S. Alonso, K. Pethe, D. G. Russell, and G. E. Purdy, Lysosomal killing of Mycobacterium mediated by ubiquitinderived peptides is enhanced by autophagy, Proc Natl Acad Sci, vol.104, pp.6031-6036, 2007.

N. S. Ambrose, M. Johnson, D. W. Burdon, and M. R. Keighley, Incidence of pathogenic bacteria from mesenteric lymph nodes and ileal serosa during Crohn's disease surgery, Br J Surg, vol.71, pp.623-625, 1984.

N. Barnich, F. A. Carvalho, A. L. Glasser, C. Darcha, P. Jantscheff et al., CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease, J Clin Invest, vol.117, pp.1566-1574, 2007.

F. Barreau, U. Meinzer, F. Chareyre, D. Berrebi, M. Niwakawakita et al., CARD15/NOD2 is required for Peyer's patches homeostasis in mice, PLoS ONE, vol.2, p.523, 2007.

M. Baumgart, B. Dogan, M. Rishniw, G. Weitzman, B. Bosworth et al., Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum, ISME J, vol.1, pp.403-418, 2007.

C. L. Birmingham, A. C. Smith, M. A. Bakowski, T. Yoshimori, and J. H. Brumell, Autophagy controls Salmonella infection in response to damage to the Salmonellacontaining vacuole, J Biol Chem, vol.281, pp.11374-11383, 2006.

J. Boudeau, A. L. Glasser, E. Masseret, B. Joly, and A. Darfeuille-michaud, Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease, Infect Immun, vol.67, pp.4499-4509, 1999.

E. Breese, C. P. Braegger, C. J. Corrigan, J. A. Walker-smith, and T. T. Macdonald, Interleukin-2-and interferon-gamma-secreting T cells in normal and diseased human intestinal mucosa, Immunology, vol.78, pp.127-131, 1993.

P. Brest, P. Lapaquette, M. Souidi, K. Lebrigand, A. Cesaro et al., A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease, Nat Genet, vol.43, pp.242-245, 2011.

M. A. Bringer, N. Barnich, A. L. Glasser, O. Bardot, and A. Darfeuille-michaud, HtrA stress protein is involved in intramacrophagic replication of adherent and invasive Escherichia coli strain LF82 isolated from a patient with Crohn's disease, Infect Immun, vol.73, pp.712-721, 2005.

M. A. Bringer, A. L. Glasser, C. H. Tung, S. Meresse, and A. Darfeuille-michaud, The Crohn's diseaseassociated adherent-invasive Escherichia coli strain LF82 replicates in mature phagolysosomes within J774 macrophages, Cell Microbiol, vol.8, pp.471-484, 2006.

M. N. Brooks, M. V. Rajaram, A. K. Azad, A. O. Amer, M. A. Valdivia-arenas et al., NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis, 2011.

, Pharmacological-and physiological-induced autophagy at early time post infection restrains the number of intramacrophagic AIEC LF82 bacteria and slows down pro-inflammatory response induced by bacteria

, LAMP-1 (purple) and GFP-expressing AIEC bacteria in infected-THP-1 macrophages at 2 h post infection. THP-1 macrophages were treated with rapamycin at 40 mg ml-1 or starved (HBSS medium) for a 2 h period in order to induce autophagy, A. Confocal microscopy examinations of colocalization between LC3 (red)

B. and C. , After 20 min infection THP-1 macrophages were incubated with gentamicin-containing RPMI medium supplemented with rapamycin at 40 mg ml-1 (white bar) or gentamicin-containing HBSS medium (grey bar) for a 2 h period in order to induce autophagy, immediately after AIEC cell infection (B) or at 20 h post infection (C). The numbers of intracellular bacteria were determined by cfu quantification. Results are expressed as the number of intracellular bacteria after the 2 h period of autophagy

D. , Protein extracts from uninfected and AIEC-infected cells that were treated or not with rapamycin at 40 mg ml-1 for 1 h were processed for immunoblotting with anti-LC3 and anti-actin, Quantification of LC3-II relative to actin is displayed below immunoblot

E. , The level of TNF-a secreted in response to AIEC infection was compared in untreated THP-1 macrophages and in macrophages for which autophagy was induced by treating cells with rapamycin at 40 mg ml-1 or by starving them (HBSS medium) for a 2 h period prior to infection. Data are means (pg ml-1 ) SEM of cytokine amounts released in cell culture supernatants at 24 h post infection

F. Wild-type and N. , peritoneal macrophages were treated with rapamycin at 40 mg ml-1 (white bar) or starved (HBSS medium, grey bar) during the gentamicin incubation period (1 h or 4 h post infection). The numbers of intracellular AIEC bacteria were determined by cfu quantification. Results are expressed as percentages of the number of intracellular AIEC bacteria at 4 h post infection relative to those obtained at 1 h post infection

G. and H. The, IL-6 (H) secreted in response to AIEC infection were compared in untreated wild-type and NOD2-/peritoneal macrophages and in peritoneal macrophages that were treated with rapamycin at 40 mg ml-1 or starved (HBSS medium) during the gentamicin incubation period (4 h post infection) to induce autophagy. Results are expressed as cytokine amounts secreted by rapamycin or HBSS-treated macrophages relative to cytokine amounts secreted by untreated cells, taken as 100%. Data are means SEM of five independent experiments. BCG in human macrophages, Cell Microbiol, vol.13, pp.402-418

R. W. Cartun, H. J. Van-kruiningen, C. A. Pedersen, and M. M. Berman, An immunocytochemical search for infectious agents in Crohn's disease, Mod Pathol, vol.6, pp.212-219, 1993.

