ at 0 is 13/4. Thus φ′(0) ≡ 1 (mod 3). Let σ = (0) be the cycle at level 1. Then σ
grows or splits. A simple calculation shows that

φ(0) ≡ 15 (mod 33), φ(15) ≡ 3 (mod 33), φ(3) ≡ 18 (mod 33).

So σ grows, by Proposition 3.4, the lift of σ grows too. It then follows that σ grows forever.
Hence, the system (B1(0), φ) is minimal.
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