Geometric Weil representation in characteristic two

Alain Genestier, Sergey Lysenko

To cite this version:

Alain Genestier, Sergey Lysenko. Geometric Weil representation in characteristic two. Journal of the Institute of Mathematics of Jussieu, 2012, 11 (02), pp.221-271. 10.1017/S147474801100017X . hal-01227179

HAL Id: hal-01227179
https://hal.science/hal-01227179
Submitted on 10 Nov 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Geometric Weil representation in characteristic two

Alain Genestier and Sergey Lysenko

Abstract

Let k be an algebraically closed field of characteristic two. Let R be the ring of Witt vectors of length two over k. We construct a group stack \hat{G} over k, the metaplectic extension of the Greenberg realization of $\mathbb{S p}_{2 n}(R)$. We also construct a geometric analog of the Weil representation of \hat{G}, this is a triangulated category on which \hat{G} acts by functors. This triangulated category and the action are geometric in a suitable sense.

1. Introduction

1.1 Apparently, a version of the Weil representation in characteristic two first appeared in 1958 paper by D. A. Suprunenko ([22], Theorem 11) (before the celebrated 1964 paper by A. Weil [24]). This representation and its character were also studied in [16, 15]. Being inspired mostly by [14] and [17], in this paper we propose a geometric analog of this representation.

Let k be a finite field of characteristic two. Let R be the ring of Witt vectors of length 2 over k. Given a free R-module \tilde{V} of rank $2 n$ with symplectic form $\tilde{\omega}: \tilde{V} \times \tilde{V} \rightarrow R$, set $\underset{\sim}{V}=\tilde{V} \otimes_{R} k$. Write $\operatorname{Sp}(\tilde{V})$ for the group of isometries of the form $\tilde{\omega}$. Pick a bilinear form $\tilde{\beta}: \tilde{V} \times \tilde{V} \rightarrow R$ such that $\tilde{\beta}(\tilde{x}, \tilde{y})-\tilde{\beta}(\tilde{y}, \tilde{x})=\tilde{\omega}(\tilde{x}, \tilde{y})$ for all $\tilde{x}, \tilde{y} \in \tilde{V}$. Let $\beta: V \times V \rightarrow 2 R \subset R$ be the map $(x, y) \mapsto 2 \tilde{\beta}(\tilde{x}, \tilde{y})$ for any $\tilde{x}, \tilde{y} \in \tilde{V}$ over $x, y \in V$. It gives rise to the Heisenberg group $H(V)=V \times R$ with operation

$$
\left(v_{1}, z_{1}\right)\left(v_{2}, z_{2}\right)=\left(v_{1}+v_{2}, z_{1}+z_{2}+\beta\left(v_{1}, v_{2}\right)\right)
$$

The reason for using R instead of $2 R$ in the definition of $H(V)$ is that in this way it acquires a larger group of automorphisms acting trivially on the center. The group $\mathbb{S p}(\tilde{V})$ maps naturally to this group.

Fix a prime $\ell \neq 2$ and a faithful character $\psi: \mathbb{Z} / 4 \mathbb{Z} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$. A version of the $S_{\tilde{V}}$ Stone-von Neumann theorem holds in this setting giving rise to the metaplectic extension of $\operatorname{Sp}(\tilde{V})$ and its Weil representation \mathcal{H}_{ψ} (cf. Section 2 for details). According to [14], it can be seen as a group $\operatorname{Mp}(\tilde{V})$ that fits into an exact sequence

$$
\begin{equation*}
1 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \operatorname{Mp}(\tilde{V}) \rightarrow \mathbb{S p}(\tilde{V}) \rightarrow 1 \tag{1}
\end{equation*}
$$

In the geometric setting, assume k to be an algebraically closed field of characteristic two. We propose geometric analogs of $\operatorname{Mp}(\tilde{V})$ and \mathcal{H}_{ψ}. Let \tilde{V} be a free R-module of rank $2 n$ with a symplectic form. Write G for the Greenberg realization of the R-scheme $\operatorname{Sp}(\tilde{V})$. View $H(V)$ as a group scheme over k, an extension of V by the Greenberg realization of R.

Though we mostly follow the strategy of [17, there are new difficulties and phenomena in characteristic two. To the difference with the case of other characteristics, the metaplectic extension (1) is nontrivial. The geometric analog of (1) is an algebraic group stack \hat{G} over k that fits into an exact sequence

$$
\begin{equation*}
1 \rightarrow B(\mathbb{Z} / 4 \mathbb{Z}) \rightarrow \hat{G} \rightarrow G \rightarrow 1 \tag{2}
\end{equation*}
$$

of group stacks over k. Here for an algebraic group H over k we write $B(H)$ for the classifying stack of H over k. Actually, from our Remark 9 ii) it follows that there is a group stack \hat{G}_{b} over k included into an exact sequence $1 \rightarrow B(\mathbb{Z} / 2 \mathbb{Z}) \rightarrow \hat{G}_{b} \rightarrow G \rightarrow 1$ such that (2) is its push-forward via the natural map $B(\mathbb{Z} / 2 \mathbb{Z}) \rightarrow B(\mathbb{Z} / 4 \mathbb{Z})$. More properly, \hat{G}_{b} is the geometric analog of $\operatorname{Mp}(\tilde{V})$, but \hat{G}_{b} will not appear in this paper.

We don't know if \hat{G} admits a presentation as the stack quotient G_{1} / G_{0} for a morphism $G_{0} \rightarrow G_{1}$ of algebraic groups over k, where G_{0} is abelian and maps to the center of G_{1} (we would rather expect that \hat{G} corresponds to a nontrivial crossed module).

We have not found a relation with the K-theory (or the universal central extension of $\mathbb{S p}_{2 n}$ by K_{2} constructed by Brylinski-Deligne [8). Instead, our construction of \hat{G} goes as follows.

Let $\mathcal{L}(\tilde{V})$ be the Greenberg realization of the R-scheme of free lagrangian submodules in \tilde{V}. First, we define a certain $\mathbb{Z} / 4 \mathbb{Z}$-gerb

$$
\hat{\mathcal{L}}(\tilde{V}) \rightarrow \mathcal{L}(\tilde{V})
$$

via the geometric Maslov index (cf. Section 6). It turns out that the corresponding class in $\mathrm{H}^{2}(\mathcal{L}(\tilde{V}), \mathbb{Z} / 4 \mathbb{Z})$ is invariant under G, but the gerb itself is not G-equivariant. Then \hat{G} is defined as the stack of pairs (g, σ), where $g \in G$ and $\sigma: g^{*} \hat{\mathcal{L}}(\tilde{V}) \widetilde{\rightarrow} \hat{\mathcal{L}}(\tilde{V})$ is an isomorphism of $\mathbb{Z} / 4 \mathbb{Z}$-gerbs over $\mathcal{L}(\tilde{V})$.

We generalize the theory of canonical interwining operators from [17] to the case of characteristic two (cf. Section 7). This allows us to come up with a construction of the Weil category $W(\tilde{V})$, which is a geometric analog of \mathcal{H}_{ψ}. Here $W(\tilde{V})$ is a category of certain perverse sheaves on $\hat{\mathcal{L}}(\tilde{V}) \times H(V)$. The group stack \hat{G} acts on $W(\tilde{V})$ by functors. This action is geometric in the sense that it comes from the natural action of \hat{G} on $\hat{\mathcal{L}}(\tilde{V}) \times H(V)$.

Similarly to the case of other characteristics, we also construct the finite-dimensional thetasheaf $S_{\tilde{V}, \psi}$, which is a geometric analog of some matrix coefficient of the representation \mathcal{H}_{ψ}. It serves as the key ingredient for the construction of $W(\tilde{V})$.
Acknowledgements. We are very grateful to P. Deligne for his comments and suggestions about the first version of this paper.
1.2 Notation Let A be a commutative ring and V a free A-module of rank d. As in ([12], Section 5.1), denote by $\operatorname{Sym}^{!2}(V) \subset V \otimes V$ the submodule of S_{2}-invariant vectors. It is the submodule spanned by the vectors of the form $v \otimes v, v \in V$. Let $\wedge^{2}(V) \subset V \otimes V$ be the submodule spanned by the vectors of the form $v \otimes u-u \otimes v$. Let $\operatorname{Sym}^{* 2}(V)$ be the quotient of $V \otimes V$ by $\wedge^{2}(V)$. For any n let

$$
\wedge^{n}(V)=\cap_{1 \leq i \leq n-1} V^{\otimes i-1} \otimes\left(\wedge^{2} V\right) \otimes V^{\otimes d-1-i}
$$

For any n write $\operatorname{Sym}^{!n}(V) \subset V^{\otimes n}$ for the submodule of S_{n}-invariant tensors and $\operatorname{Sym}^{* n}(V)$ for the A-module of S_{n}-coinvariants of $V^{\otimes n}$. We have canonically

$$
\operatorname{Sym}^{!n}\left(V^{*}\right) \widetilde{\rightarrow}\left(\operatorname{Sym}^{* n}(V)\right)^{*} \quad \text { and } \quad \wedge^{n}\left(V^{*}\right) \widetilde{\rightarrow}\left(\wedge^{n} V\right)^{*}
$$

The space $\operatorname{Sym}^{!2}\left(V^{*}\right)$ can be seen as the space of symmetric bilinear forms on V. This is the space of A-linear maps $\phi: V \rightarrow V^{*}$ such that $\phi^{*}=\phi$.

Let V be a free A-module of rank $2 n$. Say that V is a symplectic if it is equipped with a non-degenerate bilinear form $\omega: V \times V \rightarrow A$ such that in a suitable base ($e_{i}, e_{-i}, 1 \leq i \leq n$) we have $\omega\left(e_{i}, e_{-j}\right)=\delta_{i j}, \omega\left(e_{i}, e_{j}\right)=\omega\left(e_{-i}, e_{-j}\right)=0$ for $i, j \in\{1, \ldots, n\}$ and $\omega(x, y)=-\omega(y, x)$. We call such base a symplectic base. If V is a symplectic A-module then we trivialize $\omega_{\wedge}: \operatorname{det} V \leftrightarrows A$ by $e \mapsto 1$, where $e=e_{1} \wedge \ldots \wedge e_{n} \wedge e_{-1} \wedge \ldots \wedge e_{-n}$ does not depend on a symplectic base $\left(e_{i}, e_{-i}\right)$. For $\omega^{n} \in \wedge^{2 n} M^{*}$ we have $n!e= \pm \omega^{n}$.

The pairing between a free A-module and its dual is usually denoted by $\langle\cdot, \cdot\rangle$. If A is of characteristic p, write $V^{(p)}=V \otimes_{A} A$, where $A \rightarrow A, a \mapsto a^{p}$ is the Frobenius map.
1.3 Generalities on quadratic forms Let k be a field of characteristic two, which is either finite or algebraically closed. Let R be the ring of Witt vectors of length two over k.

Let L be a finite-dimensional k-vector space. Let $B_{a}\left(L^{*}\right) \subset(L \otimes L)^{*}$ be the subspace of bilinear forms ϕ on L satisfying $\phi(x, x)=0$ for all $x \in L$. We call them alternating bilinear forms. Write $Q\left(L^{*}\right)$ for the k-space of quadratic forms on L. By definition, it is included into an exact sequence $0 \rightarrow B_{a}\left(L^{*}\right) \rightarrow(L \otimes L)^{*} \rightarrow Q\left(L^{*}\right) \rightarrow 0$, where the second map sends a bilinear form ϕ to the quadratic form $x \mapsto \phi(x, x)$.

Write $Q_{a}\left(L^{*}\right)$ for the k-space of additive quadratic forms on L. The map $L^{*} \rightarrow Q_{a}\left(L^{*}\right)$ sending y^{*} to the quadratic form $y \mapsto\left\langle y, y^{*}\right\rangle^{2}, y \in L$ yields an isomorphism $\left(L^{*}\right)^{(2)} \widetilde{\rightarrow} Q_{a}\left(L^{*}\right)$. One has an exact sequence $0 \rightarrow B_{a}\left(L^{*}\right) \rightarrow \operatorname{Sym}^{!2}\left(L^{*}\right) \rightarrow Q_{a}\left(L^{*}\right) \rightarrow 0$ of k-vector spaces. One also has an exact sequence

$$
0 \rightarrow Q_{a}\left(L^{*}\right) \rightarrow Q\left(L^{*}\right) \rightarrow B_{a}\left(L^{*}\right) \rightarrow 0
$$

where the second map sends q to the the bilinear form $(x, y) \mapsto q(x+y)-q(x)-q(y)$.
Assume given a free R-module \tilde{L} with an isomorphism $\tilde{L} \otimes_{R} k \rightrightarrows L$ of k-vector spaces. Note that $B_{a}\left(L^{*}\right) \subset \operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right)$ can be seen as the R-submodule consisting of φ satisfying $\varphi(\tilde{x}, \tilde{x})=0$ for all $\tilde{x} \in \tilde{L}$. Let $Q^{!}\left(L^{*}\right)$ be the quotient of $\operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right)$ by $B_{a}\left(L^{*}\right)$, this is an R-module included into an exact sequence $0 \rightarrow Q_{a}\left(L^{*}\right) \rightarrow Q^{!}\left(L^{*}\right) \rightarrow \operatorname{Sym}^{!2}\left(L^{*}\right) \rightarrow 0$ of R-modules. The action of $\mathrm{GL}(\tilde{L})$ on $Q^{!}\left(L^{*}\right)$ factors through an action of $\mathrm{GL}(L)$.

Equivalently, one may define $Q^{!}\left(L^{*}\right)$ as the R-module of maps $q: L \rightarrow R$ such that

- the map $b_{q}: L \times L \rightarrow R$ given by $b_{q}\left(x_{1}, x_{2}\right)=q\left(x_{1}+x_{2}\right)-q\left(x_{1}\right)-q\left(x_{2}\right)$ is bi-additive, and $b_{q}\left(a x_{1}, x_{2}\right)=\tilde{a} b_{q}\left(x_{1}, x_{2}\right)$ for any $\tilde{a} \in R$ over $a \in k$;
- $q(a x)=\tilde{a}^{2} q(x)$ for $x \in L$ and $\tilde{a} \in R$ over $a \in k$.

These R-valued 'quadratic forms' on L have been considered, for example, in [14, 25, 18].
1.4 We refer the reader to Section 2 for motivations, in Section 3 we give a detailed description of the main results and explain the structure of the paper.

2. Classical Weil representation and motivations

2.1. In this section we remind the construction of the Weil representation in characteristic two following essentially [14. This is our subject to geometrize.
2.2. Let k be a finite field of characteristic two with q elements, R be the ring of Witt vectors of length two over k. Let \tilde{V} be a free R-module of rank $2 n$ with symplectic form $\tilde{\omega}: \tilde{V} \otimes \tilde{V} \rightarrow R$. Set $V=\tilde{V} \otimes_{R} k$. Let $\omega: V \times V \rightarrow 2 R$ be given by $\omega(x, y)=2 \tilde{\omega}(\tilde{x}, \tilde{y})$ for any $\tilde{x}, \tilde{y} \in \tilde{V}$ over $x, y \in V$.

Pick a bilinear form $\tilde{\beta}: \tilde{V} \times \tilde{V} \rightarrow R$ such that

$$
\begin{equation*}
\tilde{\beta}(\tilde{x}, \tilde{y})-\tilde{\beta}(\tilde{y}, \tilde{x})=\tilde{\omega}(\tilde{x}, \tilde{y}) \tag{3}
\end{equation*}
$$

for all $\tilde{x}, \tilde{y} \in \tilde{V}$. Let $\beta: V \times V \rightarrow R$ be the map $(x, y) \mapsto 2 \tilde{\beta}(\tilde{x}, \tilde{y})$ for any $\tilde{x}, \tilde{y} \in \tilde{V}$ over x, y. It gives rise to the Heisenberg group $H(V)=V \times R$ with operation

$$
\begin{equation*}
\left(v_{1}, z_{1}\right)\left(v_{2}, z_{2}\right)=\left(v_{1}+v_{2}, z_{1}+z_{2}+\beta\left(v_{1}, v_{2}\right)\right), \quad v_{i} \in V, z_{i} \in R \tag{4}
\end{equation*}
$$

Its center is $Z(H(V))=\{(0, z) \in H(V) \mid z \in R\}$.
Gurevich and Hadani consider the group of all automorphisms of $H(V)$ acting trivially on the center $Z(H(V))$. For the purposes of geometrisation, we modify their definition slightly as follows. Let $\operatorname{ASp}(V)$ be the set of pairs (g, α), where $g \in \mathbb{S p}(V)$ and $\alpha: V \rightarrow R$ satisfies

- $\alpha\left(v_{1}+v_{2}\right)-\alpha\left(v_{1}\right)-\alpha\left(v_{2}\right)=\beta\left(g\left(v_{1}\right), g\left(v_{2}\right)\right)-\beta\left(v_{1}, v_{2}\right)$ for all $v_{i} \in V$;
- $\alpha(a v)=\tilde{a}^{2} \alpha(v)$ for any $v \in V$ and $\tilde{a} \in R$ over $a \in k$.

An element $(g, \alpha) \in \operatorname{ASp}(V)$ yields an automorphism of $H(V)$ given by $(v, z) \mapsto(g v, z+\alpha(v))$. In this way $\operatorname{ASp}(V)$ maps injectively into the group of automorphisms of $H(V)$ acting trivially on $Z(H(V))$. The composition in $\operatorname{ASp}(V)$ is given by

$$
\left(g, \alpha_{g}\right)\left(h, \alpha_{h}\right)=\left(g h, h^{-1}\left(\alpha_{g}\right)+\alpha_{h}\right)
$$

with $h^{-1}\left(\alpha_{g}\right)(v)=\alpha_{g}(h v)$ for all $v \in V$. We will refer to $\operatorname{ASp}(V)$ as the affine symplectic group. For a k-vector space L write
$F Q_{a}\left(L^{*}\right)=\left\{\alpha: L \rightarrow R \mid \alpha\left(x_{1}+x_{2}\right)=\alpha\left(x_{1}\right)+\alpha\left(x_{2}\right)\right.$ and $\alpha(a x)=\tilde{a}^{2} \alpha(x), \tilde{a} \in R$ over $\left.a \in k, x \in L\right\}$
An element of $F Q_{a}\left(L^{*}\right)$ writes in Witt coordinates as $\left(0, \alpha_{1}\right)$, where $\alpha_{1}: L \rightarrow k$ is additive and $\alpha_{1}(a x)=a^{4} \alpha_{1}(x)$ for all $a \in k, x \in L$. So, $F Q_{a}\left(L^{*}\right) \widetilde{\rightarrow}\left(L^{*}\right)^{(4)}$. The group $\operatorname{ASp}(V)$ fits into an exact sequence

$$
1 \rightarrow F Q_{a}\left(V^{*}\right) \rightarrow \operatorname{ASp}(V) \rightarrow \mathbb{S p}(V) \rightarrow 1
$$

Though it is not reflected in the notation, $\operatorname{ASp}(V)$ depends not only on $\tilde{\omega}$ but also on $\tilde{\beta}$.
Let $G=\mathbb{S p}(\tilde{V})$. We have a surjective homomorphism $\xi: G \rightarrow \operatorname{ASp}(V)$ sending \tilde{g} to $\left(g, \alpha_{\tilde{g}}\right)$, where $g \in \mathbb{S p}(V)$ is the image of \tilde{g}, and $\alpha_{\tilde{g}}: V \rightarrow R$ is given by

$$
\alpha_{\tilde{g}}(v)=\tilde{\beta}(\tilde{g} \tilde{v}, \tilde{g} \tilde{v})-\tilde{\beta}(\tilde{v}, \tilde{v})
$$

for any $\tilde{v} \in \tilde{V}$ over $v \in V$.
2.3 Fix a prime $\ell \neq 2$. Let $\psi: \mathbb{Z} / 4 \mathbb{Z} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ be a faithful character. We denote by the same symbol ψ the composition $R \xrightarrow{\text { tr }} \mathbb{Z} / 4 \mathbb{Z} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$. A version of the Stone-von Neumann theorem holds in this setting, namely there exists a unique (up to isomorphism) irreducible $\overline{\mathbb{Q}} \ell$-representation of $H(V)$ with central character $\psi([14])$.

Given an irreducible $\overline{\mathbb{Q}}_{\ell}$-representation $\left(\rho, \mathcal{H}_{\psi}\right)$ of $H(V)$ with central character ψ, one gets in the usual way a version of the metaplectic group

$$
\begin{aligned}
& \operatorname{Mp}\left(\mathcal{H}_{\psi}\right)=\left\{(g, M[g]) \mid g \in \operatorname{ASp}(V), M[g] \in \operatorname{Aut}\left(\mathcal{H}_{\psi}\right)\right. \\
& \quad \rho(g h) \circ M[g]=M[g] \circ \rho(h) \text { for all } h \in H(V)\}
\end{aligned}
$$

included into an exact sequence

$$
\begin{equation*}
1 \rightarrow \overline{\mathbb{Q}}_{\ell}^{*} \rightarrow \mathrm{Mp}\left(\mathcal{H}_{\psi}\right) \rightarrow \operatorname{ASp}(V) \rightarrow 1 \tag{5}
\end{equation*}
$$

It comes together with the Weil representation of $\operatorname{Mp}\left(\mathcal{H}_{\psi}\right)$ on \mathcal{H}_{ψ} given by $(g, M[g]) \mapsto M[g] \in$ $\operatorname{Aut}\left(\mathcal{H}_{\psi}\right)$.

Among various results of [22, 16, 15, 14] let us cite the following two, which are our main motivation for geometrisation.

Proposition 1 ([14). 1) There exists a group $\operatorname{AMp}(V)$ included into an exact sequence

$$
1 \rightarrow \mu_{4}\left(\overline{\mathbb{Q}}_{\ell}\right) \rightarrow \operatorname{AMp}(V) \rightarrow \operatorname{ASp}(V) \rightarrow 1
$$

such that (5) is its push-forward via $\mu_{4}\left(\overline{\mathbb{Q}}_{\ell}\right) \hookrightarrow \overline{\mathbb{Q}}_{\ell}^{*}$.