F. A. Carvalho, N. Barnich, P. Sauvanet, C. Darcha, A. Gelot et al., Crohn's diseaseassociated Escherichia coli LF82 aggravates colitis in injured mouse colon via signaling by flagellin, Inflamm Bowel Dis, vol.14, pp.1051-1060, 2008.

F. A. Carvalho, N. Barnich, A. Sivignon, C. Darcha, C. H. Chan et al., Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM, J Exp Med, vol.206, pp.2179-2189, 2009.

B. Chassaing, N. Rolhion, A. De-vallee, S. Y. Salim, M. Prorokhamon et al., Crohn diseaseassociated adherent-invasive E. coli bacteria target mouse and human Peyer's patches via long polar fimbriae, J Clin Invest, vol.121, pp.966-975, 2011.

J. H. Cho and S. R. Brant, Recent insights into the genetics of inflammatory bowel disease, Gastroenterology, vol.140, pp.1704-1712, 2011.

R. Cooney, J. Baker, O. Brain, B. Danis, T. Pichulik et al., NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation, Nat Med, vol.16, pp.90-97, 2010.

J. Dancey, MTOR signaling and drug development in cancer, Nat Rev Clin Oncol, vol.7, pp.209-219, 2010.

A. Darfeuille-michaud, C. Neut, N. Barnich, E. Lederman, P. Di-martino et al., Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease, Gastroenterology, vol.115, pp.1405-1413, 1998.

A. Darfeuille-michaud, J. Boudeau, P. Bulois, C. Neut, A. L. Glasser et al., High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease, Gastroenterology, vol.127, pp.412-421, 2004.

T. Eaves-pyles, C. A. Allen, J. Taormina, A. Swidsinski, C. B. Tutt et al., Escherichia coli isolated from a Crohn's disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells, Int J Med Microbiol, vol.298, pp.397-409, 2007.

M. Economou and G. Pappas, New global map of Crohn's disease: genetic, environmental, and socioeconomic correlations, Inflamm Bowel Dis, vol.14, pp.709-720, 2008.

I. J. Fuss, M. Neurath, M. Boirivant, J. S. Klein, C. Motte et al., Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5, J Immunol, vol.157, pp.1261-1270, 1996.

A. L. Glasser, J. Boudeau, N. Barnich, M. H. Perruchot, J. F. Colombel et al., Adherent invasive Escherichia coli strains from patients with Crohn's disease survive and replicate within macrophages without inducing host cell death, Infect Immun, vol.69, pp.5529-5537, 2001.

J. Hampe, A. Franke, P. Rosenstiel, A. Till, M. Teuber et al., A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1, Nat Genet, vol.39, pp.207-211, 2007.

L. Henckaerts, I. Cleynen, M. Brinar, J. M. John, K. Van-steen et al., Genetic variation in the autophagy gene ULK1 and risk of Crohn's disease, Inflamm Bowel Dis, vol.17, pp.1392-1397, 2011.

C. R. Homer, A. L. Richmond, N. A. Rebert, J. P. Achkar, and C. Mcdonald, ATG16L1 and nod2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis, Gastroenterology, vol.139, pp.1630-1641, 2010.

J. P. Hugot, M. Chamaillard, H. Zouali, S. Lesage, J. P. Cezard et al., Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease, Nature, vol.411, pp.599-603, 2001.

A. Kaser, S. Zeissig, and R. S. Blumberg, Inflammatory bowel disease, Annu Rev Immunol, vol.28, pp.573-621, 2010.

D. J. Klionsky, H. Abeliovich, P. Agostinis, D. K. Agrawal, G. Aliev et al., Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes, Autophagy, vol.4, pp.151-175, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00214269

P. Lapaquette, A. L. Glasser, A. Huett, R. J. Xavier, and A. Darfeuille-michaud, Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly, Cell Microbiol, vol.12, pp.99-113, 2010.

B. Levine and V. Deretic, Unveiling the roles of autophagy in innate and adaptive immunity, Nat Rev Immunol, vol.7, pp.767-777, 2007.

Y. Liu, H. J. Van-kruiningen, A. B. West, R. W. Cartun, A. Cortot et al., Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn's disease, Gastroenterology, vol.108, pp.1396-1404, 1995.