1) There is a group $\operatorname{Mp}(\tilde{V})$, which is an extension of G by $\mu_{2}\left(\overline{\mathbb{Q}}_{\ell}\right)$ and a morphism of exact sequences extending ξ

$$
\begin{array}{rlllll}
1 \rightarrow \mu_{4}\left(\overline{\mathbb{Q}}_{\ell}\right) & \rightarrow & \operatorname{AMp}(V) & \rightarrow & \uparrow & \operatorname{ASp}(V) \\
\uparrow & \rightarrow 1 \\
1 & \rightarrow \overline{A S}_{2}\left(\overline{\mathbb{Q}}_{\ell}\right) & \rightarrow & \operatorname{Mp}(\tilde{V}) & \rightarrow & G \\
& \rightarrow & \rightarrow 1
\end{array}
$$

2.4 Models of the Weil representation

2.4.1 Write $\mathcal{L}(V)$ for the set of lagrangians in V. We modify slightly the notion of an enhanced lagrangian from [14] as follows. An enhanced lagrangian in V is a pair (L, α), where $L \in \mathcal{L}(V)$ and $\alpha: L \rightarrow R$ satisfies

$$
\alpha\left(l_{1}+l_{2}\right)-\alpha\left(l_{1}\right)-\alpha\left(l_{2}\right)=\beta\left(l_{1}, l_{2}\right)
$$

for $l_{i} \in L$ and $\alpha(a l)=\tilde{a}^{2} \alpha(l)$ for $l \in L, a \in k$ and $\tilde{a} \in R$ over a. Sometimes we will refer to it as the enhanced structure on L. Let $E \operatorname{Lag}(V)$ be the set of enhanced lagrangians in V. Then $\operatorname{ELag}(V)$ is a torsor under the vector bundle on $\mathcal{L}(V)$ whose fibre at L is $F Q_{a}\left(L^{*}\right)$.

Given $L \in \mathcal{L}(V)$, the subgroup $L \times R \subset H(V)$ is abelian. The novelty in characteristic two (compared to the case of other characteristics) is that this is not a direct product of subgroups. This is an extension of L by R in the sense of commutative unipotent group schemes over k, and an enhanced structure on L yields a splitting of this extension.

Let (L, α) be an enhanced lagrangian in V. Then $\tau: L \rightarrow H(V)$ given by $\tau(x)=(x, \alpha(x))$ is a group homomorphism. One associates to the enhanced lagrangian (L, α) a model of the Weil representation

$$
\mathcal{H}_{L}=\left\{f: H(V) \rightarrow \overline{\mathbb{Q}}_{\ell} \mid f(z \tau(x) h)=\psi(z) f(h), x \in L, z \in R, h \in H(V)\right\}
$$

on which $H(V)$ acts by right translations. Write $\rho: H(V) \rightarrow \operatorname{Aut}\left(\mathcal{H}_{L}\right)$ for this action.
The group $\operatorname{ASp}(V)$ acts on the left on $\operatorname{ELag}(V)$, namely $g \in \operatorname{ASp}(V)$ sends $\tau: L \rightarrow H(V)$ to $\mathrm{Ad}_{g} \tau: g L \rightarrow H(V)$ given by

$$
\left(\operatorname{Ad}_{g} \tau\right)(x)=g \tau\left(g^{-1} x\right)
$$

$x \in g L$. This action map is denoted by act : $\operatorname{ASp}(V) \times E \operatorname{Lag}(V) \rightarrow E \operatorname{Lag}(V)$. The projection $\operatorname{ELag}(V) \rightarrow \mathcal{L}(V)$ is $\operatorname{ASp}(V)$-equivariant. Set

$$
\begin{aligned}
& \operatorname{Mp}\left(\mathcal{H}_{L}\right)=\left\{(g, M[g]) \mid g \in \operatorname{ASp}(V), M[g] \in \operatorname{Aut}\left(\mathcal{H}_{L}\right)\right. \\
& \quad \rho(g h) \circ M[g]=M[g] \circ \rho(h) \text { for } h \in H(V)\}
\end{aligned}
$$

It fits into an exact sequence

$$
\begin{equation*}
1 \rightarrow \overline{\mathbb{Q}}_{\ell}^{*} \rightarrow \mathrm{Mp}\left(\mathcal{H}_{L}\right) \rightarrow \operatorname{ASp}(V) \rightarrow 1 \tag{6}
\end{equation*}
$$

Remark 1. Each $g \in \operatorname{ASp}(V)$ yields an isomorphism $\mathcal{H}_{L} \widetilde{\rightarrow} \mathcal{H}_{g L}$ of $\overline{\mathbb{Q}} \ell$-vector spaces sending f to $g f$. Here $(g f)(h)=f\left(g^{-1} h\right)$ for $h \in H(V)$. Write $S t_{L}$ for the stabilizor of the enhanced lagrangian L in $\operatorname{ASp}(V)$. Then $S t_{L}$ acts naturally in \mathcal{H}_{L}, namely $g \in S t_{L}$ sends f to $g f$. This is a splitting of (6) over $S t_{L}$.
2.4.2 Write $\mathcal{L}(\tilde{V})$ for the set of free lagrangian R-submodules in \tilde{V}. Write $\epsilon: \mathcal{L}(\tilde{V}) \rightarrow E \operatorname{Lag}(V)$ for the map sending \tilde{L} to $\left(L, \alpha_{\tilde{L}}\right)$, where $\alpha_{\tilde{L}}: L \rightarrow R$ is given by $\alpha_{\tilde{L}}(x)=\tilde{\beta}(\tilde{x}, \tilde{x})$ for any $\tilde{x} \in \tilde{L}$ over $x \in L$.

The surjection $\xi: G \rightarrow \operatorname{ASp}(V)$ is compatible with ϵ, namely the diagram

$$
\begin{array}{ccc}
G \times \mathcal{L}(\tilde{V}) & \xrightarrow{\text { act }} & \mathcal{L}(\tilde{V}) \\
\downarrow \xi \times \epsilon & & \downarrow \epsilon \tag{7}\\
\operatorname{ASp}(V) \times E \operatorname{Lag}(V) & \xrightarrow{\text { act }} & E \operatorname{Lag}(V)
\end{array}
$$

commutes, where the top horizontal map sends (\tilde{g}, \tilde{L}) to $\tilde{g} \tilde{L}$. For $\tilde{L} \in \mathcal{L}(\tilde{V})$ set also $\mathcal{H}_{\tilde{L}}=\mathcal{H}_{L}$, where $L=\epsilon(\tilde{L})$. Let $P(\tilde{L})$ be the stabilizor of \tilde{L} in G. Then ξ resticts to a homomorphism
$\xi: P(\tilde{L}) \rightarrow S t_{L}$, and Remark 1 yields a canonical splitting of the pull-back of (6) under the composition $P(\tilde{L}) \hookrightarrow G \xrightarrow{\xi} \operatorname{ASp}(V)$. The group $P(\tilde{L})$ fits into an exact sequence $1 \rightarrow$ $\operatorname{Sym}^{\prime 2}(\tilde{L}) \rightarrow P(\tilde{L}) \rightarrow \operatorname{GL}(\tilde{L}) \rightarrow 1$.

2.5 Interwining operators

For a pair $L_{1}, L_{2} \in E \operatorname{Lag}(V)$ consider the non-normalized interwining operator $F_{L_{1} L_{2}}: \mathcal{H}_{L_{2}} \rightarrow$ $\mathcal{H}_{L_{1}}$ given by

$$
\begin{equation*}
\left(F_{L_{1} L_{2}}[f]\right)(h)=\sum_{m \in L_{1}} f\left(\tau_{1}(m) h\right) \tag{8}
\end{equation*}
$$

for $f \in \mathcal{H}_{L_{2}}, h \in H(V)$, where $\tau_{i}: L_{i} \rightarrow H(V)$ is the enhanced structure for L_{i}. It commutes with the actions of $H(V)$. It is easy to check that $F_{L_{1}, L_{2}}$ does not vanish iff τ_{1} and τ_{2} coincide on $L_{1} \cap L_{2}$, and in this case it is an isomorphism.

Let now $L_{1}, L_{2}, L_{3} \in E \operatorname{Lag}(V)$ with $L_{1} \cap L_{2}=L_{1} \cap L_{3}=0$. We write $\tau_{i}: L_{i} \rightarrow H(V)$ for the enhanced structure for L_{i}. Let $r: L_{2} \rightarrow L_{1}$ be the k-linear map such that $L_{3}=\{r(x)-x \in$ $\left.L_{1} \oplus L_{2} \mid x \in L_{2}\right\}$. Let us calculate

$$
F_{L_{1}, L_{2}} F_{L_{2}, L_{3}}: \mathcal{H}_{L_{3}} \rightarrow \mathcal{H}_{L_{1}}
$$

Define the quadratic form $Q_{L_{1}, L_{2}, L_{3}}: L_{2} \rightarrow R$ by the following equality in $H(V)$

$$
\begin{equation*}
\tau_{3}(r(m)-m) \tau_{2}(m) \tau_{1}(-r(m))=\left(0, Q_{L_{1}, L_{2}, L_{3}}(m)\right) \tag{9}
\end{equation*}
$$

for any $m \in L_{2}$. In other words,

$$
\begin{equation*}
Q_{L_{1}, L_{2}, L_{3}}(m)=\alpha_{2}(m)+\alpha_{1}(r(m))-\alpha_{3}(m-r(m))+\beta(m, r(m)) \tag{10}
\end{equation*}
$$

Then $Q_{L_{1}, L_{2}, L_{3}} \in Q^{!}\left(L_{2}^{*}\right)$, and (10) implies for $m_{1}, m_{2} \in L_{2}$

$$
Q_{L_{1}, L_{2}, L_{3}}\left(m_{1}+m_{2}\right)-Q_{L_{1}, L_{2}, L_{3}}\left(m_{1}\right)-Q_{L_{1}, L_{2}, L_{3}}\left(m_{2}\right)=\omega\left(r\left(m_{1}\right), m_{2}\right)
$$

This is a symmetric bilinear form $L_{2} \times L_{2} \rightarrow 2 R$.
Define the Gauss sum of $Q_{L_{1}, L_{2}, L_{3}}$ by

$$
\begin{equation*}
C\left(L_{1}, L_{2}, L_{3}\right)=\sum_{m \in L_{2}} \psi\left(Q_{L_{1}, L_{2}, L_{3}}(m)\right) \tag{11}
\end{equation*}
$$

Lemma 1. Assuming only $L_{1} \cap L_{2}=L_{1} \cap L_{3}=0$ one has

$$
F_{L_{1}, L_{2}} F_{L_{2}, L_{3}}=C\left(L_{1}, L_{2}, L_{3}\right) F_{L_{1}, L_{3}}
$$

So, $C\left(L_{1}, L_{2}, L_{3}\right) F_{L_{2}, L_{1}} F_{L_{1}, L_{3}}=q^{n} F_{L_{2}, L_{3}}$.

Proof Let $f \in \mathcal{H}_{L_{3}}$. For $h \in H(V)$ we get

$$
\left(F_{L_{1}, L_{2}} F_{L_{2}, L_{3}} f\right)(h)=\sum_{u \in L_{1}, m \in L_{2}} f\left(\tau_{2}(m) \tau_{1}(u) h\right)=\sum_{u \in L_{1}, m \in L_{2}} f\left(\tau_{3}(r(m)-m) \tau_{2}(m) \tau_{1}(u) h\right)
$$

We make a change of variables replacing (u, m) by (v, m), where $v \in L_{1}$ is given by $v=r(m)+u$. The above sum equals

$$
\sum_{v \in L_{1}, m \in L_{2}} f\left(\tau_{3}(r(m)-m) \tau_{2}(m) \tau_{1}(-r(m)) \tau_{1}(v) h\right)
$$

Our first assertion follows now from (9). The second assertion follows from the fact that $F_{L_{2}, L_{1}} F_{L_{1}, L_{2}}=q^{n}$.

Remark 2. Given $L_{1} \in \operatorname{ELag}(V)$, the variety $\left\{L \in \operatorname{ELag}(V) \mid L \cap L_{1}=0\right\}$ is naturally a homogeneous space under $Q^{!}\left(L_{1}\right)$. Namely, given L_{2} and L_{3} in this variety one gets $Q_{L_{1}, L_{2}, L_{3}}$ as above. Identify further L_{1} with L_{2}^{*} via the form ω, so $Q_{L_{1}, L_{2}, L_{3}} \in Q^{!}\left(L_{1}\right)$.

Conversely, given L_{2} in this variety and $Q_{L_{1}, L_{2}, L_{3}} \in Q^{!}\left(L_{2}^{*}\right)$, let ϕ be its image in $\operatorname{Sym}^{!2}\left(L_{2}^{*}\right)$. Define $r: L_{2} \rightarrow L_{1}$ by $\omega\left(r\left(m_{1}\right), m_{2}\right)=\phi\left(m_{1}, m_{2}\right)$ for all $m_{i} \in L_{2}$. Let $L_{3}=\left\{r(x)-x \in L_{1} \oplus L_{2} \mid\right.$ $\left.x \in L_{2}\right\}$. Now there is a unique $\tau_{3}: L_{3} \rightarrow H(V), \tau_{3}(y)=\left(y, \alpha_{3}(y)\right)$ such that (9) holds. The fact that this τ_{3} is a homomorphism is checked using (10).
Remark 3. For any pair of enhanced lagrangians $L_{1}, L_{2} \in \operatorname{ELag}(V)$ define the interwining operator $F_{L_{1} L_{2}}^{b}: \mathcal{H}_{L_{2}} \rightarrow \mathcal{H}_{L_{1}}$ as follows. There is $w \in V$ (its image in $V /\left(L_{1}+L_{2}\right)$ is uniquely defined) such that for all $x \in L_{1} \cap L_{2}$ we have $\alpha_{2}(x)-\alpha_{1}(x)=\operatorname{Fr}(\omega(x, w))$, here $\operatorname{Fr}: R \rightarrow R$ is the Frobenius.

Write \bar{L}_{1} for the subgroup $L_{1} \times R \subset H(V)$, similarly for $\overline{L_{1} \cap L_{2}} \subset H(V)$. Let $\psi_{1}: \bar{L}_{1} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ be the unique character such that $\psi_{1}\left(\tau_{1}(x)(0, z)\right)=\psi(z)$ for all $x \in L_{1}, z \in R$. Given $f \in \mathcal{H}_{L_{2}}$, the function sending $u \in \bar{L}_{1}$ to

$$
f((w, 0) u h) \psi_{1}^{-1}(u)
$$

actually depends only on the image of u in $\overline{L_{1} \cap L_{2}} \backslash \bar{L}_{1}$. Then we set

$$
\begin{equation*}
\left(F_{L_{1} L_{2}}^{b} f\right)(h)=\sum_{u \in \overline{L_{1} \cap L_{2} \backslash \bar{L}_{1}}} f((w, 0) u h) \psi_{1}^{-1}(u) \tag{12}
\end{equation*}
$$

To see that $F_{L_{1}, L_{2}}^{b}$ is non zero, take $f \neq 0$ supported at \bar{L}_{2} then $\left(F_{L_{1} L_{2}}^{b} f\right)(w, 0) \neq 0$. Finally, if $L_{1} \cap L_{2}=0$ take $w=0$ then (12) coincides with (8). The operator (12) does depend on a choice of w.

3. Main results

3.1 Notation From now on k denotes an algebraically closed field of characteristic two. Write W_{2} for the k-scheme of Witt vectors of length 2 over k. Let $R=W_{2}(k)$ be the corresponding ring of Witt vectors. Fix a prime $\ell \neq 2$. Let $\psi: \mathbb{Z} / 4 \mathbb{Z} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ be a faithful character. For a
k-stack of finite type S write $\mathrm{D}(S)$ for the bounded derived category of $\overline{\mathbb{Q}}_{\ell}$-sheaves on S. Write $\mathrm{P}(S) \subset \mathrm{D}(S)$ for the full subcategory of perverse sheaves. Write $\mathbb{D}: \mathrm{D}(S) \rightarrow \mathrm{D}(S)$ for the Verdier duality. Since we are working over an algebraically closed field, we systematically ignore the Tate twists. (Certain isomorphisms that we call canonical actually contain the Tate twists, for example those of Lemma (18). Write μ_{2} for the group scheme $\operatorname{Spec} k[x] /\left(x^{2}-1\right)$ over k.

Remind the definition of the Artin-Schreier-Witt local system \mathcal{L}_{ψ} on $W_{2, k}$. One has the Lang isogeny $L a: W_{2} \rightarrow W_{2}$ sending x to $\operatorname{Fr}(x)-x$, where $\operatorname{Fr}: W_{2} \rightarrow W_{2}$ is the Frobenius morphism ([21], section 0.1.2). It can be seen as a $\mathbb{Z} / 4 \mathbb{Z}$-torsor over W_{2}. Denote by \mathcal{L}_{ψ} the smooth $\overline{\mathbb{Q}}_{\ell}$-sheaf of rank one on W_{2} obtained from this torsor via extension of scalars $\psi: \mathbb{Z} / 4 \mathbb{Z} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$. This is a character sheaf, for the sum $s: W_{2} \times W_{2} \rightarrow W_{2}$ we have $s^{*} \mathcal{L}_{\psi} \widetilde{\rightarrow} \mathcal{L}_{\psi} \boxtimes \mathcal{L}_{\psi}$ canonically, and \mathcal{L}_{ψ} is canonically trivialized at $0 \in W_{2}$.

For a scheme Z over R we denote by the same symbol Z its Greenberg realization over k [13] (the precise meaning being understood from the context).

For an R-module of finite type M the same symbol M stands for the k-scheme whose set of k-points is M. It can be defined as follows. Pick a resolution $M_{-1} \xrightarrow{f} M_{0}$ of M by free R-modules of finite type. The k-scheme associated to M is defined as the cokernel of the corresponding morphism between the Greenberg realizations of M_{i}. One checks that k-scheme so obtained is defined up to a unique isomorphism.

For a morphism $f: Y_{1} \rightarrow Y_{2}$ of irreducible k-schemes of finite type write $\operatorname{dim} \cdot \operatorname{rel}(f)=$ $\operatorname{dim} Y_{1}-\operatorname{dim} Y_{2}$.
3.2 In Section 4 we study the geometric analogs of Gauss sums attached to R-valued quadratic forms on a finite-dimensional k-vector space L. Namely, we introduce an irreducible perverse sheaf \bar{S}_{ψ} on $Q^{!}\left(L^{*}\right)$, whose fibre at $q \in Q^{!}\left(L^{*}\right)$ is the Gauss sum attached to q and the character ψ. The scheme $Q^{!}\left(L^{*}\right)$ is naturally stratified, we describe the restriction of S_{ψ} to each stratum (Proposition 3). Generically, S_{ψ} is a (shifted) local system of rank one and order four, and we describe generically the $\mathbb{Z} / 4 \mathbb{Z}$-covering, on which the corresponding local system trivializes (cf. Section 4.5). The sheaf \bar{S}_{ψ} is $\mathrm{GL}(L)$-equivariant, write $\overline{\mathbb{S}}_{\psi}$ for the perverse sheaf on the stack quotient $Q^{!}\left(L^{*}\right) / \mathrm{GL}(L)$ equipped with an isomorphism $\operatorname{pr}^{*} \overline{\mathbb{S}}_{\psi}[\operatorname{dim} . \operatorname{rel}(\operatorname{pr})] \leftrightarrows \bar{S}_{\psi}$ for the projection pr : $Q^{!}\left(L^{*}\right) \rightarrow Q^{!}\left(L^{*}\right) / \mathrm{GL}(L)$.

In Section 5 we generalize the results of Thomas [23] on the Maslov index (of a finite collection of lagrangian subspaces in a symplectic space) to the case of characteristic two. More precisely, we consider a free R-module \tilde{V} of rank $2 n$ with a symplectic form. To a finite collection of free lagrangian R-submodules $\tilde{L}_{1}, \ldots, \tilde{L}_{m} \subset \tilde{V}$ we attach R-modules with symmetric bilinear forms $K_{1, \ldots, m}$ and $T_{1, \ldots, m}$, here $T_{1, \ldots, m}$ is the quotient of $K_{1, \ldots, m}$ by the kernel of the form. This is the Maslov index of the collection $\left\{\tilde{L}_{i}\right\}$. In addition to the standard properties of the Maslov index (Propositions 4 and 5), we also obtain some new isometries in the case $m=4$, which actually hold also in other characteristics. (These new isometries are used in Section 6.3.2 for the construction of the gerb $\hat{Y})$.

Let $\mathcal{L}(\tilde{V})$ be the Greenberg realization of the R-scheme of lagrangian free R-submodules in \tilde{V}. In Section 6 we use the Maslov index to construct a $\mathbb{Z} / 4 \mathbb{Z}$-gerb $\hat{\mathcal{L}}(\tilde{V}) \rightarrow \mathcal{L}(\tilde{V})$. Let G be the Greenberg realization of $\operatorname{Sp}(\tilde{V})$. The gerb $\hat{\mathcal{L}}(\tilde{V})$ is not G-equivariant, but rather gives rise to a
central extension

$$
1 \rightarrow B(\mathbb{Z} / 4 \mathbb{Z}) \rightarrow \hat{G} \rightarrow G \rightarrow 1
$$

of group stacks over k. We call \hat{G} the metaplectic group (in a sense, this is a geometric analog of $\operatorname{Mp}(\tilde{V})$ from Proposition (1).

Set $Y=\mathcal{L}(\tilde{V}) \times \mathcal{L}(\tilde{V})$. Let $\hat{Y} \rightarrow Y$ be the $\mathbb{Z} / 4 \mathbb{Z}$-gerb obtained from $\hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V})$ by extending the structure group via $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 4 \mathbb{Z},(a, b) \mapsto b-a$. We show that \hat{Y} is naturally G-equivariant, that is, can be seen as a gerb over the stack quotient Y / G. We construct an irreducible G-equivariant perverse sheaf $S_{\tilde{V}, \psi}$ on \hat{Y}, which we call the finite-dimensional theta sheaf (cf. Definition 7).

Let U_{23} be the scheme classifying $\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}\right) \in \mathcal{L}(\tilde{V})^{3}$ with $\tilde{L}_{1} \cap \tilde{L}_{2}=\tilde{L}_{1} \cap \tilde{L}_{3}=0$. We define a morphism $\hat{\nu}_{23}: U_{23} \rightarrow \hat{Y}$ extending the projection $\nu_{23}: U_{23} \rightarrow Y,\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}\right) \mapsto\left(\tilde{L}_{2}, \tilde{L}_{3}\right)$ (cf. Section 6.3.1).

Let \tilde{L} be a free R-module of rank n, set $L=\tilde{L} \otimes_{R} k$. The Maslov index of a triple of lagrangians yields a morphism to the stack quotient $\pi_{U}: U_{23} \rightarrow \operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right) / \mathrm{GL}(\tilde{L})$ (cf. Section 5.4).

The key property of $S_{\tilde{V}, \psi}$ is Corollary $\mathbb{1}$, which is the main result of Section 6. It establishes a canonical isomorphism of perverse sheaves on U_{23}

$$
\pi_{U}^{*} p_{L}^{*} \overline{\mathbb{S}}_{\psi}\left[\operatorname{dim} \cdot \operatorname{rel}\left(p_{L} \circ \pi_{U}\right)\right] \rightrightarrows \hat{\nu}_{23}^{*} S_{\tilde{V}, \psi}\left[\operatorname{dim} \cdot \operatorname{rel}\left(\nu_{23}\right)\right],
$$

where $p_{L}: \operatorname{Sym}^{!2}(\tilde{L}) / \mathrm{GL}(\tilde{L}) \rightarrow Q^{!}\left(L^{*}\right) / \mathrm{GL}(L)$ is the natural map. So, similarly to the case of other characteristics, the Gauss sum of the Maslov index of $\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}\right) \in U_{23}$ is 'almost independent' of \tilde{L}_{1}.

Let $V=\tilde{V} \otimes_{R} k$. The Heisenberg group $H=H(V)=V \times R$ with operation (4) is viewed as an algebraic group over k (an extension of V by the Greenberg realization of R).

In Section 7 we generalize the theory of canonical interwining operators ([17) to the case of characteristic two. Main result here is Theorem [1, which establishes the existence of an irreducible perverse sheaf $F \in \mathrm{P}(\hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times H)$ of canonical interwining operators between the Heisenberg models of the Weil representation. The proof follows the strategy from [17]. However, a new technical point is that we need to consider an action of an algebraic group stack on an algebraic stack (our perverse sheaves are equivariant under the action of a group stack ${ }^{11}$). Generalities on such actions are collected in Appendix A. The theta-sheaf $S_{\tilde{V}, \psi}$ is one of the main ingredients in the construction of F.

Finally, we construct a category $W(\tilde{V})$ of certain perverse sheaves on $\hat{\mathcal{L}}(\tilde{V}) \times H$, which provides a geometric analog of the Weil representation \mathcal{H}_{ψ} from Section 2.3. The group stack \hat{G} acts on $W(\tilde{V})$ by functors. This action is geometric in the sense that it comes from a natural action of \hat{G} on $\hat{\mathcal{L}}(\tilde{V})$. As in [17], we also construct the non-ramified Weil category $W(\hat{\mathcal{L}}(\tilde{V}))$, which is a category of certain perverse sheaves on $\hat{\mathcal{L}}(\tilde{V})$. This is another geometric realization of the Weil representation (one has an obvious functor $W(\tilde{V}) \rightarrow W(\hat{\mathcal{L}}(\tilde{V}))$, we don't know if this is an equivalence).

[^0]In Appendix B we turn back to the classical setting and show that the Weil representation from Section 2 is obtained by some reduction from the Weil representation over the non archimedian local field of characteristic zero and residual characteristic two.
3.3 Comments on open problems. From our point of view, the following problems would be interesting to solve. Find an interpretation of the construction of \hat{G} in terms of K-theory (as for characteristics different from two). Find a description of $\hat{\mathcal{L}}(\tilde{V})$ and of \hat{Y} as the moduli stack classifying some geometric objets related to \tilde{V}. Geometrization of the Howe correspondence in the case of characteristic two. If there could be one, find a description of \hat{G} by a crossed module.

4. The sheaf \bar{S}_{ψ}

4.1 Let \tilde{L} be a free R-module of rank n, set $L=\tilde{L} \otimes_{R} k$. Let $\pi: \tilde{L} \rightarrow \operatorname{Sym}^{* 2}(\tilde{L})$ be the map sending x to $x \otimes x$, here Sym is taken over R. The map π is constant along the fibres of the projection $\tilde{L} \rightarrow L$, so yields a map $\bar{\pi}: L \rightarrow \operatorname{Sym}^{* 2}(\tilde{L})$. The latter map induces a closed immersion of k-schemes $\bar{\pi}: L^{(2)} \rightarrow \operatorname{Sym}^{* 2}(\tilde{L})$.

Since $\operatorname{Sym}^{* 2}(\tilde{L})$ and $\operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right)$ is a dual pair of commutative unipotent group schemes over k, one has the Fourier transform functor

$$
\operatorname{Four}_{\psi}: \mathrm{D}\left(\operatorname{Sym}^{* 2}(\tilde{L})\right) \rightarrow \mathrm{D}\left(\operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right)\right)
$$

introduced in 21. In this particular case, one also has the evaluation map ev: $\operatorname{Sym}^{* 2}(\tilde{L}) \times$ $\operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right) \rightarrow W_{2}$, and Four ψ is given by

$$
\operatorname{Four}_{\psi}(K)=\operatorname{pr}_{2!}\left(\operatorname{pr}_{1}^{*} K \otimes e v^{*} \mathcal{L}_{\psi}\right)[n(n+1)]
$$

for $K \in \mathrm{D}\left(\operatorname{Sym}^{* 2}(\tilde{L})\right)$. By [21], $\operatorname{Four}_{\psi}$ is an equivalence, commutes with Verdier duality and preserves perversity.

Remark 4. Let \mathcal{Z} be an algebraic stack locally of finite type, $G \rightarrow \mathcal{Z}$ be a group scheme of finite type and smooth of relative dimension m over \mathcal{Z}. Let $f: \mathcal{Y} \rightarrow \mathcal{Z}$ be a G-torsor over \mathcal{Z}. Then the functor $K \mapsto f^{*} K[m]$ is an equivalence of the category of perverse sheaves on \mathcal{Z} with the category of G-equivariant perverse sheaves on \mathcal{Y} ([19], A.2).

Definition 1. As in ([19), Section 4.1) set

$$
S_{\psi}=\operatorname{Four}_{\psi}\left(\bar{\pi}_{!} \overline{\mathbb{Q}}_{\ell}[n]\right)
$$

Since $\bar{\pi}_{!} \overline{\mathbb{Q}}_{\ell}[n]$ is an irreducible perverse sheaf, so is S_{ψ}. The sheaf S_{ψ} is naturally $\mathrm{GL}(\tilde{L})$ equivariant (by $\operatorname{GL}(\tilde{L})$ we mean here its Greenberg realisation over k). Let $q_{\tilde{L}}: \operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right) \rightarrow$ $\operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right) / \operatorname{GL}(\tilde{L})$ be the stack quotient. Write \mathbb{S}_{ψ} for the perverse sheaf on $\operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right) / \operatorname{GL}(\tilde{L})$ equipped with an isomorphism

$$
q_{\tilde{L}}^{*} \mathbb{S}_{\psi}\left[\operatorname{dim} \cdot \operatorname{rel}\left(q_{\tilde{L}}\right)\right] \rightrightarrows S_{\psi}
$$

By Remark [4, the perverse sheaf \mathbb{S}_{ψ} is defined up to a unique isomorphism.

Set $Q^{*}(L)=\operatorname{Hom}_{R}\left(Q^{!}\left(L^{*}\right), R\right)$. So, $Q^{*}(L) \subset \operatorname{Sym}^{* 2}(\tilde{L})$ is the R-submodule of those $A \in$ $\operatorname{Sym}^{* 2}(\tilde{L})$ which vanish on $B_{a}\left(L^{*}\right)$. The map $\bar{\pi}: L \rightarrow \operatorname{Sym}^{* 2}(\tilde{L})$ factors as

$$
L \xrightarrow{\pi_{Q}} Q^{*}(L) \hookrightarrow \operatorname{Sym}^{* 2}(\tilde{L})
$$

Again, $Q^{*}(L)$ and $Q^{!}\left(L^{*}\right)$ is a dual pair of commutative unipotent group schemes over k, one has the evaluation map ev: $Q^{*}(L) \times Q^{!}\left(L^{*}\right) \rightarrow R$ and the Fourier transform

$$
\operatorname{Four}_{\psi}: \mathrm{D}\left(Q^{*}(L)\right) \rightarrow \mathrm{D}\left(Q^{!}\left(L^{*}\right)\right)
$$

as above. Let \bar{S}_{ψ} be the irreducible perverse sheaf on $Q^{!}\left(L^{*}\right)$ defined by

$$
\bar{S}_{\psi}=\operatorname{Four}_{\psi}\left(\pi_{Q!} \overline{\mathbb{Q}}_{\ell}[n]\right)
$$

Clearly, \bar{S}_{ψ} is GL (L)-equivariant. We have canonically $\mathbb{D} \bar{S}_{\psi} \rightrightarrows \bar{S}_{\psi^{-1}}$. We write ${ }_{n} \bar{S}_{\psi}$ if we need to express the dependence on n. One has a canonical isomorphism

$$
\operatorname{pr}^{*} \bar{S}_{\psi}[n(n+1) / 2-n] \rightrightarrows S_{\psi},
$$

where $\mathrm{pr}: \operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right) \rightarrow Q^{!}\left(L^{*}\right)$ is the projection.
We say that the Gauss sum for $q \in Q^{!}\left(L^{*}\right)$ is the $*$-fibre of \bar{S}_{ψ} at q. The Gauss sum for $\tilde{\phi} \in \operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right)$ is the Gauss sum for its image in $Q^{!}\left(L^{*}\right)$.
4.2 Let $Q_{0}^{!}\left(L^{*}\right) \subset Q^{!}\left(L^{*}\right)$ be the open subscheme of $q \in Q^{!}\left(L^{*}\right)$ whose image in $\operatorname{Sym}^{!2}\left(L^{*}\right)$ is a non degenerate symmetric bilinear form, that is, a symmetric isomorphism $L \widetilde{\rightarrow} L^{*}$ of k-vector spaces.
Lemma 2. Over $Q_{0}^{!}\left(L^{*}\right)$ the sheaf \bar{S}_{ψ} is a rank one local system placed in usual degree $-n-$ $n(n+1) / 2=-\operatorname{dim} Q^{!}\left(L^{*}\right)$. One has canonically over $Q_{0}^{!}\left(L^{*}\right)$

$$
S_{\psi} \otimes S_{\psi^{-1}} \widetilde{\rightarrow} \overline{\mathbb{Q}}_{\ell}\left[-3 n-n^{2}\right]
$$

Proof Let us explain the argument at the level of functions, its geometrization is straightforward. Let $\phi: \tilde{L} \rightarrow \tilde{L}^{*}$ be a symmetric isomorphism of R-modules. For $l \in L$ write \tilde{l} for any lifting of l to an element of \tilde{L}. Let us calculate

$$
\begin{equation*}
\sum_{l, u \in L} \psi(\langle\tilde{l}, \phi(\tilde{l})\rangle-\langle\tilde{u}, \phi(\tilde{u})\rangle) \tag{13}
\end{equation*}
$$

For $f(\tilde{l}, \tilde{u}):=\langle\tilde{l}, \phi(\tilde{l})\rangle-\langle\tilde{u}, \phi(\tilde{u})\rangle$ and $\tilde{v} \in \tilde{L}$ we have

$$
f(\tilde{l}+\tilde{v}, \tilde{u}+\tilde{v})=f(\tilde{l}, \tilde{u})+2\langle\phi(\tilde{l}-\tilde{u}), \tilde{v}\rangle
$$

First, summate along the fibres of the map $L \times L \rightarrow L,(l, u) \mapsto l-u$. The above formula shows that the result is supported by $\{0\} \subset L$. So, (13) equals

$$
\sum_{l \in L} \psi(\langle\tilde{l}, \phi(\tilde{l})\rangle-\langle\tilde{l}, \phi(\tilde{l})\rangle)=\sum_{l \in L} 1
$$

The group scheme W_{2}^{*} of invertible elements with respect to the multiplication identifies canonically with $\mathbb{G}_{m} \times \mathbb{G}_{a}$. Let $\overline{\mathcal{B}}_{2}$ be the k-stack classifying a rank one free R-module \tilde{W} with a bilinear form $\tilde{W} \otimes \tilde{W} \rightarrow R$. This is the stack quotient W_{2} / W_{2}^{*}, where $b \in W_{2}^{*}$ acts on $a \in W_{2}$ as $b^{2} a$. Let $\mathcal{B}_{2} \subset \overline{\mathcal{B}}_{2}$ be the open substack given by the condition that the bilinear form in non degenerate. Recall the group scheme μ_{2} from Section 3.1.

Lemma 3. There is a canonical isomorphism of k-stacks $\mathcal{B}_{2} \rightrightarrows B\left(\mu_{2} \times \mathbb{G}_{a}\right) \times \mathbb{A}^{1}$.
Proof An S-point of \mathcal{B}_{2} is a W_{2}^{*}-torsor on S with trivialization of its tensor square. A W_{2}^{*}-torsor is a pair: a \mathbb{G}_{m}-torsor \mathcal{F}_{1} and a \mathbb{G}_{a}-torsor \mathcal{F}_{2}. Since k is of characteristic two, for any \mathbb{G}_{a}-torsor \mathcal{F}_{2}, its tensor square is canonically trivialized, and the additional trivialization yields a point of \mathbb{A}^{1}. Our assertion follows.

Lemma 4. There is a natural map Disc : $Q^{!}\left(L^{*}\right) \rightarrow \overline{\mathcal{B}}_{2}$, its restriction to $Q_{0}^{!}\left(L^{*}\right) \subset Q^{!}\left(L^{*}\right)$ factors as $Q_{0}^{!}\left(L^{*}\right) \xrightarrow{\text { Disc }} \mathcal{B}_{2} \hookrightarrow \overline{\mathcal{B}}_{2}$.

Proof The map sending a symmetric bilinear form $\tilde{\phi}: \tilde{L} \rightarrow \tilde{L}^{*}$ to $\operatorname{det} \tilde{\phi}: \operatorname{det} \tilde{L} \rightarrow \operatorname{det} \tilde{L}^{*}$ factors through $\operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right) \rightarrow Q^{!}\left(L^{*}\right)$. Indeed, fix a base in \tilde{L}, so view $\operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right)$ as symmetric $n \times n$ matrices B over R. Then $B_{a}\left(L^{*}\right)$ becomes the set of zero-diagonal symmetric matrices C with entries in $2 R$. For such B and C we claim that $\operatorname{det}(B+C)=\operatorname{det} B$. To see this, one must prove

$$
\sum_{\sigma \in S_{n}}(\operatorname{sign} \sigma) \sum_{j=1}^{n} c_{j, \sigma(j)} \prod_{i=1, i \neq j}^{n} b_{i, \sigma(i)}=0
$$

in R. If $\sigma \neq \sigma^{-1}$ then the contributions of σ and σ^{-1} are the same, so there remains the sum over $\sigma \in S_{n}$ such that $\sigma^{2}=\mathrm{id}$. We claim that for $\sigma \in S_{n}$ with $\sigma^{2}=$ id we have

$$
\sum_{j=1}^{n} c_{j, \sigma(j)} \prod_{i=1, i \neq j}^{n} b_{i, \sigma(i)}=0
$$

Indeed, the above sum is actually over those j which are not fixed by σ. Such j are divided into pairs $(j, \sigma(j))$, and the contribution of each pair vanishes.

We will refer to Disc : $Q^{!}\left(L^{*}\right) \rightarrow \overline{\mathcal{B}}_{2}$ as the discriminant map. Write disc : $Q_{0}^{!}\left(L^{*}\right) \rightarrow \mathbb{A}^{1}$ for the composition $Q_{0}^{!}\left(L^{*}\right) \xrightarrow{\text { Disc }} \mathcal{B}_{2} \rightarrow \mathbb{A}^{1}$, where the second map is the projection.
4.3 Remind the classical result of Albert ([1). If n is odd then GL(L) acts transitively on the variety of non-degenerate symmetric bilinear forms ϕ on L. If n is even then $\operatorname{GL}(L)$ has two orbits on this variety: they are distinguished by the fact that the image of ϕ in $Q_{a}\left(L^{*}\right)$ vanishes or not.

For any n let $\operatorname{Sym}^{!2}\left(L^{*}\right)_{0} \subset \operatorname{Sym}^{!2}\left(L^{*}\right)$ be the open subscheme given by the condition that the image of $\phi \in \operatorname{Sym}^{!2}\left(L^{*}\right)$ in $Q_{a}\left(L^{*}\right)$ does not vanish, and ϕ is non-degenerate. This is the open orbit of GL (L) on $\operatorname{Sym}^{!2}\left(L^{*}\right)$.

Let $U\left(L^{*}\right) \subset Q^{!}\left(L^{*}\right)$ be the open subscheme classifying $q \in Q^{!}\left(L^{*}\right)$ such that its image $\phi \in \operatorname{Sym}^{!2}\left(L^{*}\right)$ lies in $\operatorname{Sym}^{!2}\left(L^{*}\right)_{0}$. For $u \in k$ denote by $Q_{0}^{!}\left(L^{*}\right)_{u} \subset Q_{0}^{!}\left(L^{*}\right)$ the closed subscheme given by the condition that the discriminant equals u. Write also $U\left(L^{*}\right)_{u}$ for the fibre of the disriminant map disc : $U\left(L^{*}\right) \rightarrow \mathbb{A}^{1}$ over a k-point u.

Let $\phi \in \operatorname{Sym}^{!2}\left(L^{*}\right)_{0}$ be a k-point and let $r(y)=\phi(y, y), y \in L$ be the corresponding additive quadratic form. Let $y^{*} \in L^{*}$ be such that $r(y)=\left\langle y, y^{*}\right\rangle^{2}$. Write L_{1} for the kernel of $y^{*}: L \rightarrow k$.

If n is odd then the restriction of ϕ to L_{1} is non-degenerate, so ϕ is a non-degenerate alternating form on L_{1}. Writing $L_{2}=L_{1}^{\perp}$ we get $L \widetilde{\rightarrow} L_{1} \oplus L_{2}$. The stabilizor $\mathbb{O}(\phi)$ of ϕ in $\mathrm{GL}(L)$ is $\operatorname{Sp}\left(L_{1}, \phi\right) \times \mu_{2}$, it is not reduced, and its reduced part identifies with $\operatorname{Sp}\left(L_{1}, \phi\right)$.

If n is even then $L_{2}=L_{1}^{\perp} \subset L_{1}$. Again, the group $\mathbb{O}(\phi)$ is not reduced (it acts on L_{2} via a quotient μ_{2}). Its reduced part is an extension of $\mathbb{S p}\left(L_{1} / L_{2}, \phi\right)$ by a unipotent group U_{ϕ}. The group U_{ϕ} fits into an exact sequence $1 \rightarrow L_{2}^{\otimes 2} \rightarrow U_{\phi} \rightarrow \operatorname{Hom}\left(L_{1} / L_{2}, L_{2}\right) \rightarrow 1$, so U_{ϕ} looks like a Heisenberg group. Actually, the latter exact sequence splits, because k is of characteristic two.
Lemma 5. i) Let $\tilde{\phi} \in \operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right)$ be a lifting of $\phi \in \operatorname{Sym}^{!2}\left(L^{*}\right)_{0}$. Let $q \in U\left(L^{*}\right)$ be the image of $\tilde{\phi}$. The stabilizor $\mathbb{O}(q)$ of q in $\mathrm{GL}(L)$ is as follows.

1) If n is odd then this is $\mathbb{O}\left(L_{1}, q\right) \times \mu_{2} \subset \mathbb{S p}\left(L_{1}, \phi\right) \times \mu_{2}$.
2) If n is even then we have two cases. First, if q is nonzero on L_{2}, then $\mathbb{O}(q)$ fits into an exact sequence $1 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{O}(q) \rightarrow \mathbb{S p}_{n-2} \rightarrow 1$. Second, if q vanishes on L_{2} then q yields a quadratic form $\bar{q}: L_{1} / L_{2} \rightarrow 2 R$, and $\mathbb{O}(q)$ fits into an exact sequence $1 \rightarrow$ $\operatorname{Hom}\left(L_{1} / L_{2}, L_{2}\right) \rightarrow \mathbb{O}(q) \rightarrow \mathbb{O}\left(L_{1} / L_{2}, \bar{q}\right) \rightarrow 1$. The bilinear form on L_{1} / L_{2} associated to \bar{q} is symplectic.
ii) If n is odd then we have a transitive action of $\operatorname{GL}(L) \times \mathbb{A}^{1}$ on $U\left(L^{*}\right)$, and the map disc : $U\left(L^{*}\right) \rightarrow \mathbb{A}^{1}$ is \mathbb{A}^{1}-equivariant, where \mathbb{A}^{1} acts on itself by translations.

Assume n even. Then q vanishes on L_{2} iff the discriminant of q equals

$$
\left\{\begin{array}{ccc}
0, & n=0 & \bmod 4 \tag{14}\\
1, & n=2 & \bmod 4
\end{array}\right.
$$

Besides, for any $u \in k$ and any $n>0$ the action of $\mathrm{GL}(L)$ on $U\left(L^{*}\right)_{u}$ is transitive.
Proof i) For $x, y \in L$ one has

$$
\begin{equation*}
q(x+y)-q(x)-q(y)=\tilde{\phi}(\tilde{x}+\tilde{y}, \tilde{x}+\tilde{y})-\tilde{\phi}(\tilde{x}, \tilde{x})-\tilde{\phi}(\tilde{y}, \tilde{y})=2 \tilde{\phi}(\tilde{x}, \tilde{y})=\left(0, \phi(x, y)^{2}\right), \tag{15}
\end{equation*}
$$

the last expression being written in Witt coordinates.

1) Let n be odd. Then ϕ yields a decomposition $L=L_{1} \oplus L_{2}$ as above, and ϕ is alternating on L_{1}. The restriction of q to L_{1} is a map $q_{1}: L_{1} \rightarrow 2 R$. By (15), we see that the symmetric bilinear form associated to q is ϕ. It follows that $\mathbb{O}\left(L_{1}, q\right) \subset \mathbb{S p}\left(L_{1}, \phi\right)$. The stabilizor of $\left(L_{2}, q\right)$ is μ_{2}.
2) Let n be even. Then ϕ yields a decomposition $L_{2} \subset L_{1} \subset L$ as above. The restriction of q to L_{1} is a map $q_{1}: L_{1} \rightarrow 2 R$. First, assume q nontrivial on L_{2}, then the intersection of the
unipotent radical of $\mathbb{O}(\phi)$ with $\mathbb{O}(q)$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$ (realized as a closed subgroup of \mathbb{G}_{a}). So, $\operatorname{dim} \mathbb{O}(q) \leq \operatorname{dim} \mathbb{S p}_{n-2}=(n-2)(n-1) / 2$. It follows that $\operatorname{dim}(\mathbb{O}(\phi) / \mathbb{O}(q)) \geq n-1$, because $\operatorname{dim} \mathbb{O}(\phi)=n(n-1) / 2$. Let \mathcal{Y}_{ϕ} be the preimage of ϕ under $Q^{!}\left(L^{*}\right) \rightarrow \operatorname{Sym}^{!2}\left(L^{*}\right)$. Let $\mathcal{Y}_{\phi, q}$ be the closed subscheme in \mathcal{Y}_{ϕ} given by the condition that the discriminant equals the discriminant of q. Since $\operatorname{dim} \mathcal{Y}_{\phi, q}=n-1$, we learn that each orbit of $\mathbb{O}(q)$ on $\mathcal{Y}_{\phi, q}$ is open. So, one gets an exact sequence $1 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{O}(q) \rightarrow \mathbb{S p}_{n-2} \rightarrow 1$.