S. A. Mccarroll, A. Huett, P. Kuballa, S. D. Chilewski, A. Landry et al., Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease, Nat Genet, vol.40, pp.1107-1112, 2008.

H. M. Martin, B. J. Campbell, C. A. Hart, C. Mpofu, M. Nayar et al., Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer, Gastroenterology, vol.127, pp.80-93, 2004.

M. Martinez-medina, X. Aldeguer, M. Lopez-siles, F. Gonzalez-huix, C. Lopez-oliu et al., Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherentinvasive E. coli (AIEC) in Crohn's disease, Inflamm Bowel Dis, vol.15, pp.872-882, 2009.

S. Meconi, A. Vercellone, F. Levillain, B. Payre, A. Saati et al., Adherent-invasive Escherichia coli isolated from Crohn's disease patients induce granulomas in vitro, Cell Microbiol, vol.9, pp.1252-1261, 2007.

I. Nakagawa, A. Amano, N. Mizushima, A. Yamamoto, H. Yamaguchi et al., Autophagy defends cells against invading group A Streptococcus. Science, vol.306, pp.1037-1040, 2004.

Y. Ogura, D. K. Bonen, N. Inohara, D. L. Nicolae, F. F. Chen et al., A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease, Nature, vol.411, pp.603-606, 2001.

C. D. Packey and R. B. Sartor, Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases, Curr Opin Infect Dis, vol.22, pp.292-301, 2009.

M. Parkes, J. C. Barrett, N. J. Prescott, M. Tremelling, C. A. Anderson et al., Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility, Nat Genet, vol.39, pp.830-832, 2007.

T. S. Plantinga, T. O. Crisan, M. Oosting, F. L. Van-de-veerdonk, D. J. De-jong et al., Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2, Gut, vol.60, pp.1229-1235, 2011.

M. Ponpuak, A. S. Davis, E. A. Roberts, M. A. Delgado, C. Dinkins et al., Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties, Immunity, vol.32, pp.329-341, 2010.

J. D. Rioux, R. J. Xavier, K. D. Taylor, M. S. Silverberg, P. Goyette et al., Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis, Nat Genet, vol.39, pp.596-604, 2007.

P. Ryan, R. G. Kelly, G. Lee, J. K. Collins, G. C. O'sullivan et al., Bacterial DNA within granulomas of patients with Crohn's diseasedetection by laser capture microdissection and PCR, Am J Gastroenterol, vol.99, pp.1539-1543, 2004.

T. Saitoh, N. Fujita, M. H. Jang, S. Uematsu, B. G. Yang et al., Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production, Nature, vol.456, pp.264-268, 2008.

M. Sasaki, S. V. Sitaraman, B. A. Babbin, P. Gerner-smidt, E. M. Ribot et al., Invasive Escherichia coli are a feature of Crohn's disease, Lab Invest, vol.87, pp.1042-1054, 2007.

F. Shanahan and C. N. Bernstein, The evolving epidemiology of inflammatory bowel disease, Curr Opin Gastroenterol, vol.25, pp.301-305, 2009.

S. B. Singh, A. S. Davis, G. A. Taylor, and V. Deretic, Human IRGM induces autophagy to eliminate intracellular mycobacteria, Science, vol.313, pp.1438-1441, 2006.
DOI : 10.1126/science.1129577

S. B. Singh, W. Ornatowski, I. Vergne, J. Naylor, M. Delgado et al., Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria, Nat Cell Biol, vol.12, pp.1154-1165, 2010.
DOI : 10.1038/ncb2119

URL : http://europepmc.org/articles/pmc2996476?pdf=render

H. Sokol and P. Seksik, The intestinal microbiota in inflammatory bowel diseases: time to connect with the host, Curr Opin Gastroenterol, vol.26, pp.327-331, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00599080

W. Strober and I. J. Fuss, Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases, Gastroenterology, vol.140, pp.1756-1767, 2011.

W. Strober, I. Fuss, M. , and P. , The fundamental basis of inflammatory bowel disease, J Clin Invest, vol.117, pp.514-521, 2007.

W. Strober, F. Zhang, A. Kitani, I. Fuss, and S. Fichtner-feigl, Proinflammatory cytokines underlying the inflammation of Crohn's disease, Curr Opin Gastroenterol, vol.26, pp.310-317, 2010.

S. Subramanian, C. L. Roberts, C. A. Hart, H. M. Martin, S. W. Edwards et al., Replication of colonic Crohn's disease mucosal Escherichia coli isolates within macrophages and their susceptibility to antibiotics, Antimicrob Agents Chemother, vol.52, pp.427-434, 2008.

L. H. Travassos, L. A. Carneiro, M. Ramjeet, S. Hussey, Y. G. Kim et al., Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry, Nat Immunol, vol.11, pp.55-62, 2010.

R. H. Valdivia and S. Falkow, Fluorescence-based isolation of bacterial genes expressed within host cells, Science, vol.277, pp.2007-2011, 1997.

. Wellcome, Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls, Nature, vol.447, pp.661-678, 2007.