Now consider the case when q vanishes on L_{2}. Then for $x \in L_{2}, y \in L_{1}$ we get from (15) that $q(x+y)-q(y)=0$. So, q yields a map $\bar{q}: L_{1} / L_{2} \rightarrow 2 R$ given by $\bar{q}\left(y \bmod L_{2}\right)=q(y)$ for any $y \in L_{1}$. It is easy to see that $\mathbb{O}(q) \cap L_{2}^{\otimes 2}=0$. Since $\operatorname{dim} \mathbb{O}(\bar{q})=(n-2)(n-3) / 2$, we get

$$
\operatorname{dim} \mathbb{O}(q) \leq \operatorname{dim} \operatorname{Hom}\left(L_{1} / L_{2}, L_{2}\right)+\operatorname{dim} \mathbb{O}(\bar{q})=n-2+(n-2)(n-3) / 2
$$

So, $\operatorname{dim} G L(L) / \mathbb{O}(q) \geq(n-1)+n(n+1) / 2$. On the other hand, $G L(L) / \mathbb{O}(q)$ is contained in the locus of $Q_{0}^{!}\left(L^{*}\right)$ with fixed discriminant, which is of dimension $\leq(n-1)+n(n+1) / 2$. Thus, $1 \rightarrow \operatorname{Hom}\left(L_{1} / L_{2}, L_{2}\right) \rightarrow \mathbb{O}(q) \rightarrow \mathbb{O}(\bar{q}) \rightarrow 1$ is exact.
ii) If n is odd we let $a \in \mathbb{A}^{1}$ act on $q \in U\left(L^{*}\right)$ sending it to $(1, a) q \in U\left(L^{*}\right)$, here $(1, a) \in R$ is written in Witt coordinates. For any $q \in U\left(L^{*}\right)$ the $\operatorname{GL}(L) \times \mathbb{A}^{1}$-orbit on $U\left(L^{*}\right)$ through q is of dimension equal to that of $U\left(L^{*}\right)$. Since $U\left(L^{*}\right)$ is an open subscheme of an affine space, it is irreducible. So, the action of $\mathrm{GL}(L) \times \mathbb{A}^{1}$ on $U\left(L^{*}\right)$ is transitive.

Now let n be even, let $\tilde{\phi}, \phi, q$ be as in i). We have the corresponding flag $L_{2} \subset L_{1} \subset L$ on L. Pick $l \in L-L_{1}$ with $q(l) \bmod 2=1$. Adding to l a suitable element of L_{2} we may assume that $q(l)=1$. Let $\tilde{l} \in \tilde{L}$ be a vector over l. Pick any $\tilde{l}_{2} \in \tilde{L}$ such that its image l_{2} in L lies in L_{2} and $\tilde{\phi}\left(\tilde{l}_{2}, \tilde{l}\right)=1$. We have in Witt coordinates $\tilde{\phi}\left(\tilde{l}_{2}, \tilde{l}_{2}\right)=(0, \epsilon)$ for some $\epsilon \in k$. The bilinear form $\tilde{\phi}$ is non degenerate over $R \tilde{l}_{2} \oplus R \tilde{l}$, so we get an orthogonal (with respect to $\tilde{\phi}$) decomposition of \tilde{L} into a direct sum of free R-submodules $\left(R \tilde{l}_{2} \oplus R \tilde{l}\right) \oplus \tilde{W}$. Let W be the image of \tilde{W} in L then $L_{1}=L_{2} \oplus W$. So, $q: W \rightarrow 2 R$.

The bilinear form ϕ on W is symplectic, this is the bilinear form associated to q on W. So, q can be seen as a non-degenerate quadratic form on W with values in k. It follows that the determinant of $\left.\tilde{\phi}\right|_{W}$ equals $(-1)^{(n-2) / 2}$. Indeed, there is a base e_{i}, e_{-i} of W in which the form q on W writes in Witt coordinates

$$
q(x)=\left(0, \sum_{i} x_{i}^{2} x_{-i}^{2}\right) \in 2 R
$$

for $x=\sum_{i}\left(x_{i} e_{i}+x_{-i} e_{-i}\right)$. Actually, we have proved that in a suitable base of L the form q writes as

$$
\begin{equation*}
q\left(y, y_{2}, x_{i}, x_{-i}\right)=(0, \epsilon) \tilde{y}_{2}^{2}+2 \tilde{y} \tilde{y}_{2}+\tilde{y}^{2}+2 \sum_{i=1}^{(n-2) / 2} \tilde{x}_{i} \tilde{x}_{-i} \tag{16}
\end{equation*}
$$

in n variables $\left\{y, y_{2}, x_{i}, x_{-i}\right\}$ with $1 \leq i \leq(n-2) / 2$. Here $\tilde{y}, \tilde{y}_{2}, \tilde{x}_{i}, \tilde{x}_{-i}$ are any liftings of the corresponding variables with respect to $R \rightarrow k$. In particular, for each u the action of GL(L) on $U\left(L^{*}\right)_{u}$ is transitive.

Since the determinant of $\tilde{\phi}$ over $R \tilde{l}_{2} \oplus R \tilde{l}$ equals $(1,1+\epsilon)$ in Witt coordinates, we get that the discriminant of such q equals

$$
\left\{\begin{array}{ccc}
\epsilon, & n=0 & \bmod 4 \\
\epsilon+1, & n=2 & \bmod 4
\end{array}\right.
$$

Our assertion follows.
Remark 5. i) For n even the normal form (16) can be seen as a section $s: \mathbb{A}^{1} \rightarrow U\left(L^{*}\right)$ of disc : $U\left(L^{*}\right) \rightarrow \mathbb{A}^{1}$.
ii) For any $q \in U\left(L^{*}\right)$ the stabilizor of q in $\operatorname{GL}(L)$ has two connected components (cf. also Section 4.4). So, for any $u \in k$ the shifted local system $\bar{S}_{\psi}^{\otimes 2}$ over $U\left(L^{*}\right)_{u}$ is constant. It follows that there exists a local system \mathcal{W}_{n} on \mathbb{A}^{1} together with an isomorphism over $Q_{0}^{!}\left(L^{*}\right)$

$$
\bar{S}_{\psi}^{\otimes 2}\left[-3 n-n^{2}\right] \xrightarrow{\rightrightarrows} \operatorname{disc}^{*} \mathcal{W}_{n}
$$

here disc : $Q_{0}^{!}\left(L^{*}\right) \rightarrow \mathbb{A}^{1}$. One checks that for any n the local system \mathcal{W}_{n} on \mathbb{A}^{1} is of order two, it becomes constant on the covering $\mathbb{A}^{1} \rightarrow \mathbb{A}^{1}, b \mapsto b^{2}+b$.

Actually, for n even we can say more. The restriction $s^{*} \bar{S}_{\psi}$ under the section $s: \mathbb{A}^{1} \rightarrow U\left(L^{*}\right)$ is of order 4 and can be calculated using the formula (16). Let $i_{R}: \mathbb{A}^{1} \rightarrow W_{2}$ be the map sending x to $(x, 0)$ in Witt coordinates. There exists an isomorphism over \mathbb{A}^{1}

$$
s^{*} \bar{S}_{\psi}\left[-\operatorname{dim} U\left(L^{*}\right)\right] \widetilde{\rightarrow} i_{R}^{*} \mathcal{L}_{\psi}
$$

This follows easily from the fact that, at the level of functions, for $\epsilon, y \in k$ the sum

$$
\sum_{y_{2} \in k} \psi\left((0, \epsilon) \tilde{y}_{2}^{2}+2 \tilde{y} \tilde{y}_{2}+\tilde{y}^{2}\right)
$$

vanishes unless $\epsilon=y^{4}$.
Definition 2. For $n=1$ and $L=k$ one has canonically $Q^{!}\left(L^{*}\right) \rightrightarrows \rightarrow$. In this case write $\mathcal{E} \in \mathrm{D}(\operatorname{Spec} k)$ for the fibre of $\bar{S}_{\phi}[-2]$ at $1 \in Q^{!}\left(L^{*}\right)$. Then \mathcal{E} is a 1 -dimensional $\overline{\mathbb{Q}}_{\ell}$-vector space placed in usual degree zero.

Proposition 2. For any n we have canonically over $Q_{0}^{!}\left(L^{*}\right)$

$$
\left.\bar{S}_{\psi}^{\otimes 4}\right|_{Q_{0}^{\prime}\left(L^{*}\right)}\left[-6 n-2 n^{2}\right] \leftrightarrows \mathcal{E}^{\otimes 4 n}
$$

Proof 1) Assume n even. Set $u=0 \in k$. By Remark [5, $\bar{S}_{\psi}^{\otimes 2}\left[-3 n-n^{2}\right]$ is a constant local system on $Q_{0}^{!}\left(L^{*}\right)_{u}$. Choosing a base in \tilde{L}, we get a k-point in $Q_{0}^{!}\left(L^{*}\right)$, the image of the symmetric bilinear form $\tilde{\phi} \in \operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right)$ with the identity matrix. The fibre of $\bar{S}_{\psi}^{\otimes 2}\left[-3 n-n^{2}\right]$ at this k-point is $\mathcal{E}^{2 n}$. This yields an isomorphism

$$
\bar{S}_{\psi}^{\otimes 2}\left[-3 n-n^{2}\right] \rightrightarrows \mathcal{E}^{2 n}
$$

over $Q_{0}^{!}\left(L^{*}\right)_{u}$.
2) Considering the map $Q_{0}^{!}\left(L^{*}\right) \rightarrow Q_{0}^{!}\left(L^{*} \oplus L^{*}\right)_{u}$ sending ϕ to $\phi \oplus \phi: \tilde{L} \oplus \tilde{L} \rightarrow \tilde{L}^{*} \oplus \tilde{L}^{*}$, we are reduced to 1).

If $n=1$ then the local system $\left.\bar{S}_{\psi}^{\otimes 2}\right|_{Q_{0}^{\prime}\left(L^{*}\right)}$ is nonconstant. Indeed, consider the closed immersion $\kappa_{R}: \mathbb{A}^{1} \rightarrow W_{2}^{*}$ sending x to $(1, x) \in R^{*}$ in Witt coordinates. Then $\mathrm{R} \Gamma_{c}\left(\mathbb{A}^{1}, \kappa_{R}^{*} \bar{S}_{\psi}^{\otimes 2}\right)$ is easy to calculate, which shows that $\kappa_{R}^{*} \bar{S}_{\psi}^{\otimes 2}$ is nonconstant. Actually, $\kappa_{R}^{*} \bar{S}_{\psi}^{\otimes 2}$ trivializes on the covering $\mathbb{A}^{1} \rightarrow \mathbb{A}^{1}, z \mapsto z^{2}+z$. This is a consequence of the following lemma.
Lemma 6. Let $\bar{i}_{R}: \mathbb{A}^{1} \rightarrow W_{2}$ be the map sending x to $(x+1,0) \in R$ in Witt coordinates. For $n=1$ one has an isomorphism

$$
\bar{i}_{R}^{*} \mathcal{L}_{\psi} \underset{\rightarrow}{\sim} \kappa_{R}^{*}\left(\bar{S}_{\psi}[-2]\right)
$$

Proof Consider the quadratic form $q(x, y)=(1, a) \tilde{x}^{2}+\tilde{y}^{2}$ with $\tilde{x}, \tilde{y} \in R$ over $x, y \in k$. Consider a new base $\left\{u, u_{2}\right\}$ of k^{2} given by $u=(0,1)$ and $u_{2}=(1,1)$. The value of q at $y u+y_{2} u_{2} \in k^{2}$ is

$$
(0, a+1)\left(y_{2}^{2}, 0\right)+\left(0, y^{2} y_{2}^{2}\right)+\left(y^{2}, 0\right)=(0, a+1) \tilde{y}_{2}^{2}+2 \tilde{y} \tilde{y}_{2}+\tilde{y}^{2}
$$

So, the assertion follows from Remark 5 ,
Definition 3. Fix once and for all an isomorphism $\mathcal{E}^{4} \leftrightarrows \overline{\mathbb{Q}}_{\ell}$. Then $\bar{S}_{\psi}[-n-n(n+1) / 2]$ is a local system on $Q_{0}^{!}\left(L^{*}\right)$ whose 4 th power is trivialized canonically by Proposition 2. In view of the homomorphism $\psi: \mathbb{Z} / 4 \mathbb{Z} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ we have fixed in Section 3.1, \bar{S}_{ψ} yields a $\mathbb{Z} / 4 \mathbb{Z}$-torsor $\operatorname{Cov}\left(Q_{0}^{!}\left(L^{*}\right)\right) \rightarrow Q_{0}^{!}\left(L^{*}\right)$. The restriction of \bar{S}_{ψ} to $\operatorname{Cov}\left(Q_{0}^{!}\left(L^{*}\right)\right)$ is equipped with a canonical trivialization.
Definition 4. Let $Q_{0}(\tilde{L}) \subset \operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right)$ be the open subscheme of $\phi: \tilde{L} \rightarrow \tilde{L}^{*}$, which are isomorphisms of R-modules. Write $\operatorname{Cov}\left(Q_{0}(\tilde{L})\right) \rightarrow Q_{0}(\tilde{L})$ for the $\mathbb{Z} / 4 \mathbb{Z}$-torsor obtained from $\operatorname{Cov}\left(Q_{0}^{!}\left(L^{*}\right)\right)$ by the base change $Q_{0}(\tilde{L}) \rightarrow Q_{0}^{!}\left(L^{*}\right)$.
4.4 Arf invariant of quadratic forms This subsection is independent of the rest of the paper.
4.4.1 Let S be a scheme and E a vector bundle on S. A quadratic form on E is a morphism of sheaves $q: E \rightarrow \mathcal{O}_{S}$ such that for local sections $s \in \mathcal{O}_{S}, e \in E$ one has $q(s e)=s^{2} q(e)$ and the $\operatorname{map} b_{q}: E \times E \rightarrow \mathcal{O}_{S},\left(e_{1}, e_{2}\right) \mapsto q\left(e_{1}+e_{2}\right)-q\left(e_{1}\right)-q\left(e_{2}\right)$ is \mathcal{O}_{S}-bilinear. Then the Clifford algebra $C(E)$ is a sheaf of \mathcal{O}_{S}-algebras on S defined as the quotient of the tensor algebra $T(E)$ of E by the two-sided sheaf of ideals generated by local sections of the form $e \otimes e-q(e)$. This is a $\mathbb{Z} / 2 \mathbb{Z}$-graded sheaf of \mathcal{O}_{S}-algebras, write $C(E)^{+}$and $C(E)^{-}$for even and odd parts respectively.

For example, if $q=0$ then $C(E)$ is \mathbb{Z}-graded and $C(E) \widetilde{\rightarrow} \oplus_{n \geq 0} \wedge^{n}(E)$ (the $\mathbb{Z} / 2 \mathbb{Z}$-gradation is given by the parity of n).

Write $Z\left[C(E)^{+}\right]$for the center of the sheaf of \mathcal{O}_{S}-algebras $C(E)^{+}$. By ([2], Theorem 3.6, p. 39), if E is of rank $2 n$ for some n and b_{q} is non-degenerate then $Z\left[C(E)^{+}\right]$is a sheaf of quadratic separable algebras over S, that is, $\operatorname{Spec}\left(Z\left[C(E)^{+}\right]\right)$is an étale two-sheeted covering of S. This is the Arf invariant of the quadratic form $q: E \rightarrow \mathcal{O}_{S}$.
4.4.2 Assume that $S=\operatorname{Spec} k$ with k algebraically closed of characteristic two. Let E be a k-vector space of dimension $2 n$. A quadratic form $q: E \rightarrow k$ is called non-degenerate if the bilinear form $b_{q}(x, y)=q(x+y)-q(x)-q(y)$ on E is non-degenerate. The group GL (E) acts transitively on the variety of non-degenerate quadratic forms on E (3), and the bilinear form b_{q} is symplectic. Let $q: E \rightarrow k$ be a non-degenerate bilinear form on E.

Lemma 7. The stabilizer $\mathbb{O}(q)$ of q in $\mathrm{GL}(E)$ has two connected components. We write $\mathrm{SO}(q)$ for the connected component of unity, although $\mathbb{O}(q) \subset \mathbb{S p}\left(b_{q}\right) \subset \operatorname{SL}(E)$. The group $\mathbb{O}(q)$ acts naturally on $C(E)$, so on $Z\left[C(E)^{+}\right]$. The action of $\mathrm{S}(q)$ on $Z\left[C(E)^{+}\right]$is trivial, and the group $\mathbb{O}(q) / \mathrm{SO}(q)$ induces a unique nontrivial k-automorphism of the k-algebra $Z\left[C(E)^{+}\right]$.

Proof This follows from (4], exercice 9 on p. 155). Namely, if $\left\{e_{i}, e_{-i}\right\}(1 \leq i \leq n)$ is a symplectic base in E then $\{1, z\}$ is a k-base of $Z\left[C(E)^{+}\right]$, where $z=\sum e_{i} e_{-i}$. If W is the Weyl group of $\mathbb{O}(q)$ for the corresponding torus, we have an exact sequence $1 \rightarrow S_{n} \rightarrow W \rightarrow(\mathbb{Z} / 2 \mathbb{Z})^{n} \rightarrow 1$. The image of $\sigma \in S_{n}$ in W sends e_{i} to $e_{\sigma i}$ and e_{-i} to $e_{-\sigma i}(1 \leq i \leq n)$. The group W contains also the elements w_{i} permuting e_{i} and e_{-i}. Let W^{+}be the subgroup of those $w \in W$ whose image a in $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ satisfies $\sum_{i=1}^{n} a_{i}=0$. Let $W^{-}=W-W^{+}$. Then

$$
\mathrm{SO}(q)=\cup_{w \in W^{+}} B w B \quad \text { and } \quad \mathbb{O}(q)-\mathrm{SO}(q)=\cup_{w \in W^{-}} B w B
$$

Since any $w \in W^{-}$acts on the base $\{1, z\}$ as $\{1, z+1\}$, we are done.
Now if S is a k-scheme, let $q: \mathcal{E} \rightarrow \mathcal{O}_{S}$ be a vector bundle of rank $2 n$ with a non-degenerate quadratic form. This is nothing but a torsor for $\mathbb{O}\left(q_{0}\right)$, where q_{0} is the split quadratic form of rank $2 n$. So it induces via extension of scalars $\mathbb{O}\left(q_{0}\right) \rightarrow \mathbb{O}\left(q_{0}\right) / S \mathbb{O}\left(q_{0}\right)$ a $\mathbb{Z} / 2 \mathbb{Z}$-torsor, which identifies canonically with $\operatorname{Spec} Z\left[C(\mathcal{E})^{+}\right]$. Another way is to say that $\operatorname{GL}(E) / \mathbb{O}\left(q_{0}\right)$ is the stack classifying non-degenerate quadratic forms of dimension $2 n$, and (\mathcal{E}, q) is a datum of a map $\tau: S \rightarrow \operatorname{GL}(E) / \mathbb{O}\left(q_{0}\right)$. Then the Arf invariant of (\mathcal{E}, q) is the restriction under τ of the $\mathbb{Z} / 2 \mathbb{Z}$-torsor $\mathrm{GL}(E) / \mathrm{SO}\left(q_{0}\right) \rightarrow \mathrm{GL}(E) / \mathbb{D}\left(q_{0}\right)$.

4.5 Description of $\operatorname{Cov}\left(Q_{0}^{!}\left(L^{*}\right)\right)$ generically

4.5.1 Use the notations of Section 4.3. Let $q \in Q^{!}\left(L^{*}\right)$, so $q: L \rightarrow R$. Say that a 1-dimensional k-subspace $E \subset L$ is multiplicative if for any nonzero $e \in E$ we have in Witt coordinates $q(e)=(a, 0)$ for some $a \in k$. This condition does not depend on a choice of e.

For a point $q \in U\left(L^{*}\right)$ let r be the image of $\operatorname{Fr}(q)$ in $Q_{a}\left(L^{*}\right)$, where $\operatorname{Fr}: U\left(L^{*}\right) \rightarrow U\left(L^{*}\right)$ is the Frobenius map. Let the hyperplane $L_{1} \subset L$ be the kernel of r. As q varies these hyperplanes form a vector bundle over $U\left(L^{*}\right)$.

If n is odd, we consider the vector bundle \mathcal{E}_{1} over $U\left(L^{*}\right)$ whose fibre at q is L_{1} for the corresponding r. It is equipped with the quadratic form $q: L_{1} \rightarrow 2 R$, which organize into a quadratic form on \mathcal{E}_{1}. As in Lemma 5, the bilinear form $(x, y) \mapsto q(x+y)-q(x)-q(y)$ on L_{1} is symplectic. The corresponding Clifford algebra over $U\left(L^{*}\right)$ is denoted $C\left(\mathcal{E}_{1}\right)$. Write $\tilde{U}\left(L^{*}\right)$ for Spec $Z\left[C\left(\mathcal{E}_{1}\right)\right]$, this is a $\mathbb{Z} / 2 \mathbb{Z}$-Galois étale covering over $U\left(L^{*}\right)$. The group GL (L) acts naturally on $\tilde{U}\left(L^{*}\right)$, the projection $\eta: \tilde{U}\left(L^{*}\right) \rightarrow U\left(L^{*}\right)$ is GL (L)-equivariant.

By Remark [5, the local system $\eta^{*} \bar{S}_{\psi}\left[-\operatorname{dim} U\left(L^{*}\right)\right]$ descends with respect to the composition $\tilde{U}\left(L^{*}\right) \xrightarrow{\eta} U\left(L^{*}\right) \xrightarrow{\text { disc }} \mathbb{A}^{1}$. More precisely, there exists an isomorphism over $\tilde{U}\left(L^{*}\right)$

$$
\eta^{*} \bar{S}_{\psi}\left[-\operatorname{dim} U\left(L^{*}\right)\right] \rightrightarrows \eta^{*} \operatorname{disc}^{*} \kappa_{R}^{*}\left(\overline{1}^{\prime} \bar{S}_{\psi}[-2]\right),
$$

where κ_{R} is the map from Lemma 6,
4.5.2 Now consider the case of n even. For $q \in U\left(L^{*}\right)$ write $r \in Q_{a}\left(L^{*}\right)$ and $\phi \in \operatorname{Sym}^{!2}\left(L^{*}\right)_{0}$ for its images in $Q_{a}\left(L^{*}\right)$ and $\operatorname{Sym}^{!2}\left(L^{*}\right)_{0}$ respectively. We also have the corresponding flag $L_{2} \subset L_{1} \subset L$, where L_{1} is the kernel of r, and $L_{2}=L_{1}^{\perp}$ with respect to ϕ.

Assume that q is nonzero on L_{2}, then there is a unique subspace $W \subset L_{1}$ such that $L_{2} \oplus W=$ L_{1} and W is preserved by the stabilizer $\mathbb{O}(q)$ of q in $\operatorname{GL}(L)$. The bilinear form $\left.\phi\right|_{W}$ is symplectic. Let $W^{\perp} \subset L$ be its orthogonal complement in L, so $L_{2} \subset W^{\perp}$ and $W^{\perp} / L_{2} \widetilde{\rightarrow} L / L_{1}$ naturally.

Then the form $\left.q\right|_{W^{\perp}}$ lies in $U\left(\left(W^{\perp}\right)^{*}\right)$, that is, it has the same properties as q itself but now for dimension two. One checks that there are exactly two 1 -dimensional multiplicative subspaces in W^{\perp} for q. The stabilizer $\mathbb{O}(q) \subset \mathrm{GL}(L)$ of q in $\mathrm{GL}(L)$ acts transitively on these two multiplicative subspaces.

Let $\left(\mathbb{A}^{1}\right)^{0} \subset \mathbb{A}^{1}$ be the open subscheme given by the condition that $a \in \mathbb{A}^{1}$ is not the critical value given by (14). Let $U\left(L^{*}\right)^{0} \subset U\left(L^{*}\right)$ be the preimage of $\left(\mathbb{A}^{1}\right)^{0}$ under disc : $U\left(L^{*}\right) \rightarrow \mathbb{A}^{1}$.

We get a 2 -sheeted étale covering

$$
\eta: \tilde{U}\left(L^{*}\right)^{0} \rightarrow U\left(L^{*}\right)^{0}
$$

which classifies a point $q \in U\left(L^{*}\right)^{0}$ together with a one-dimensional multiplicative subspace $E \subset W^{\perp}$. The section $s: \mathbb{A}^{1} \rightarrow U\left(L^{*}\right)$ from Remark 5 extends to a section $\tilde{s}:\left(\mathbb{A}^{1}\right)^{0} \rightarrow \tilde{U}\left(L^{*}\right)^{0}$, namely, in the notation of formula (16) we have a distinguished multiplicative subspace given by $y_{2}=x_{i}=x_{-i}=0$.

By Lemma [5, $\eta^{*} \bar{S}_{\psi}$ descends with respect to the composition

$$
\tilde{U}\left(L^{*}\right)^{0} \xrightarrow{\eta} U\left(L^{*}\right)^{0} \xrightarrow{\text { disc }} \mathbb{A}^{1}
$$

More precisely, there is an isomorphism over $\tilde{U}\left(L^{*}\right)^{0}$

$$
\eta^{*} \bar{S}_{\psi} \widetilde{\rightarrow} \eta^{*} \operatorname{disc}^{*} s^{*}\left(\bar{S}_{\psi}\right)
$$

Remind that the shifted local system $s^{*}\left(\bar{S}_{\psi}\right)$ is of rank one and order four, it is described in Remark 5
4.6 Description of \bar{S}_{ψ} on strata

Write $\operatorname{Sym}_{i}^{!2}\left(L^{*}\right) \subset \operatorname{Sym}^{!2}\left(L^{*}\right)$ for the locus of symmetric bilinear forms on L whose kernel is of dimension i. Let $Q_{i}^{!}\left(L^{*}\right)$ be the preimage of $\operatorname{Sym}_{i}^{!2}\left(L^{*}\right)$ under the projection $Q^{!}\left(L^{*}\right) \rightarrow \operatorname{Sym}^{!2}\left(L^{*}\right)$. Write ' $Q_{i}\left(L^{*}\right) \subset Q_{i}^{!}\left(L^{*}\right)$ for the closed subscheme classifying those $q \in Q_{i}^{!}\left(L^{*}\right)$ which vanish on the kernel of ϕ, where $\phi \in \operatorname{Sym}_{i}^{!2}\left(L^{*}\right)$ is the image of q. Then ' $Q_{i}\left(L^{*}\right)$ can be seen as a scheme classifying an i-dimensional subspace $M \subset L$ and $q \in Q_{0}^{!}\left((L / M)^{*}\right)$. The corresponding map $L \rightarrow R$ is then the composition $L \rightarrow L / M \xrightarrow{q} R$.

Proposition 3. For any i the $*$-restriction of \bar{S}_{ψ} to $Q_{i}^{\prime}\left(L^{*}\right)$ is the extension by zero from ' $Q_{i}\left(L^{*}\right)$. The corresponding sheaf

$$
\left.\bar{S}_{\psi}\right|_{Q_{i}\left(L^{*}\right)}\left[i-n-\frac{n(n+1)}{2}\right]
$$

is a local system of rank one and order four (except for the last stratum ' $Q_{n}\left(L^{*}\right)=\operatorname{Spec} k$, over which it is a trivial local system of rank one). If $M \subset L$ is a subspace and $q \in Q_{0}^{!}\left((L / M)^{*}\right)$ then the fibre of \bar{S}_{ψ} at $L \rightarrow L / M \xrightarrow{q} R$ is the shifted Gauss sum for q.

Proof Let $q \in Q_{i}^{!}\left(L^{*}\right)$ and ϕ be its image in $\operatorname{Sym}_{i}^{!2}\left(L^{*}\right)$. Let $M \subset L$ be the kernel of ϕ. Then for $x \in L, y \in M$ we have $q(x+y)=q(x)+q(y)$. At the level of functions, for any $x \in L$ the sum $\sum_{y \in M} \psi(q(x+y))$ will vanish unless $q \in{ }^{\prime} Q_{i}\left(L^{*}\right)$. The geometrization is straightforward, our assertion easily follows.

5. Maslov index in characteristic two

In Sections 5.1-5.3 we generalize the results of [23] to the case of characteristic two.
5.1 Let \mathcal{O} be a discrete valuation ring, $I \subset \mathcal{O}$ be a non zero ideal and $\overline{\mathcal{O}}=\mathcal{O} / I$. Let \bar{V} be a free $\overline{\mathcal{O}}$-module of rank $2 n$ with a symplectic form $\omega: \bar{V} \otimes \bar{V} \rightarrow \overline{\mathcal{O}}$. For a submodule $M \subset \bar{V}$ let $M^{\perp}=\{x \in \bar{V} \mid \omega(x, m)=0$ for all $m \in M\}$. One checks that $\left(M^{\perp}\right)^{\perp}=M$.

For a $\overline{\mathcal{O}}$-module M set $M^{*}=\operatorname{Hom}_{\overline{\mathcal{O}}}(M, \overline{\mathcal{O}})$ in the category of $\overline{\mathcal{O}}$-modules. The functor $M \mapsto M^{*}$ is exact on the category of finite type $\overline{\mathcal{O}}$-modules. For any $\overline{\mathcal{O}}$-module of finite type M one has $\left(M^{*}\right)^{*} \rightrightarrows M$ canonically. If K is a bounded complex of free $\overline{\mathcal{O}}$-modules of finite type then $\mathrm{H}^{0}\left(\operatorname{Hom}_{\overline{\mathcal{O}}}(K, \overline{\mathcal{O}})\right) \widetilde{\rightarrow} \operatorname{Hom}_{\overline{\mathcal{O}}}\left(\mathrm{H}^{0}(K), \overline{\mathcal{O}}\right)$ canonically.

For any submodule $M \subset \bar{V}$ we have an isomorphism of exact sequences of $\overline{\mathcal{O}}$-modules

$$
\begin{array}{ccccccc}
0 \rightarrow & M & \rightarrow & \bar{V} & \rightarrow & \bar{V} / M & \rightarrow 0 \\
& \downarrow & & \downarrow & & \downarrow & \\
0 \rightarrow & \left(\bar{V} / M^{\perp}\right)^{*} & \rightarrow & \bar{V}^{*} & \rightarrow & \left(M^{\perp}\right)^{*} & \rightarrow 0
\end{array}
$$

5.2 Keep notation of Section 3. Let \tilde{L} be a free R-module of finite type with symmetric bilinear form $\phi: \tilde{L} \rightarrow \tilde{L}^{*}$. We say that ϕ is hyperbolic if there is a base $\left\{e_{i}, e_{-i}\right\}$ of \tilde{L} in which the form is given by $\phi\left(e_{i}, e_{j}\right)=0$ unless $i=-j$, and $\phi\left(e_{i}, e_{-i}\right)=\phi\left(e_{-i}, e_{i}\right)=1$.

Lemma 8. If ϕ is an isomorphism then

1) for any free submodule $\tilde{N} \subset \tilde{L}$ its orthogonal complement $\tilde{N}^{\perp} \subset \tilde{L}$ is free.
2) If \tilde{N} is a free isotropic submodule in \tilde{L} then the induced symmetric bilinear form $\bar{\phi}$ on $\tilde{N}^{\perp} / \tilde{N}$ is non degenerate, and we have an isometry $\left(\tilde{N}^{\perp} / \tilde{N}\right) \oplus(\tilde{N} \oplus \tilde{M}) \Im \tilde{L}$ for any free submodule $\tilde{M} \subset \tilde{L}$ such that $\tilde{N}^{\perp} \oplus \tilde{M}=\tilde{L}$. Here $\tilde{N} \oplus \tilde{M}$ is equipped with the form induced by ϕ (and $\tilde{N} \oplus \tilde{M}$ is not necessarily hyperbolic).
Proof 2) We have an orthogonal decompositon $(\tilde{N} \oplus \tilde{M}) \oplus(\tilde{N} \oplus \tilde{M})^{\perp} \Im \tilde{L}$, and $(\tilde{N} \oplus \tilde{M})^{\perp} \subset \tilde{N}^{\perp}$ maps isometrically onto $\tilde{N}^{\perp} / \tilde{N}^{\perp}$.

Remark 6. If $\phi: \tilde{L} \rightarrow \tilde{L}^{*}$ is non degenerate of rank $2 r$, and $\tilde{N} \subset \tilde{L}$ is a free isotropic submodule of rank r (it is automatically a direct summand), then ($\tilde{L}, \phi)$ is not always hyperbolic. At the level of matrices the reason is that one can not in general present a given symmetric matrix $B \in \operatorname{Mat}_{r}(R)$ as $B=A+{ }^{t} A$ for another matrix $A \in \operatorname{Mat}_{r}(R)$. However, the Gauss sum of such (\tilde{L}, ϕ) is canonically trivialized.
5.3 Let \tilde{V} be a free R-module of rank $2 n$ with symplectic form $\tilde{\omega}: \tilde{V} \times \tilde{V} \rightarrow R$. Write $\mathcal{L}(\tilde{V})$ for the variety of free lagrangian R-submodules in \tilde{V}. We view it as a k-scheme via its Greenberg realization.

For any submodule $\tilde{M} \subset \tilde{V}$ we have $\left(\tilde{M}^{\perp}\right)^{\perp}=\tilde{M}$. If $\tilde{M} \subset \tilde{V}$ is a free isotropic submodule then \tilde{M}^{\perp} is free, and $\tilde{M}^{\perp} / \tilde{M}$ is equipped with a symplectic form with values in R. For a family of submodules $\tilde{M}_{i} \subset \tilde{V}$ we have $\cap_{i}\left(\tilde{M}_{i}^{\perp}\right)=\left(\sum_{i} \tilde{M}_{i}\right)^{\perp}$.

Let $m \geq 2$. As in [23], think of $\mathbb{Z} / m \mathbb{Z}$ as the vertices of a graph whose set \mathbb{E} of edges is the set of pairs of consecutive numbers $\{i, i+1\}, i \in \mathbb{Z} / m \mathbb{Z}$. For

$$
v=\left(v_{\{i, i+1\}}\right) \in \underset{\{i, i+1\} \in \mathbb{E}}{\oplus} \tilde{V}
$$

its derivative is

$$
\partial v=\left(\partial v_{i}\right) \in \underset{i \in \mathbb{Z} / m \mathbb{Z}}{\oplus} V, \quad \partial v_{i}=v_{\{i, i+1\}}-v_{\{i-1, i\}}
$$

Conversely, for $w=\left(w_{i}\right) \in \underset{i \in \mathbb{Z} / m \mathbb{Z}}{\oplus} V$ its antiderivative is

$$
\hat{w}=\left(\hat{w}_{\{i, i+1\}}\right) \in \underset{\{i, i+1\} \in \mathbb{E}}{\oplus} V \quad \text { such that } \quad \partial(\hat{w})=w
$$

An anti-derivative exists if $\sum_{i \in \mathbb{Z} / m \mathbb{Z}} w_{i}=0$ and is unique up adding a constant function.
Definition 5. For $\tilde{L}_{1}, \ldots, \tilde{L}_{m} \in \mathcal{L}(\tilde{V})$ let $K_{1,2, \ldots, m}$ be the kernel of

$$
\underset{i \in \mathbb{Z} / m \mathbb{Z}}{\oplus} \tilde{L}_{i} \xlongequal{\sum} \tilde{V}
$$

The surjectivity of the above Σ is equivalent to requiring that $\cap_{i} \tilde{L}_{i}=0$, and in this case $K_{1, \ldots, m}$ is a free R-module.

As in [23], $K_{1, \ldots, m}$ is equipped with the R-valued symmetric bilinear form

$$
q_{1,2, \ldots, m}(v, w)=\sum_{i \in \mathbb{Z} / m \mathbb{Z}} \tilde{\omega}\left(v_{i}, \hat{\omega}_{\{i, i+1\}}\right)
$$

for any anti-derivative $\hat{w} \in \oplus_{\{i, i+1\} \in \mathbb{E}} V$ of w. The derivative restricts to a map

$$
\partial: \underset{\{i, i+1\} \in \mathbb{E}}{\oplus} \tilde{L}_{i} \cap \tilde{L}_{i+1} \rightarrow K_{1, \ldots, m}
$$

whose kernel is $\cap_{i} \tilde{L}_{i}$, and its image is contained in the kernel of $q_{1,2, \ldots, m}$. Set

$$
T_{1,2, \ldots, m}=K_{1, \ldots, m} / \operatorname{Im} \partial
$$

This is an R-module, which is not necessarily free, it is equipped with the induced symmetric bilinear form $q_{1,2, \ldots, m}$. For a R-module of finite type M write $M^{*}=\operatorname{Hom}_{R}(M, R)$.

Lemma 9. The form $q_{1, \ldots, m}$ induces an isomorphism of R-modules $T_{1, \ldots, m} \rightrightarrows T_{1, \ldots, m}^{*}$.
Proof Consider the complex placed in degrees $-1,0,1$

$$
\begin{equation*}
V^{*} \xrightarrow{\text { diag }} \underset{i \in \mathbb{Z} / n \mathbb{Z}}{\oplus} \tilde{L}_{i}^{*} \xrightarrow{\partial^{*}} \underset{\{i, i+1\} \in \mathbb{E}}{\oplus}\left(\tilde{L}_{i} \cap \tilde{L}_{i+1}\right)^{*}, \tag{17}
\end{equation*}
$$

where ∂^{*} is the transpose to $\partial: \oplus_{\{i, i+1\} \in \mathbb{E}}\left(\tilde{L}_{i} \cap \tilde{L}_{i+1}\right) \rightarrow \oplus_{i \in \mathbb{Z} / m \mathbb{Z}} \tilde{L}_{i}$. The proof of ([23], Proposition 3) goes through in this situation and yields in an isomorphism between $K_{1, \ldots, m} / \operatorname{Im} \partial$ and H^{0} of (17). The cokernel of ∂^{*} is $\left(\cap_{i} \tilde{L}_{i}\right)^{*}$. To finish the proof use 5.1 for $\overline{\mathcal{O}}=R$.

Assume that $\cap_{i} \tilde{L}_{i}=0$. Then $T_{1, \ldots, m}$ is free iff for any $\{i, i+1\} \in \mathbb{E}, \tilde{L}_{i} \cap \tilde{L}_{i+1}$ is free (this is also equivalent to $\tilde{L}_{i}+\tilde{L}_{i+1}$ being free). A straightforward analog of (23), Proposition 5) yields the following.

Lemma 10. For any $\tilde{L}_{i} \in \mathcal{L}(\tilde{V})$ there are canonical isometries $T_{1, \ldots, m} \Im T_{2,3, \ldots, m, 1}$ and

$$
\left(T_{1, \ldots, m}, q_{1, \ldots, m}\right) \widetilde{\rightarrow}\left(T_{m, \ldots, 1},-q_{m, \ldots, 1}\right)
$$

One can also replace T by K in the both above isomorphisms.
If N is an R-module of finite type with a non degenerate symmetric bilinear form $\phi: N \rightrightarrows N^{*}$ and $M \subset N$ is an isotropic submodule, let $M^{\perp}=\{n \in N \mid\langle n, \phi(m)\rangle=0$ for all $m \in M\}$. Then the R-module M^{\perp} / M is equipped with a non degenerate symmetric bilinear form, and we say that M^{\perp} / M is a quadratic subquotient of N. The proof of ([23], Proposition 6) applies without changes in our situation and yields the following.

Proposition 4. Let $\tilde{L}_{1}, \ldots, \tilde{L}_{m} \in \mathcal{L}(\tilde{V})$ and $k \in\{2, \ldots, m\}$.

1) If $\tilde{L}_{1} \cap \tilde{L}_{k}=0$ then there is a canonical isometry $K_{1,2, \ldots, k} \oplus K_{1, k, \ldots, m} \rightarrow K_{1,2, \ldots, m}$ and also

$$
T_{1,2, \ldots, k} \oplus T_{1, k, \ldots, m} \widetilde{\rightarrow} T_{1,2, \ldots, m}
$$

2) Without conditions, $T_{1,2, \ldots, k} \oplus T_{1, k, \ldots, m}$ is a quadratic subquotient of $T_{1,2, \ldots, m}$.

5.4 Maslov index in families

Let \tilde{L} be a free R-module of rank n. Let U_{23} be the variety of triples $\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3} \in \mathcal{L}(\tilde{V})$ such that $\tilde{L}_{1} \cap \tilde{L}_{2}=\tilde{L}_{1} \cap \tilde{L}_{3}=0$. Define a morphism of k-stacks

$$
\begin{equation*}
\pi_{U}: U_{23} \rightarrow \operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right) / \operatorname{GL}(\tilde{L}) \tag{18}
\end{equation*}
$$

as follows (it is understood that we first take the Greenberg realizations of $\operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right)$ and of GL (\tilde{L}) and then the stack quotient of one by the other).

Given $\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}\right) \in U_{23}$ let $r: \tilde{L}_{2} \rightarrow \tilde{L}_{1}$ be the R-linear map such that

$$
\tilde{L}_{3}=\left\{r(x)-x \in \tilde{L}_{1} \oplus \tilde{L}_{2} \mid x \in \tilde{L}_{2}\right\}
$$

Let $\tilde{\phi} \in \operatorname{Sym}^{!2}\left(\tilde{L}_{2}^{*}\right)$ be given by $\tilde{\phi}(\tilde{x}, \tilde{y})=\tilde{\omega}(r(\tilde{x}), \tilde{y})$ for $\tilde{x}, \tilde{y} \in \tilde{L}_{2}$.
Lemma 11. For $\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}\right) \in U_{23}$ there is a canonical isometry $\left(\tilde{L}_{2}, \tilde{\phi}\right) \rightrightarrows K_{1,2,3}$. It identifies $\tilde{L}_{2} \cap \tilde{L}_{3}$ with the kernel of ($K_{1,2,3}, q_{1,2,3}$).

Proof The map $\tilde{L}_{2} \rightarrow K_{1,2,3}$ given by $x \mapsto(-r(x), x, r(x)-x)$ is the desired isometry.
We let π_{U} send $\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}\right)$ to $\left(\tilde{L}_{2}, \tilde{\phi}\right)$. Note that the variety $\left\{\tilde{N} \in \mathcal{L}(\tilde{V}) \mid \tilde{N} \cap \tilde{L}_{1}=0\right\}$ admits a free transitive action of the R-module $\operatorname{Sym}^{!2}\left(\tilde{L}_{1}\right)$.

Write $U_{3} \subset U_{23}$ for the open subscheme of triples $\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}\right) \in U_{23}$ such that $\tilde{L}_{i} \cap \tilde{L}_{j}=0$ for $i \neq j$. We also denote by the same symbol

$$
\begin{equation*}
\pi_{U}: U_{3} \rightarrow Q_{0}(\tilde{L}) / \operatorname{GL}(\tilde{L}) \tag{19}
\end{equation*}
$$

the restriction of π_{U}. Let $\operatorname{Cov}\left(U_{3}\right) \rightarrow U_{3}$ be the $\mathbb{Z} / 4 \mathbb{Z}$-torsor obtained from

$$
\operatorname{Cov}\left(Q_{0}(\tilde{L})\right) / \operatorname{GL}(\tilde{L}) \rightarrow Q_{0}(\tilde{L}) / \operatorname{GL}(\tilde{L})
$$

by the base change π_{U}.
Given a k-scheme S and a S-point $\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}\right) \in U_{3}$, write $\mathcal{C}\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}\right)$ for the $\mathbb{Z} / 4 \mathbb{Z}$-torsor over S obtained by restricting $\operatorname{Cov}\left(U_{3}\right)$ under $S \rightarrow U_{3}$. This notation agrees with (11) and [14].

Proposition 5. There is a canonical isomorphism

$$
\mathcal{C}\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}\right) \otimes \mathcal{C}\left(\tilde{L}_{0}, \tilde{L}_{1}, \tilde{L}_{3}\right)=\mathcal{C}\left(\tilde{L}_{0}, \tilde{L}_{2}, \tilde{L}_{3}\right) \otimes \mathcal{C}\left(\tilde{L}_{0}, \tilde{L}_{1}, \tilde{L}_{2}\right)
$$

of $\mathbb{Z} / 4 \mathbb{Z}$-torsors on the variety U_{4} classifying $\tilde{L}_{0}, \ldots, \tilde{L}_{3} \in \mathcal{L}(\tilde{V})$, which are paiwise transverse.
Proof The Gauss sum takes a direct sum to the tensor product of $\mathbb{Z} / 4 \mathbb{Z}$-torsors. So, it suffices to show that, given $\tilde{L}_{0}, \ldots, \tilde{L}_{3} \in U_{4}$, there is a canonical isometry of R-modules with the corresponding symmetric bilinear forms

$$
T_{1,2,3} \oplus T_{0,1,3} \widetilde{\rightarrow} T_{0,1,2} \oplus T_{0,2,3}
$$

And these isometries naturally organize into a family over U_{4}. Indeed, by Lemma 10 and Proposition 4, one has canonical isometries

$$
T_{1,2,3} \oplus T_{1,3,0} \widetilde{\rightarrow} T_{1,2,3,0} \widetilde{\rightarrow} T_{0,1,2,3} \widetilde{\rightarrow} T_{0,1,2} \oplus T_{0,2,3}
$$

To finish, use the dihedral isometry $T_{1,3,0} \widetilde{\rightarrow} T_{0,1,3}$ of Lemma 10 ,

Remark 7. Let $\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}\right) \in U_{23}$ and $L_{i}=\epsilon\left(\tilde{L}_{i}\right)$ be the corresponding enhanced lagrangians. Then the image of $\pi_{U}\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}\right)$ in $Q^{!}\left(L_{2}^{*}\right)$ is the form $Q_{L_{1}, L_{2}, L_{3}}: L_{2} \rightarrow R$ defined by (91).

5.5 New isometries for the Maslov index

The following result will be used in Section 6.3.2.
Lemma 12. Let $\tilde{L}_{1}, \ldots, \tilde{L}_{m} \in \mathcal{L}(\tilde{V})$. There is a canonical isometric inclusion $K_{1, \ldots, m-1} \hookrightarrow$ $K_{1, \ldots, m}$.

Proof Write $v \in K_{1, \ldots, m}$ as $v=\left(v_{1}, \ldots, v_{m}\right)$ with $\sum_{i} v_{i}=0, v_{i} \in \tilde{L}_{i}$. Then the desired isometry is given by the map $\left(v_{1}, \ldots, v_{m-1}\right) \mapsto\left(v_{1}, \ldots, v_{m-1}, 0\right)$.

Proposition 6. Let $\left(\tilde{N}, \tilde{N}^{\prime}, \tilde{N}^{\prime \prime}\right)$ and (\tilde{L}, \tilde{M}) be two collections of lagrangians in $\mathcal{L}(\tilde{V})$. Assume that each lagrangian from the first collection is transverse to each lagrangian from the second one. Then

$$
\begin{equation*}
K_{\tilde{N}^{\prime \prime}, \tilde{M}, \tilde{N}^{\prime}, \tilde{L}} \oplus K_{\tilde{N}^{\prime}, \tilde{M}, \tilde{N}, \tilde{L}} \tag{20}
\end{equation*}
$$

admits a free isotropic R-submodule D such that one has a canonical isometry $D^{\perp} / D \rightrightarrows K_{\tilde{N}}{ }^{\prime \prime}, \tilde{M}, \tilde{N}, \tilde{L}$.
Proof By Lemmas 10 and 12, (20) is canonically isometric to $K_{\tilde{M}, \tilde{N^{\prime}}, \tilde{L}, \tilde{N}^{\prime \prime}} \oplus K_{\tilde{L}, \tilde{N}^{\prime}, \tilde{M}, \tilde{N}}$ and admits canonically the isometric subspace $K_{\tilde{M}, \tilde{N}^{\prime}, \tilde{L}} \oplus K_{\tilde{L}, \tilde{N}^{\prime}, \tilde{M}}$. By Lemma 10 , one has an isometry

$$
\sigma:\left(K_{\tilde{M}, \tilde{N}^{\prime}, \tilde{L}}, q_{\tilde{M}, \tilde{N}^{\prime}, \tilde{L}}\right) \widetilde{\rightarrow}\left(K_{\tilde{L}, \tilde{N}^{\prime}, \tilde{M}},-q_{\tilde{L}, \tilde{N}^{\prime}, \tilde{M}}\right)
$$

Then $D=\left\{x+\sigma(x) \in K_{\tilde{M}, \tilde{N}^{\prime}, \tilde{L}} \oplus K_{\tilde{L}, \tilde{N}^{\prime}, \tilde{M}} \mid x \in K_{\tilde{M}, \tilde{N}^{\prime}, \tilde{L}}\right\}$ is the desired free isotropic R-module of rank n. Indeed, one checks that $D^{\perp} \subset K_{\tilde{M}, \tilde{N}^{\prime}, \tilde{L}, \tilde{N}^{\prime \prime}} \oplus K_{\tilde{L}, \tilde{N}^{\prime}, \tilde{M}, \tilde{N}}$ is the submodule

$$
\begin{equation*}
\left\{\left(m_{1}, n_{1}^{\prime}, l_{1}, n_{1}^{\prime \prime}\right) \in K_{\tilde{M}, \tilde{N}^{\prime}, \tilde{L}, \tilde{N}^{\prime \prime}},\left(l_{2}, n_{2}^{\prime}, m_{2}, n_{2}\right) \in K_{\tilde{L}, \tilde{N}^{\prime}, \tilde{M}, \tilde{N}} \mid n_{1}^{\prime}=n_{2}^{\prime}\right\} \tag{21}
\end{equation*}
$$

and $D=\left\{\left(m_{1}, n_{1}^{\prime}, l_{1}, 0\right),\left(l_{1}, n_{1}^{\prime}, m_{1}, 0\right) \quad \mid\left(m_{1}, n_{1}^{\prime}, l_{1}\right) \in K_{\tilde{M}, \tilde{N}^{\prime}, \tilde{L}}\right\} \subset D^{\perp}$. The map sending a collection (21) to

$$
\left(n_{1}^{\prime \prime}, m_{1}-m_{2},-n_{2}, l_{1}-l_{2}\right) \in K_{\tilde{N}^{\prime \prime}, \tilde{M}, \tilde{N}, \tilde{L}}
$$

yields the desired isometry.

6. Construction of the gerb $\hat{\mathcal{L}}(\tilde{V})$ over $\mathcal{L}(\tilde{V})$

6.1 Use notation of Section 5. Our aim now is to construct a $\mathbb{Z} / 4 \mathbb{Z}$-gerb $\hat{\mathcal{L}}(\tilde{V}) \rightarrow \mathcal{L}(\tilde{V})$ (cf. Appendix A for a definition of a $\mathbb{Z} / 4 \mathbb{Z}$-gerb).

For $\tilde{L} \in \mathcal{L}(\tilde{V})$ write $\mathcal{U}(\tilde{L})=\{\tilde{M} \in \mathcal{L}(\tilde{V}) \mid \tilde{L} \cap \tilde{M}=0\}$. Note that $\mathcal{U}(\tilde{L})$ depends only on the image of \tilde{L} under $\mathcal{L}(\tilde{V}) \rightarrow \mathcal{L}(V)$. We want to construct $\hat{\mathcal{L}}(\tilde{V})$ by gluing the trivial gerbs $\mathcal{U}(\tilde{L}) \times B(\mathbb{Z} / 4 \mathbb{Z})$ over the open subschemes $\mathcal{U}(\tilde{L})$.

Definition 6. For $m \geq 1$ say that a finite family of lagrangians $\tilde{L}_{i} \in \mathcal{L}(\tilde{V}), i \in I$ is m-sweeping if they are pairwise transverse and

$$
\cup_{i \in I} \mathcal{U}\left(\tilde{L}_{i}\right)^{m}=\mathcal{L}(\tilde{V})^{m}
$$

here Y^{m} denotes the m-th cartesian power of a scheme Y over k. Since $\mathcal{L}(\tilde{V})^{m}$ is quasi-compact, for any m a m-sweeping family exists.

Pick a 1 -sweeping family $\tilde{L}_{i} \in \mathcal{L}(\tilde{V}), i \in I$. The $\mathbb{Z} / 4 \mathbb{Z}$-torsors $\mathcal{C}\left(\tilde{L}_{i}, \tilde{L}_{j}, \tilde{L}_{k}\right)$ (with $i, j, k \in I$) over Spec k satisfy the cocycle condition given by Proposition 5. So, we may and pick $\mathbb{Z} / 4 \mathbb{Z}$ torsors $\mathcal{B}_{i j}$ over Spec k together with isomorphisms $\mathcal{B}_{j i} \widetilde{\rightarrow} \mathcal{B}_{i j}^{-1}$ and

$$
\begin{equation*}
\mathcal{C}\left(\tilde{L}_{i}, \tilde{L}_{j}, \tilde{L}_{k}\right)^{-1} 工 \mathcal{B}_{i j} \otimes \mathcal{B}_{j k} \otimes \mathcal{B}_{k i} \tag{22}
\end{equation*}
$$

for all i, j, k. We call an enriched sweeping family a collection $\left\{\tilde{L}_{i}\right\}_{i \in I}$ together with $\mathcal{B}_{i j}$ and isomorphisms (22).

Set $\mathcal{U}_{i}=\mathcal{U}\left(\tilde{L}_{i}\right)$ and

$$
\mathcal{U}_{i j}=\mathcal{U}_{i} \cap \mathcal{U}_{j}, \quad \mathcal{U}_{i j k}=\mathcal{U}_{i} \cap \mathcal{U}_{j} \cap \mathcal{U}_{k}
$$

Let $\operatorname{Cov}\left(\mathcal{U}_{i j}\right)$ be the $\mathbb{Z} / 4 \mathbb{Z}$-torsor over $\mathcal{U}_{i j}$ obtained from $\operatorname{Cov}\left(U_{3}\right)$ by the base change $\mathcal{U}_{i j} \rightarrow U_{3}$, $\tilde{L} \mapsto\left(\tilde{L}, \tilde{L}_{i}, \tilde{L}_{j}\right)$. The gluing data consists of

- the $\mathbb{Z} / 4 \mathbb{Z}$-torsor $\operatorname{Cov}\left(\mathcal{U}_{i j}\right) \otimes \mathcal{B}_{i j}$ over $\mathcal{U}_{i j}$ giving rise to the automorphism

$$
\sigma_{j i}: \mathcal{U}_{i j} \times B(\mathbb{Z} / 4 \mathbb{Z}) \widetilde{\rightarrow} \mathcal{U}_{i j} \times B(\mathbb{Z} / 4 \mathbb{Z})
$$

sending (\tilde{L}, \mathcal{F}) to $\left(\tilde{L}, \mathcal{F} \otimes \operatorname{Cov}\left(\mathcal{U}_{i j}\right) \otimes \mathcal{B}_{i j}\right)$. To be presice, for a scheme Z it sends a Z-point (f, \mathcal{F}) on the left to the Z-point $\left(f, \mathcal{F} \otimes f^{*} \operatorname{Cov}\left(\mathcal{U}_{i j}\right) \otimes \mathcal{B}_{i j}\right)$ on the right. Here $f: Z \rightarrow \mathcal{U}_{i j}$ is a morphism, and \mathcal{F} is a $\mathbb{Z} / 4 \mathbb{Z}$-torsor on Z.

- a 2-morphism $\delta_{k j i}: \sigma_{k j} \circ \sigma_{j i} \widetilde{\rightarrow} \sigma_{k i}$ making the following diagram 2-commutative

$$
\begin{aligned}
\mathcal{U}_{i j k} \times B(\mathbb{Z} / 4 \mathbb{Z}) & \stackrel{\sigma_{j i}}{\rightarrow} \quad \mathcal{U}_{i j k} \times B(\mathbb{Z} / 4 \mathbb{Z}) \\
& \searrow \sigma_{k i} \\
& \downarrow \sigma_{k j} \\
& \mathcal{U}_{i j k} \times B(\mathbb{Z} / 4 \mathbb{Z})
\end{aligned}
$$

It is given by the $\mathbb{Z} / 4 \mathbb{Z}$-torsor $\mathcal{C}\left(\tilde{L}_{i}, \tilde{L}_{j}, \tilde{L}_{k}\right)$ over $\operatorname{Spec} k$ together with the isomorphism of $\mathbb{Z} / 4 \mathbb{Z}$-torsors over $\mathcal{U}_{i j k}$

$$
\begin{equation*}
\mathcal{C}\left(\tilde{L}, \tilde{L}_{i}, \tilde{L}_{j}\right) \otimes \mathcal{C}\left(\tilde{L}, \tilde{L}_{j}, \tilde{L}_{k}\right) \Im \mathcal{C}\left(\tilde{L}, \tilde{L}_{i}, \tilde{L}_{k}\right) \otimes \mathcal{C}\left(\tilde{L}_{i}, \tilde{L}_{j}, \tilde{L}_{k}\right) \tag{23}
\end{equation*}
$$

(when \tilde{L} runs through $\mathcal{U}_{i j k}$ the above isomorphisms of $\mathbb{Z} / 4 \mathbb{Z}$-torsors over Spec k organize into an isomorphism of $\mathbb{Z} / 4 \mathbb{Z}$-torsors over $\mathcal{U}_{i j k}$). So, $\delta_{k j i}$ can be seen as a trivialization of the $\mathbb{Z} / 4 \mathbb{Z}$-torsor over $\mathcal{U}_{i j k}$, whose fibre at \tilde{L} is

$$
\frac{\mathcal{C}\left(\tilde{L}, \tilde{L}_{i}, \tilde{L}_{j}\right) \otimes \mathcal{B}_{i j} \otimes \mathcal{C}\left(\tilde{L}, \tilde{L}_{j}, \tilde{L}_{k}\right) \otimes \mathcal{B}_{j k}}{\mathcal{C}\left(\tilde{L}, \tilde{L}_{i}, \tilde{L}_{k}\right) \otimes \mathcal{B}_{i k}}
$$

It is understood that (23) is the isomorphism given by Proposition 5. Finally, the 2morphisms δ satisfy the following compatibility property: over any $\mathcal{U}_{i j k s}$ the diagram of 2morphisms commutes

$$
\begin{aligned}
\sigma_{s k} \circ \sigma_{k j} \circ \sigma_{j i} & \stackrel{\delta_{k j i}}{\rightarrow} & \sigma_{s k} \circ \sigma_{k i} \\
\downarrow \delta_{s k j} & & \downarrow \delta_{s k i} \\
\sigma_{s j} \circ \sigma_{j i} & \xrightarrow{\delta_{s j i}} & \sigma_{s i}
\end{aligned}
$$

Though this is not reflected in our notation, the gerb $\hat{\mathcal{L}}(\tilde{V})$ depends on the family $\left\{\tilde{L}_{i}\right\}, i \in I$. Remark 8. Call an elementary transformation of an enriched 1-sweeping family the procedure of adding or throwing away one lagrangian $\tilde{L} \in \mathcal{L}(\tilde{V})$ such that the obtained family is still 1sweeping (together with a compatible change of the family $\mathcal{B}_{i j}$). Clearly, the gerb associated to the enriched 1 -sweeping family obtained from the original one by an elementary transformation is isomorphic to the initial gerb $\hat{\mathcal{L}}(\tilde{V})$ over $\mathcal{L}(\tilde{V})$. One can pass from one 1 -sweeping family to another by a finite number of elementary transformations. So, the isomorphism class of the gerb $\hat{\mathcal{L}}(\tilde{V})$ does not depend on a choice of $\left\{\tilde{L}_{i}\right\}, i \in I$ and of $\mathcal{B}_{i j}$.

This also shows that the corresponding element of $\mathrm{H}^{2}(\mathcal{L}(\tilde{V}), \mathbb{Z} / 4 \mathbb{Z})$ is invariant under the action of (the Greenberg realization of) $\mathbb{S p}(\tilde{V})$.

Remark 9. i) Remind the variety $E \operatorname{Lag}(V)$ from Section 2.4.1. A similar $\mathbb{Z} / 4 \mathbb{Z}$-gerb can be defined over $\operatorname{ELag}(V)$. It is not used in this paper.
ii) Consider the W_{2}^{*}-torsor over $\mathcal{L}(\tilde{V})$ whose fibre over \tilde{L} is the set of generators of det \tilde{L}. Since $W_{2}^{*} \rightrightarrows \mathbb{G}_{m} \times \mathbb{A}^{1}$ canonically, it can be seen as a pair: a \mathbb{G}_{m}-torsor and a \mathbb{A}^{1}-torsor over $\mathcal{L}(\tilde{V})$. Denote the corresponding \mathbb{A}^{1}-torsor by $\mathcal{L}(\tilde{V})_{e x} \rightarrow \mathcal{L}(\tilde{V})$. Let $\hat{\mathcal{L}}(\tilde{V})_{e x}$ be the $\mathbb{Z} / 2 \mathbb{Z}$-gerb over $\mathcal{L}(\tilde{V})$ obtained from $\mathcal{L}(\tilde{V})_{e x}$ via the exact sequence

$$
0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{A}^{1} \xrightarrow{x \mapsto x^{2}+x} \mathbb{A}^{1} \rightarrow 0
$$

One may show that $\hat{\mathcal{L}}(\tilde{V})_{e x}$ identifies with the extension of $\hat{\mathcal{L}}(\tilde{V})$ under the surjective homomorphism of structure groups $\mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$. In particular, $\hat{\mathcal{L}}(\tilde{V})_{\text {ex }}$ admits a $\operatorname{Sp}(\tilde{V})$-equivariant structure. This will not be used in the present paper.
6.2 Set $Y=\mathcal{L}(\tilde{V}) \times \mathcal{L}(\tilde{V})$, the product being taken over k. Let \hat{Y} be the $\mathbb{Z} / 4 \mathbb{Z}$-gerb over Y obtained from $\hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V})$ via the extension of the structure group

$$
\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 4 \mathbb{Z},(a, b) \mapsto b-a
$$

Let $Y_{0} \subset Y$ be the open subscheme classifying $\left(\tilde{L}_{1}, \tilde{L}_{2}\right) \in Y$ such that $\tilde{L}_{1} \cap \tilde{L}_{2}=0$.
Lemma 13. There exists a canonical section \mathfrak{s} of the gerb $\hat{Y} \rightarrow Y$ over Y_{0}.
Proof Assume that the collection $\left(\left\{\tilde{L}_{i}\right\}_{i \in I}, \mathcal{B}_{i j}\right)$ giving rise to $\hat{\mathcal{L}}(\tilde{V})$ is such that $\left\{\tilde{L}_{i}\right\}_{i \in I}$ is 2-sweeping.

Define \mathfrak{s} by gluing. Over the open subscheme $Y_{0}\left(\tilde{L}_{i}\right)=\left\{(\tilde{L}, \tilde{M}) \in Y_{0} \mid \tilde{L}, \tilde{M} \in \mathcal{U}\left(\tilde{L}_{i}\right)\right\}$ we consider the $\mathbb{Z} / 4 \mathbb{Z}$-torsor, whose fibre at (\tilde{L}, \tilde{M}) is $\mathcal{C}\left(\tilde{M}, \tilde{L}, \tilde{L}_{i}\right)$. For any i, j over $Y_{0}\left(\tilde{L}_{i}\right) \cap Y_{0}\left(\tilde{L}_{j}\right)$ we glue the corresponding sections of our gerb via the isomorphism (given by Proposition (5)

$$
\mathcal{C}\left(\tilde{M}, \tilde{L}, \tilde{L}_{i}\right) \otimes \frac{\mathcal{C}\left(\tilde{M}, \tilde{L}_{i}, \tilde{L}_{j}\right)}{\mathcal{C}\left(\tilde{L}, \tilde{L}_{i}, \tilde{L}_{j}\right)} \Im \mathcal{C}\left(\tilde{M}, \tilde{L}, \tilde{L}_{j}\right)
$$

The fraction in the above formula is, according to 6.1, exactly the gluing data for the gerb \hat{Y}_{d}. It is understood that we have chosen the same $\mathcal{B}_{i j}$ in the numerator and the denominator, so they have disappeared.
Definition 7. Define a perverse sheaf $S_{\tilde{V}, \psi}$ on \hat{Y} as follows. The section \mathfrak{s} yields an isomorphism $\left.\hat{Y}\right|_{Y_{0}} \rightrightarrows Y_{0} \times B(\mathbb{Z} / 4 \mathbb{Z})$. Let W_{ψ} be the rank one local system on $B(\mathbb{Z} / 4 \mathbb{Z})$ corresponding to the representation $\psi: \mathbb{Z} / 4 \mathbb{Z} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$. If $p: \operatorname{Spec} k \rightarrow B(\mathbb{Z} / 4 \mathbb{Z})$ is the quotient map then W_{ψ} is the direct summand in $p!\overline{\mathbb{Q}}_{\ell}$ on which $\mathbb{Z} / 4 \mathbb{Z}$ acts via ψ. Let $S_{\tilde{V}, \psi}$ be the intermediate extension of $\overline{\mathbb{Q}} \mathbb{Q} \boxtimes W_{\psi}$ from $\left.\hat{Y}\right|_{Y_{0}}$ to \hat{Y}. We refer to $S_{\tilde{V}, \psi}$ as the finite-dimensional theta-sheaf.
6.3.1 Remind the variety U_{23} defined in Section 5.4, it classifies triples $(\tilde{N}, \tilde{L}, \tilde{M})$ in $\mathcal{L}(\tilde{V})$ such that $\tilde{N} \cap \tilde{L}=\tilde{N} \cap \tilde{M}=0$. Our purpose now is to define a morphism of stacks $\hat{\nu}_{23}: U_{23} \rightarrow \hat{Y}$ extending the projection $\nu_{23}:(\tilde{N}, \tilde{L}, \tilde{M}) \rightarrow(\tilde{L}, \tilde{M})$.

Assume that the collection $\left(\left\{\tilde{L}_{i}\right\}_{i \in I}, \mathcal{B}_{i j}\right)$ is such that $\left\{\tilde{L}_{i}\right\}_{i \in I}$ is 3 -sweeping. Define the section $\hat{\nu}_{23}$ of the gerb \hat{Y} over U_{23} by gluing sections on the open subschemes

$$
U_{23}\left(\tilde{L}_{i}\right):=\left\{(\tilde{N}, \tilde{L}, \tilde{M}) \in \tilde{U}_{23} \mid \tilde{N}, \tilde{L}, \tilde{M} \in \mathcal{U}\left(\tilde{L}_{i}\right)\right\}
$$

Namely, over the open subscheme $U_{23}\left(\tilde{L}_{i}\right)$ we consider the $\mathbb{Z} / 4 \mathbb{Z}$-torsor whose fibre at ($\tilde{N}, \tilde{L}, \tilde{M}$) is

$$
\frac{\mathcal{C}\left(\tilde{M}, \tilde{N}, \tilde{L}_{i}\right)}{\mathcal{C}\left(\tilde{L}, \tilde{N}, \tilde{L}_{i}\right)}
$$

Over the intersection $U_{23}\left(\tilde{L}_{i}\right) \cap U_{23}\left(\tilde{L}_{j}\right)$ we glue the above sections via the isomorphism

$$
\begin{equation*}
\frac{\mathcal{C}\left(\tilde{M}, \tilde{N}, \tilde{L}_{i}\right)}{\mathcal{C}\left(\tilde{L}, \tilde{N}, \tilde{L}_{i}\right)} \otimes \frac{\mathcal{C}\left(\tilde{M}, \tilde{L}_{i}, \tilde{L}_{j}\right)}{\mathcal{C}\left(\tilde{L}, \tilde{L}_{i}, \tilde{L}_{j}\right)} \Im \frac{\mathcal{C}\left(\tilde{M}, \tilde{N}, \tilde{L}_{j}\right)}{\mathcal{C}\left(\tilde{L}, \tilde{N}, \tilde{L}_{j}\right)} \tag{24}
\end{equation*}
$$

obtained from the two isomorphisms (of Proposition (5)

$$
\mathcal{C}\left(\cdot, \tilde{N}, \tilde{L}_{i}\right) \otimes \mathcal{C}\left(\cdot, \tilde{L}_{i}, \tilde{L}_{j}\right) \rightrightarrows \mathcal{C}\left(\tilde{N}, \tilde{L}_{i}, \tilde{L}_{j}\right) \otimes \mathcal{C}\left(\cdot, \tilde{N}, \tilde{L}_{j}\right),
$$

where \cdot is \tilde{M} or \tilde{L}. This completes the definition of $\hat{\nu}_{23}: U_{23} \rightarrow \hat{Y}$.
Proposition 7. The $\mathbb{Z} / 4 \mathbb{Z}$-coverings of U_{3} defined by the following two cartesian squares

are canonically isomorphic.

Proof Over Y_{0} we trivialize the $\mathbb{Z} / 4 \mathbb{Z}$-gerb $\hat{Y} \rightarrow Y$ via the section \mathfrak{s}. Then the map $\hat{\nu}_{23}: U_{3} \rightarrow$ $Y_{0} \times B(\mathbb{Z} / 4 \mathbb{Z})$ is given by some $\mathbb{Z} / 4 \mathbb{Z}$-torsor, say \mathcal{F}, over U_{3}. Note that $Y_{0} \times_{\hat{Y}} U_{3} \rightarrow U_{3}$ is the total space of \mathcal{F}.

We identify \mathcal{F} with the $\mathbb{Z} / 4 \mathbb{Z}$-torsor $\operatorname{Cov}\left(U_{3}\right) \rightarrow U_{3}$ by gluing. First, \mathcal{F} itself is constructed by gluing. Over the open subscheme

$$
U_{3}\left(\tilde{L}_{i}\right):=\left\{(\tilde{N}, \tilde{M}, \tilde{L}) \in U_{3} \mid \tilde{N}, \tilde{M}, \tilde{L} \in \mathcal{U}\left(\tilde{L}_{i}\right)\right\}
$$

\mathcal{F} is given by the $\mathbb{Z} / 4 \mathbb{Z}$-torsor whose fibre at $(\tilde{N}, \tilde{L}, \tilde{M})$ is

$$
\frac{\mathcal{C}\left(\tilde{M}, \tilde{N}, \tilde{L}_{i}\right)}{\mathcal{C}\left(\tilde{L}, \tilde{N}, \tilde{L}_{i}\right) \otimes \mathcal{C}\left(\tilde{M}, \tilde{L}, \tilde{L}_{i}\right)}
$$

The fibre of $\operatorname{Cov}\left(U_{3}\right) \rightarrow U_{3}$ over $(\tilde{N}, \tilde{L}, \tilde{M})$ is $\mathcal{C}(\tilde{N}, \tilde{L}, \tilde{M})$. The desired isomorphism of $\mathbb{Z} / 4 \mathbb{Z}$ torsors over $U_{3}\left(\tilde{L}_{i}\right)$ is the isomorphism

$$
\frac{\mathcal{C}\left(\tilde{M}, \tilde{N}, \tilde{L}_{i}\right)}{\mathcal{C}\left(\tilde{L}, \tilde{N}, \tilde{L}_{i}\right) \otimes \mathcal{C}\left(\tilde{M}, \tilde{L}, \tilde{L}_{i}\right)} \rightrightarrows \mathcal{C}(\tilde{N}, \tilde{L}, \tilde{M})
$$

given by Proposition 5. These isomorphisms are compatible with the gluing data, so they yield the desired isomorphism over $U_{3}=\cup_{i \in I} U_{3}\left(\tilde{L}_{i}\right)$.

For any $\tilde{L} \in \mathcal{L}(\tilde{V})$ there is an isomorphism $Y_{0} \rightrightarrows \operatorname{Sp}(\tilde{V}) / \operatorname{GL}(\tilde{L})$, so Y_{0} is affine. Note that U_{23} can be seen as a variety of triples $(\tilde{N}, \tilde{L}, \tilde{\phi})$, where $(\tilde{N}, \tilde{L}) \in Y_{0}$ and $\tilde{\phi} \in \operatorname{Sym}^{!2}\left(\tilde{L}^{*}\right)$. Therefore, the map (18) is smooth, and U_{23} is affine. Proposition 7 immediately yields the following.
Corollary 1. There is a canonical isomorphism

$$
\pi_{U}^{*} \mathbb{S}_{\psi}\left[\operatorname{dim} \cdot \operatorname{rel}\left(\pi_{U}\right)\right] \leftrightarrows \hat{\nu}_{23}^{*} S_{\tilde{V}, \psi}\left[\operatorname{dim} \cdot \operatorname{rel}\left(\nu_{23}\right)\right]
$$

of perverse sheaves on U_{23}.

6.3.2 An alternative description of \hat{Y}

For the map $\nu_{23}: U_{23} \rightarrow Y$ consider the scheme $U_{Y}:=U_{23} \times_{Y} U_{23}$, it classifies collections

$$
(\tilde{N}, \tilde{L}, \tilde{M}) \in U_{23},\left(\tilde{N}^{\prime}, \tilde{L}, \tilde{M}\right) \in U_{23}
$$

For such a point of U_{Y} consider the ordered collection of lagrangians $\left(\tilde{N}^{\prime}, \tilde{M}, \tilde{N}, \tilde{L}\right)$. Let $K_{\tilde{N}^{\prime}, \tilde{M}, \tilde{N}, \tilde{L}}$ be the corresponding free R-module with the symmetric bilinear form given by Definition 5, It is crucial that in the collection $\tilde{N}^{\prime}, \tilde{M}, \tilde{N}, \tilde{L}$ indexed by $\mathbb{Z} / 4 \mathbb{Z}$ each lagrangian is transversal to the next one, so the bilinear form on $K_{\tilde{N}^{\prime}, \tilde{M}, \tilde{N}, \tilde{L}}$ is non degenerate. Let \tilde{K} be a free R-module of rank $2 n$. This gives a morphism

$$
\pi_{U Y}: U_{Y} \rightarrow Q_{0}(\tilde{K}) / \operatorname{GL}(\tilde{K})
$$

sending $\left(\tilde{N}^{\prime}, \tilde{M}, \tilde{N}, \tilde{L}\right)$ to $K_{\tilde{N}^{\prime}, \tilde{M}, \tilde{N}, \tilde{L}}$ with the corresponding bilinear form.
Let $\operatorname{Cov}\left(U_{Y}\right)$ be the $\mathbb{Z} / 4 \mathbb{Z}$-torsor over U_{Y} obtained from $\operatorname{Cov}\left(Q_{0}(\tilde{K})\right) / \mathrm{GL}(\tilde{K})$ by the base change $\pi_{U Y}$. For a scheme S and an S-point $\left(\tilde{N}^{\prime}, \tilde{M}, \tilde{N}, \tilde{L}\right)$ of U_{Y} write $\mathcal{C}\left(\tilde{N}^{\prime}, \tilde{M}, \tilde{N}, \tilde{L}\right)$ for the $\mathbb{Z} / 4 \mathbb{Z}$-torsor over S obtained from $\operatorname{Cov}\left(U_{Y}\right)$ by the base change $S \rightarrow U_{Y}$.

Lemma 14. Let S be a scheme and

$$
(\tilde{N}, \tilde{L}, \tilde{M}) \in U_{23},\left(\tilde{N}^{\prime}, \tilde{L}, \tilde{M}\right) \in U_{23},\left(\tilde{N}^{\prime \prime}, \tilde{L}, \tilde{M}\right) \in U_{23}
$$

be an S-point of $U_{23} \times_{Y} U_{23} \times_{Y} U_{23}$. One has a canonical isomorphism of $\mathbb{Z} / 4 \mathbb{Z}$-torsors on S

$$
\begin{equation*}
\mathcal{C}\left(\tilde{N}^{\prime \prime}, \tilde{M}, \tilde{N}^{\prime}, \tilde{L}\right) \otimes \mathcal{C}\left(\tilde{N}^{\prime}, \tilde{M}, \tilde{N}, \tilde{L}\right) \rightrightarrows \mathcal{C}\left(\tilde{N}^{\prime \prime}, \tilde{M}, \tilde{N}, \tilde{L}\right) \tag{25}
\end{equation*}
$$

In particular, for $(\tilde{N}, \tilde{L}, \tilde{M}) \in U_{23}$ it yields a trivialization of the $\mathbb{Z} / 4 \mathbb{Z}$-torsor $\mathcal{C}(\tilde{N}, \tilde{M}, \tilde{N}, \tilde{L})$.
Proof Combine Proposition 6 and Remark 6 .
Let \hat{Y}_{d} be the $\mathbb{Z} / 4 \mathbb{Z}$-gerb over Y obtained as the descent of the trivial gerb $U_{23} \times B(\mathbb{Z} / 4 \mathbb{Z})$ with respect to the morphism $\nu_{23}: U_{23} \rightarrow Y$ for the descent data given by

- the isomorphism

$$
\sigma_{U Y}: U_{Y} \times B(\mathbb{Z} / 4 \mathbb{Z}) \rightarrow U_{Y} \times B(\mathbb{Z} / 4 \mathbb{Z})
$$

over U_{Y} sending a given $\mathbb{Z} / 4 \mathbb{Z}$-torsor \mathcal{F} to $\mathcal{F} \otimes \operatorname{Cov}\left(U_{Y}\right)$;

- the isomorphism (25) of $\mathbb{Z} / 4 \mathbb{Z}$-torsors over $U_{23} \times_{Y} U_{23} \times_{Y} U_{23}$.

The gerb \hat{Y}_{d} is naturally $\operatorname{Sp}(\tilde{V})$-equivariant, thus it can be seen as a $\mathbb{Z} / 4 \mathbb{Z}$-gerb over the stack quotient $Y / \operatorname{Sp}(\tilde{V})$. It is understood that $\operatorname{Sp}(\tilde{V})$ acts on Y diagonally.

Lemma 15. 1) There exists a canonical isomorphism $\hat{Y}_{d} \widetilde{\rightarrow} \hat{Y}$ of $\mathbb{Z} / 4 \mathbb{Z}$-gerbs over Y.
2) The restriction of \hat{Y}_{d} to the diagonal $\mathcal{L}(\tilde{V}) \hookrightarrow Y$ admits a canonical $\operatorname{Sp}(\tilde{V})$-equivariant section $\mathfrak{t}: \mathcal{L}(\tilde{V}) \rightarrow \hat{Y}_{d}$.

Proof Remind the original definition of \hat{Y}. One first picks a 2 -sweeping family $\left(\left\{\tilde{L}_{i}\right\}_{i \in I}\right)$. For $i \in I$ let $Y\left(\tilde{L}_{i}\right)=\left\{\left(\tilde{L}, \tilde{M} \in Y \mid \tilde{L}, \tilde{M} \in \mathcal{U}\left(\tilde{L}_{i}\right)\right\}\right.$. Then \hat{Y} is obtained by gluing the trivial $\mathbb{Z} / 4 \mathbb{Z}$ gerbs $Y\left(\tilde{L}_{i}\right) \times B(\mathbb{Z} / 4 \mathbb{Z})$ over the open subschemes $Y\left(\tilde{L}_{i}\right) \cap Y\left(\tilde{L}_{j}\right)$ via the isomorphism sending a $\mathbb{Z} / 4 \mathbb{Z}$-torsor \mathcal{F}_{i} over $Y\left(\tilde{L}_{i}\right) \cap Y\left(\tilde{L}_{j}\right)$ to the $\mathbb{Z} / 4 \mathbb{Z}$-torsor whose fibre at $(\tilde{L}, \tilde{M}) \in Y\left(\tilde{L}_{i}\right) \cap Y\left(\tilde{L}_{j}\right)$ is

$$
\left(\mathcal{F}_{i}\right)_{\tilde{L}, \tilde{M}} \otimes \frac{\mathcal{C}\left(\tilde{M}, \tilde{L}_{i}, \tilde{L}_{j}\right)}{\mathcal{C}\left(\tilde{L}, \tilde{L}_{i}, \tilde{L}_{j}\right)}
$$

From Proposition 4 and Lemma 10 one gets an isomorphism

$$
\frac{\mathcal{C}\left(\tilde{M}, \tilde{L}_{i}, \tilde{L}_{j}\right)}{\mathcal{C}\left(\tilde{L}, \tilde{L}_{i}, \tilde{L}_{j}\right)} \underset{\rightarrow}{\mathcal{C}}\left(L_{j}, M, L_{i}, L\right)
$$

2) For $(\tilde{N}, \tilde{L}, \tilde{M}) \in U_{23}$ the trivialization of $\mathcal{C}(\tilde{N}, \tilde{M}, \tilde{N}, \tilde{L})$ given by Lemma 14 shows the following. After the diagonal base change $\mathcal{L}(\tilde{V}) \rightarrow Y$, the tautological section of the gerb $\left(U_{23} \times_{Y} \mathcal{L}(\tilde{V})\right) \times B(\mathbb{Z} / 4 \mathbb{Z})$ is compatible with the descent data with respect to $\nu_{23} \times$ id : $U_{23} \times_{Y} \mathcal{L}(\tilde{V}) \rightarrow \mathcal{L}(\tilde{V})$. It yields the desired section.

Remark 10. The section $\mathfrak{s}: Y_{0} \rightarrow \hat{Y}_{0}$ can now be described as follows. Consider the $\mathbb{Z} / 4 \mathbb{Z}$-torsor over U_{3} whose fibre at $(\tilde{N}, \tilde{L}, \tilde{M}) \in U_{3}$ is $\mathcal{C}(\tilde{M}, \tilde{L}, \tilde{N})$. It is compatible with the descent data for \hat{Y}_{d} with respect to the morphism $\nu_{23}: U_{3} \rightarrow Y_{0}$. Thus $\mathfrak{s}: Y_{0} \rightarrow \hat{Y}_{0}$ is $\operatorname{Sp}(\tilde{V})$-equivariant. This implies that $S_{\tilde{V}, \psi}$ is also $\operatorname{Sp}(\tilde{V})$-equivariant.
6.4 The metaplectic group Let G be the Greenberg realization of $\operatorname{Sp}(\tilde{V})$. It acts naturally on $\mathcal{L}(\tilde{V})$. According to Appendix A.2, the gerb $\hat{\mathcal{L}}(\tilde{V})$ yields a group stack \hat{G} over G. From Remark 8 we conclude that the homomorphism $\hat{G} \rightarrow G$ is surjective. We refer to \hat{G} as the metaplectic group.

In the rest of Section 6.4 we prove the following
Proposition 8. Any $\mathbb{Z} / 2 \mathbb{Z}$-torsor over $\mathcal{L}(\tilde{V})$ is trivial.
By A.3, this implies that \hat{G} fits into an exact sequence $1 \rightarrow B(\mathbb{Z} / 4 \mathbb{Z}) \rightarrow \hat{G} \rightarrow G \rightarrow 1$ and is algebraic. Besides, \hat{G} acts naturally on $\hat{\mathcal{L}}(\tilde{V})$, and the projection $\hat{\mathcal{L}}(\tilde{V}) \rightarrow \mathcal{L}(\tilde{V})$ is equivariant with respect to $\hat{G} \rightarrow G$.

Lemma 16. Let Z be a k-scheme, $q: \mathbb{W} \rightarrow Z$ be the total space of a vector bundle W on Z. One has a canonical isomorphism of sheaves of \mathcal{O}_{Z}-algebras $q_{*} \mathcal{O} \xrightarrow{\Im} \oplus_{d \geq 0} \operatorname{Sym}^{* d}\left(W^{*}\right)$.

Lemma 17. Let W be a vector bundle on \mathbb{P}_{k}^{1} of the form $W=\oplus_{i=1}^{r} \mathcal{O}\left(n_{i}\right) \otimes W_{i}$, where $n_{i}>0$ and W_{i} are fixed finite-dimensional k-vector spaces. Let \mathbb{W} be the total space of W. Then any $\mathbb{Z} / 2 \mathbb{Z}$-torsor on \mathbb{W} is trivial.

Proof Let $q: \mathbb{W} \rightarrow \mathbb{P}^{1}$ be the projection. By Lemma $16, \mathrm{H}^{0}(\mathbb{W}, \mathcal{O})=k$. One has the exact sequence of groups $1 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{A}^{1} \xrightarrow{a} \mathbb{A}^{1} \rightarrow 0$ over Spec k, where $a(x)=x^{2}+x$. So, it suffices to show that $\mathrm{H}^{1}(\mathbb{W}, \mathcal{O}) \xrightarrow{a_{*}} \mathrm{H}^{1}(\mathbb{W}, \mathcal{O})$ is injective. The space $\mathrm{H}^{1}(\mathbb{W}, \mathcal{O})=\oplus_{d \geq 0} \mathrm{H}^{1}\left(\mathbb{P}^{1}, \operatorname{Sym}^{* d}\left(W^{*}\right)\right)$ is graded by $d \geq 0$. Let $x \in \mathrm{H}^{1}(\mathbb{W}, \mathcal{O})$ non zero, let x_{d} be its non zero component of the biggest degree $d \geq 0$. It suffices to show that $x_{d}^{2} \in \mathrm{H}^{1}\left(\mathbb{P}^{1}, \operatorname{Sym}^{* 2 d}\left(W^{*}\right)\right)$ does not vanish. One has

$$
\operatorname{Sym}^{* d}\left(W^{*}\right) \rightrightarrows \sum_{d_{1}+\ldots+d_{r}=d} \mathcal{O}\left(-\sum_{i} d_{i} n_{i}\right) \otimes \operatorname{Sym}^{* d_{1}}\left(W_{1}^{*}\right) \otimes \ldots \otimes \operatorname{Sym}^{* d_{r}}\left(W_{r}^{*}\right)
$$

So, our assertion follows from the fact that for $m \geq 0$ the map $\mathrm{H}^{1}\left(\mathbb{P}^{1}, \mathcal{O}(-m)\right) \xrightarrow{v_{*}} \mathrm{H}^{1}\left(\mathbb{P}^{1}, \mathcal{O}(-2 m)\right)$ is injective, where $v: \mathcal{O}(-m) \rightarrow \mathcal{O}(-2 m), x \mapsto x^{2}$ is a homomorphism of sheaves of abelian groups on \mathbb{P}_{k}^{1}. We also used the property that for a finite-dimensional k-vector space U and $u \in \operatorname{Sym}^{* d} U$ the condition $u^{2}=0$ in Sym*2d U implies $u=0$.

Proof of Proposition 8
Let \mathcal{E} be the vector bundle over $\mathcal{L}(V)$ whose fibre at $L \in \mathcal{L}(V)$ is $\operatorname{Sym}^{!2}\left(L^{*}\right)$. The projection $\mathcal{L}(\tilde{V}) \rightarrow \mathcal{L}(V)$ is a torsor under $F^{*} \mathcal{E}$, the inverse image of \mathcal{E} by the Frobenius map F. For $n=1$ one has $\mathcal{L}(V) \rightrightarrows \mathbb{P}_{k}^{1}$, and $F^{*} \mathcal{E}$ is isomorphic to the line bundle $\mathcal{O}(4)$ on \mathbb{P}_{k}^{1}.

Let \mathcal{F} be a $\mathbb{Z} / 2 \mathbb{Z}$-torsor over $\mathcal{L}(\tilde{V})$. It suffices to show that \mathcal{F} is constant along the fibres of $\mathcal{L}(\tilde{V}) \rightarrow \mathcal{L}(V)$.

Step 1. Pick an isometry $V \underset{\rightarrow}{ } V_{1} \oplus V_{2}$, where V_{i} are symplectic vector spaces, $\operatorname{dim} V_{1}=2$, $\operatorname{dim} V_{2}=2 n-2$. Pick a k-point $L_{2} \in \mathcal{L}\left(V_{2}\right)$. It yields a closed immersion $\mathcal{L}\left(V_{1}\right) \rightarrow \mathcal{L}(V)$, $L_{1} \mapsto L_{1} \oplus L_{2}$. Let $Z_{1}=\mathcal{L}\left(V_{1}\right) \times_{\mathcal{L}(V)} \mathcal{L}(\tilde{V})$.

Let \mathcal{E}_{1} be the vector bundle on $\mathcal{L}\left(V_{1}\right)$ whose fibre at L_{1} is $\operatorname{Sym}^{!2}\left(L_{1}^{*}\right) \oplus\left(L_{1} \otimes L_{2}\right)^{*}$. Then $Z_{1} \rightarrow \mathcal{L}\left(V_{1}\right)$ is a torsor under the vector bundle $F^{*}\left(\mathcal{E}_{1} \oplus \operatorname{Sym}^{!2}\left(L_{2}^{*}\right)\right)$. Any such torsor is trivial. Let Z be the total space of $F^{*} \mathcal{E}_{1}$ then $Z_{1} \rightrightarrows Z \times U$, where $U=F^{*} \operatorname{Sym}^{!2}\left(L_{2}^{*}\right)$ is an affine space over k. By Lemma 17, the $*$-restriction $\left.\mathcal{F}\right|_{Z_{1}}$ descends under the projection $Z \times U \rightarrow U$ to a local system on U.
Step 2. Pick a k-point $L \in \mathcal{L}(V)$. Let T be the fibre of $\mathcal{L}(\tilde{V}) \rightarrow \mathcal{L}(V)$ over L. For any decomposition $L \widetilde{\rightarrow} L_{1} \oplus L_{2}$ into a direct sum of vector subspaces with $\operatorname{dim} L_{1}=1$, the torsor $\left.\mathcal{F}\right|_{T}$ is equivariant under the action of the vector space $F^{*}\left(\operatorname{Sym}^{!2}\left(L_{1}^{*}\right) \oplus\left(L_{1} \otimes L_{2}\right)^{*}\right)$. Indeed, this follows from Step 1. Since the decomposition $L \widetilde{\rightarrow} L_{1} \oplus L_{2}$ was arbitrary, the $\mathbb{Z} / 2 \mathbb{Z}$-torsor $\left.\mathcal{F}\right|_{T}$ is trivial.
6.5 CASE $n=1$.
6.5.1 Let us give some explicit formulas for $\hat{\mathcal{L}}(\tilde{V})$ in the simplest case $n=1$. Take \tilde{V} to be the free R-module with a symplectic base e_{1}, e_{2} such that $\tilde{\omega}\left(e_{1}, e_{2}\right)=1$. Then $\mathcal{L}(\tilde{V})$ is the Greenberg scheme of \mathbb{P}_{R}^{1}.

Let $\tilde{L}_{i} \subset \tilde{V}$ be the R-submodule generated by e_{i}. Set $\mathcal{U}_{i}=\mathcal{U}\left(\tilde{L}_{i}\right)$ then $\mathcal{U}_{1} \cup \mathcal{U}_{2}=\mathcal{L}(\tilde{V})$. We have the isomorphism $R \Im \mathcal{U}_{1}$ sending $a \in R$ to the R-submodule in \tilde{V} generated by $a e_{1}+e_{2}$. We have the isomorphism $R \leadsto \underset{\rightarrow}{ } \mathcal{U}_{2}$ sending b to the R-submodule generated by $e_{1}+b e_{2}$. So, $\mathcal{U}_{1} \cap \mathcal{U}_{2} \Im R^{*}$ and the corresponding identification is given by $b=a^{-1}$.

View $\tilde{L} \in \mathcal{U}_{12}$ as a R-submodule in \tilde{V} generated by $e_{1}+b e_{2}$ with $b \in R^{*}$. In this notation the $\mathbb{Z} / 4 \mathbb{Z}$-torsor $\operatorname{Cov}\left(\mathcal{U}_{12}\right) \rightarrow \mathcal{U}_{12}$ becomes the $\mathbb{Z} / 4 \mathbb{Z}$-torsor over R^{*} whose fibre over $b=\left(b_{0}, b_{1}\right)$ is $\left\{z \in R \mid F z-z=\left(b_{1} b_{0}^{-2}, 0\right)\right\}$, here b is written in Witt coordinates. Indeed, this follows from Lemma 6 and the fact that $C\left(\tilde{L}, \tilde{L}_{1}, \tilde{L}_{2}\right)$ is the Gauss sum for the quadratic form $x \mapsto-b \tilde{x}^{2}$ (here $\tilde{x} \in R$ is any lifting of $x \in k$).

Consider the R-torsor $\mathcal{T} \mathcal{L}(\tilde{V}) \rightarrow \mathcal{L}(\tilde{V})$ defined as the gluing of the trivial R-torsors over \mathcal{U}_{i} by the 1-cocycle $h: \mathcal{U}_{12} \rightarrow R$ sending $b=\left(b_{0}, b_{1}\right)$ to $\left(b_{1} b_{0}^{-2}, 0\right)$. The R-torsor $\mathcal{T} \mathcal{L}(\tilde{V})$ over $\mathcal{L}(\tilde{V})$ is nontrivial (even its extension of scalars via $R \rightarrow k$ is a nontrivial \mathbb{A}^{1}-torsor over $\mathcal{L}(\tilde{V})$). The gerb $\hat{\mathcal{L}}(\tilde{V})$ is obtained from this R-torsor via the exact sequence $0 \rightarrow \mathbb{Z} / 4 \mathbb{Z} \rightarrow R \xrightarrow{z \mapsto F z-z} R \rightarrow 0$.

Set $\mathbb{S p}^{1}(V)=\{g \in \mathbb{S p}(\tilde{V}) \mid g=$ id $\bmod 2\}$. It is easy to check that $\mathcal{T} \mathcal{L}(\tilde{V})$ admits a $\mathbb{S p}^{1}(V)$-equivariant structure.
6.5.2 Following [14], consider the variety $\mathcal{L}^{0}(\tilde{V})$ classifying $\tilde{L} \in \mathcal{L}(\tilde{V})$ together with a generator $o_{\tilde{L}}$ of the R-module $\operatorname{det} L$. A point $\tilde{L}^{0}=\left(\tilde{L}, o_{\tilde{L}}\right)$ of $\mathcal{L}^{0}(\tilde{V})$ is called an oriented lagrangian.

Let $\mathcal{T} \mathcal{L}^{0}(\tilde{\mathcal{V}}) \rightarrow \mathcal{L}^{0}(\tilde{V})$ be the R-torsor obtained from $\mathcal{T} \mathcal{L}(\tilde{V}) \rightarrow \mathcal{L}(\tilde{V})$ by the base change $\mathcal{L}^{0}(\tilde{V}) \rightarrow \mathcal{L}(\tilde{V})$.

Let $\mathcal{V}_{i} \subset \mathcal{L}^{0}(\tilde{V})$ be the open subscheme classifying oriented lagrangians \tilde{L}^{0} generated by $o_{\tilde{L}}=(a, b) \in R \times R$ such that $b \in R^{*}$ (resp., $a \in R^{*}$) for $i=1$ (resp., for $i=2$).

Let $\mathcal{T}^{0}(\tilde{V}) \rightarrow \mathcal{L}^{0}(\tilde{V})$ be the $2 R$-torsor defined as the gluing of the trivial $2 R$-torsors over \mathcal{V}_{i}
via the cocycle over $\mathcal{V}_{12}=\mathcal{V}_{1} \cap \mathcal{V}_{2}$ sending (a, b) to

$$
\left(0, \frac{a_{1} b_{1}}{a_{0}^{2} b_{0}^{2}}\right) \in 2 R
$$

The R-torsor $\mathcal{T} \mathcal{L}^{0}(\tilde{\mathcal{V}}) \rightarrow \mathcal{L}^{0}(\tilde{V})$ is isomorphic to the extension of scalars of $\mathcal{T}^{0}(\tilde{V})$ under the inclusion $2 R \rightarrow R$.

One checks that the $\mathbb{S p}(\tilde{V})$-orbit in $\mathrm{H}^{1}\left(\mathcal{L}^{0}(\tilde{V}), \mathcal{O}\right)$ passing through the $2 R$-torsor $\mathcal{T}^{0}(\tilde{V})$ is not a point. For example, take $v \in R$ and $g \in \mathbb{S p}(\tilde{V})$ given by $g\left(e_{1}\right)=e_{1}$ and $g\left(e_{2}\right)=e_{2}+v e_{1}$. The $2 R$-torsors $g^{*} \mathcal{T}^{0}(\tilde{V})$ and $\mathcal{T}^{0}(\tilde{V})$ are not isomorphic over $\mathcal{L}^{0}(\tilde{V})$ unless $v_{0}=0$, here $v=\left(v_{0}, v_{1}\right)$ is written in Witt coordinates.

Actually, there exists a $2 R$-torsor, say $\mathcal{T}(\tilde{V}) \rightarrow \mathcal{L}(\tilde{V})$, whose restriction to $\mathcal{L}^{0}(\tilde{V})$ is isomorphic to $\mathcal{T}^{0}(\tilde{V}) \rightarrow \mathcal{L}^{0}(\tilde{V})$.

7. Canonical interwining operators

7.1.1 Our purpose now is to generalize the theory of canonical interwining operators ([17], Theorem 1) to the case of characteristic two.

Remind that \tilde{V} is a free R-module of rank $2 n$ with symplectic form $\tilde{\omega}: \tilde{V} \otimes \tilde{V} \rightarrow R$, and $V=\tilde{V} \otimes_{R} k$. Pick a bilinear form $\tilde{\beta}: \tilde{V} \times \tilde{V} \rightarrow R$ satisfying (3).

Let $\beta: V \times V \rightarrow R$ be defined as in 2.2. It gives rise to the Heisenberg group $H=H(V)=$ $V \times R$ with operation (4). We view it as an an algebraic group over k (the Greenberg realization of the corresponding R-scheme). The center of H is $Z(H)=\{(0, z) \in H(V) \mid z \in R\}$.

The affine symplectic group $\operatorname{ASp}(V)$ is defined as in 2.2 (it is understood that for $(g, \alpha) \in$ $\operatorname{ASp}(V)$ the map $\alpha: V \rightarrow R$ must be a morphism of k-schemes), it is an algebraic group over k acting on H by automorphisms.

Let G be the Greenberg realization of $\operatorname{Sp}(\tilde{V})$ over k. As in 2.2 , one defines a homomorphism $\xi: G \rightarrow \operatorname{ASp}(V)$ of algebraic groups over k. Let $\operatorname{ELag}(V)$ be defined as in Section 2.4.1. The $\operatorname{map} \epsilon: \mathcal{L}(\tilde{V}) \rightarrow E \operatorname{Lag}(V)$ defined as in 2.4.2 is a morphism of schemes over $\mathcal{L}(V)$, the action of $\operatorname{ASp}(V)$ on $\operatorname{ELag}(V)$ is algebraic, and the diagram (7) commutes.

Given a k-point $(L, \tau) \in E L a g(V)$, write \mathcal{H}_{L} for the category of $\overline{\mathbb{Q}}_{\ell}$-perverse sheaves on H, which are equvariant with respect to L acting on H by the left multiplication via τ, and also $\left(Z(H), \mathcal{L}_{\psi}\right)$-equivariant. This is a full subcategory in $\mathrm{P}(H)$. Write $\mathrm{D} \mathcal{H}_{L} \subset \mathrm{D}(H)$ for the full subcategory of objects whose all perverse cohomologies lie in \mathcal{H}_{L}.

For a k-point $\tilde{L} \in \mathcal{L}(\tilde{V})$ set $\mathcal{H}_{\tilde{L}}=\mathcal{H}_{L}$ for the enhanced lagrangian $L=\epsilon(\tilde{L})$. For a k-point $g \in G$ the inverse image under the map $H \rightarrow H, h \mapsto g^{-1} h$ yields an equivalence $g: \mathcal{H}_{\tilde{L}} \widetilde{\rightarrow} \mathcal{H}_{g \tilde{L}}$, which we denote by g by some abuse of notation.
7.1.2 Write \hat{L} for a point of $\hat{\mathcal{L}}(\tilde{V})$ over $\tilde{L} \in \mathcal{L}(\tilde{V})$. For $g \in \hat{G}, \hat{L} \in \hat{\mathcal{L}}(\tilde{V})$ we write $g \hat{L}$ for the image of (g, \hat{L}) under the action map (defined in A.2)

$$
\hat{G} \times \hat{\mathcal{L}}(\tilde{V}) \rightarrow \hat{\mathcal{L}}(\tilde{V})
$$

Write $(\hat{L}: \hat{M})$ for the image of a pair $(\hat{L}, \hat{M}) \in \hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V})$ in \hat{Y}.

For a pair of points $\hat{L}, \hat{M} \in \hat{\mathcal{L}}(\tilde{V})$ we will define a canonical interwining operator

$$
\begin{equation*}
\mathcal{F}_{\hat{L}, \hat{M}}: \mathcal{H}_{\tilde{M}} \rightarrow \mathcal{H}_{\tilde{L}} \tag{26}
\end{equation*}
$$

depending only on the image ($\hat{L}: \hat{M}) \in \hat{Y}$. They will be equipped with isomorphisms

- $\mathcal{F}_{\hat{L}, \hat{L}} \rightrightarrows \mathrm{id}$
- $\mathcal{F}_{\hat{N}, \hat{L}} \circ \mathcal{F}_{\hat{L}, \hat{M}} \xrightarrow{\rightarrow} \mathcal{F}_{\hat{N}, \hat{M}}$
- for $g \in \hat{G}$ one has $g \circ \mathcal{F}_{\hat{L}, \hat{M}} \circ g^{-1} \xrightarrow{\rightarrow} \mathcal{F}_{g \hat{L}, g \hat{M}}$
satisfying natural compatibility properties. As in [17], the functor $\mathcal{F}_{\hat{L}, \hat{M}}$ will be defined as a convolution with a suitable complex on H, and as \hat{L}, \hat{M} vary, these complexes will organize into a perverse sheaf F on $\hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times H$.

Denote by $C \rightarrow \mathcal{L}(\tilde{V})$ the vector bundle whose fibre at $\tilde{L} \in \mathcal{L}(\tilde{V})$ is $L=\tilde{L} \otimes_{R} k$. Consider the maps

$$
\operatorname{pr}, \operatorname{act}_{l r}: C \times C \times H \rightarrow \mathcal{L}(\tilde{V}) \times \mathcal{L}(\tilde{V}) \times H
$$

where $\operatorname{act}_{l r}$ sends $(\tilde{L}, l \in L, \tilde{M}, m \in M, h)$ to $\left(\tilde{L}, \tilde{M}, \tau_{\tilde{L}}(l) h \tau_{\tilde{M}}(m)\right)$, and pr sends the above point to $(\tilde{L}, \tilde{M}, h)$. Say that a perverse sheaf K on $\mathcal{L}(\tilde{V}) \times \mathcal{L}(\tilde{V}) \times H$ is act ${ }_{l r}$-equivariant if it admits an isomorphism

$$
\operatorname{act}_{l r}^{*} K \rightrightarrows \operatorname{pr}^{*} K
$$

satisfying the usual associativity condition and whose restriction to the unit section is the identity (such isomorphism is unique if it exists). One has a similar definition for $\hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times H$. Let

$$
\operatorname{act}_{\hat{G}}: \hat{G} \times \hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times H \rightarrow \hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times H
$$

be the map sending (g, \hat{L}, \hat{M}, h) to $(g \hat{L}, g \hat{M}, g h)$. This is an action map in the sense of A.2.1, so one has a notion of a \hat{G}-equivariant perverse sheaf on $\hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times H$ (cf. A.4).

For a scheme S and $K, K^{\prime} \in \mathrm{D}(S \times H)$ define their convolution $K * K^{\prime} \in \mathrm{D}(S \times H)$ by

$$
K * K^{\prime}=\operatorname{mult}_{!}\left(\operatorname{pr}_{12}^{*} K \otimes \operatorname{pr}_{13}^{*} K^{\prime}\right)[n+2-2 \operatorname{dim} \mathcal{L}(\tilde{V})],
$$

where $\operatorname{pr}_{12}, \operatorname{pr}_{13}: S \times H \times H \rightarrow S \times H$ are the projections, and mult : $H \times H \rightarrow H$ is the product map sending $\left(h_{1}, h_{2}\right)$ to $h_{1} h_{2}$. The above shift is chosen to that the formula (31) below holds without any shift.

Let

$$
i_{\Delta}:(\mathcal{L}(\tilde{V}) \times H)_{\triangle} \hookrightarrow \mathcal{L}(\tilde{V}) \times H
$$

be closed subscheme of $(\tilde{L}, h) \in \mathcal{L}(\tilde{V}) \times H$ such that there exist $x \in L, z \in Z(H)$ with $h=\tau_{\tilde{L}}(x) z$. Let $\alpha_{\Delta}:(\mathcal{L}(\tilde{V}) \times H)_{\Delta} \rightarrow Z(H)$ be the map sending the above point to $z \in Z(H)$.

Theorem 1. There exists an irreducible perverse sheaf F on $\hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times H$ with the following properties:

- for the diagonal map $i: \hat{\mathcal{L}}(\tilde{V}) \times H \rightarrow \hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times H$ the complex $i^{*} F$ identifies canonically with the inverse image of

$$
\left(i_{\Delta}\right)!\alpha_{\Delta}^{*} \mathcal{L}_{\psi}[2 \operatorname{dim} \mathcal{L}(\tilde{V})+n+2]
$$

under the projection $\hat{\mathcal{L}}(\tilde{V}) \times H \rightarrow \mathcal{L}(\tilde{V}) \times H$;

- F is act $_{l r}$-equivariant and $\left(Z(H), \mathcal{L}_{\psi}\right)$-equivariant;
- F is \hat{G}-equivariant;
- convolution property for F holds, namely for $i j$-th projections

$$
q_{i j}: \hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times H \rightarrow \hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times H
$$

inside the triple $\hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V})$ one has $\left(q_{12}^{*} F\right) *\left(q_{23}^{*} F\right) \rightrightarrows q_{13}^{*} F$ canonically.
The proof of Theorem \square is given in Sections 7.1.3-7.1.5.
7.1.3 Remind that $Y_{0} \subset Y$ is the open subscheme classifying $(\tilde{L}, \tilde{M}) \in Y$ such that $\tilde{L} \cap \tilde{M}=0$. Define a perverse sheaf F_{0} on $Y_{0} \times H$ as follows. Let

$$
\alpha_{0}: Y_{0} \times H \rightarrow Z(H)
$$

be the map sending $(\tilde{L}, \tilde{M}, h)$ to z, where $z \in Z(H)$ is uniquely defined by the property that there exist $l \in L, m \in M$ such that $h=\tau_{\tilde{L}}(l) \tau_{\tilde{M}}(m) z$. Set

$$
F_{0}=\alpha_{0}^{*} \mathcal{L}_{\psi}\left[\operatorname{dim}\left(Y_{0} \times H\right)\right]
$$

Let U_{13} be the scheme classifying $(\tilde{L}, \tilde{N}, \tilde{M}) \in \mathcal{L}(\tilde{V})^{3}$ such that $\tilde{N} \cap \tilde{L}=\tilde{N} \cap \tilde{M}=0$. Let $\nu_{13}: U_{13} \rightarrow Y$ send $(\tilde{L}, \tilde{N}, \tilde{M})$ to (\tilde{L}, \tilde{M}). Define $\nu_{12}, \nu_{23}: U_{13} \rightarrow Y_{0}$ by

$$
\nu_{12}(\tilde{L}, \tilde{N}, \tilde{M})=(\tilde{L}, \tilde{N}) \quad \nu_{23}(\tilde{L}, \tilde{N}, \tilde{M})=(\tilde{N}, \tilde{M})
$$

Let $i_{U}: Y_{0} \rightarrow U_{13}$ send (\tilde{N}, \tilde{L}) to $(\tilde{L}, \tilde{N}, \tilde{L})$. The open subscheme $U_{3} \subset U_{13}$ classifies triples of pairwise transverse lagrangians in $\mathcal{L}(\tilde{V})$. Let $p_{Y_{0}}: Y_{0} \rightarrow \mathcal{L}(\tilde{V})$ send (\tilde{N}, \tilde{L}) to \tilde{L}. Remind the map π_{U} defined by (19).
Lemma 18. 1) The complex

$$
\left(\nu_{12}^{*} F_{0}\right) *\left(\nu_{23}^{*} F_{0}\right)[\operatorname{dim} \mathcal{L}(\tilde{V})]
$$

is an irreducible perverse sheaf on $U_{13} \times H$. For the map $p_{Y_{0}} \times \mathrm{id}: Y_{0} \times H \rightarrow \mathcal{L}(\tilde{V}) \times H$ one has canonically

$$
i_{U}^{*}\left(\left(\nu_{12}^{*} F_{0}\right) *\left(\nu_{23}^{*} F_{0}\right)\right) \widetilde{\rightarrow}\left(p_{Y_{0}} \times \mathrm{id}\right)^{*}\left(i_{\Delta}\right)!\alpha_{\Delta}^{*} \mathcal{L}_{\psi}[2 \operatorname{dim} \mathcal{L}(\tilde{V})+n+2]
$$

over $Y_{0} \times H$.
2) There is a canonical isomorphism

$$
\left(\nu_{12}^{*} F_{0}\right) *\left(\nu_{23}^{*} F_{0}\right)[\operatorname{dim} \mathcal{L}(\tilde{V})] \widetilde{\rightarrow} \pi_{U}^{*} \mathbb{S}_{\psi} \otimes \nu_{13}^{*} F_{0}\left[2 n^{2}\right]
$$

of perverse sheaves over $U_{3} \times H$. Here, by abuse of notation, $\nu_{13}: U_{3} \rightarrow Y_{0}$ is the restriction of ν_{13}.

Proof 1) Let us give an argument at the classical level (of K-groups) and explain the changes needed for geometrization. For a point $(\tilde{L}, \tilde{M}) \in Y_{0}$ write $\mathbb{F}_{\tilde{L}, \tilde{M}}$ for the restriction of F_{0} to this point, so $\mathbb{F}_{\tilde{L}, \tilde{M}}$ is a 'function' on H. Given $(\tilde{L}, \tilde{N}, \tilde{M}) \in U_{13}$, let us calculate the convolution

$$
\begin{equation*}
\left(\mathbb{F}_{\tilde{L}, \tilde{N}} * \mathbb{F}_{\tilde{N}, \tilde{M}}\right)(h)=\int_{h_{1} \in H} \mathbb{F}_{\tilde{L}, \tilde{N}}\left(h h_{1}^{-1}\right) \mathbb{F}_{\tilde{N}, \tilde{M}}\left(h_{1}\right) d h_{1} \tag{27}
\end{equation*}
$$

as a function of $h \in H$, here $d h_{1}$ is a 'Haar measure'. Write $N=\tilde{N} \otimes_{R} k$, and similarly for L, M. Because of equivariance properties of (27), we may assume $h=\tau_{\tilde{N}}(x)$ for $x \in N$. Write $h_{1}=\tau_{\tilde{N}}(y) \tau_{\tilde{M}}(u) z$ with $z \in Z(H), u \in M, y \in N$. Then (27) equals the volume of $N \times Z$ multiplied by

$$
\begin{equation*}
\int_{u \in M} \mathbb{F}_{\tilde{L}, \tilde{N}}\left(\tau_{\tilde{N}}(x) \tau_{\tilde{M}}(u)\right) d u=\int_{u \in M} \mathbb{F}_{\tilde{L}, \tilde{N}}\left(\tau_{\tilde{M}}(u)\right) \psi(\omega(x, u)) d u \tag{28}
\end{equation*}
$$

We have used the equality $\tau_{\tilde{N}}(x) \tau_{\tilde{M}}(u)=\tau_{\tilde{M}}(u) \tau_{\tilde{N}}(x)(0, \omega(x, u))$. The formula (28) shows that the resulting complex on N is the Fourier transform of a rank one local system on M (the symplectic form induces an isomorphism $M^{*} \rightrightarrows N$). So, our first assertion follows from the fact that the Fourier transform preserves perversity and irreducibility.

Assume further that $\tilde{M}=\tilde{L}$ then (28) equals

$$
\int_{u \in L} \psi(\omega(x, u)) d u= \begin{cases}0, & \text { for } x \neq 0 \\ \operatorname{vol}(L), & \text { for } x=0\end{cases}
$$

The geometrization is straightforward, our second assertion follows.
2) Assume that $(\tilde{L}, \tilde{N}, \tilde{M}) \in U_{3}$. Take $x \in N$ and continue the calculation of (28) from 1) as follows. Let $r: N \rightarrow L$ be the k-linear map such that $M=\{r(w)-w \in L \oplus N \mid w \in N\}$. Consider $Q:=Q_{\tilde{L}, \tilde{N}, \tilde{M}} \in Q^{!}\left(N^{*}\right)$ defined by (9), that is, $Q: N \rightarrow R$ is given by

$$
\begin{equation*}
\tau_{\tilde{M}}(r(w)-w) \tau_{\tilde{N}}(w) \tau_{\tilde{L}}(-r(w))=(0, Q(w)) \tag{29}
\end{equation*}
$$

for any $w \in N$. Now (28) equals

$$
\begin{equation*}
\int_{w \in N} \mathbb{F}_{\tilde{L}, \tilde{N}}\left(\tau_{\tilde{M}}(r(w)-w)\right) \psi(\omega(x, r(w)-w)) d w=\int_{w \in N} \psi(Q(w)+\omega(x, r(w))) d w \tag{30}
\end{equation*}
$$

Remind that for $w, w_{1} \in N$ one has

$$
Q\left(w+w_{1}\right)=Q(w)+Q\left(w_{1}\right)+\omega\left(r(w), w_{1}\right)
$$

(cf. Section 2.5). After the change of variables $w=t+x, t \in N$ the expression (30) rewrites as

$$
\psi(Q(x)+\omega(x, r(x))) \int_{t \in N} \psi(Q(t)) d t
$$

Now (29) with $w=x$ also yields

$$
\mathbb{F}_{\tilde{L}, \tilde{M}}\left(\tau_{\tilde{N}}(x)\right)=\psi(Q(x)+\omega(x, r(x)))
$$

Remind the notation $C(\tilde{L}, \tilde{N}, \tilde{M})=\int_{t \in N} \psi(Q(t)) d t$ given by (11). Combining with 1$)$ we get

$$
\left(\mathbb{F}_{\tilde{L}, \tilde{N}} * \mathbb{F}_{\tilde{N}, \tilde{M}}\right)(h)=\operatorname{vol}(N \times Z) C(\tilde{L}, \tilde{N}, \tilde{M}) \mathbb{F}_{\tilde{L}, \tilde{M}}(h)
$$

Because of equivariance properties, the latter formula holds for all $h \in H$. By Remark 7, Q is the image of $\pi_{U}(\tilde{L}, \tilde{N}, \tilde{M})$ in $Q^{!}\left(N^{*}\right)$. The above proof goes through also in the geometric setting.
7.1.4 Let Θ_{ψ} be the rank one local system on \hat{Y}_{0} defined by $\Theta_{\psi}=\left.S_{\tilde{V}, \psi}\right|_{\hat{Y}_{0}}\left[-\operatorname{dim} Y_{0}\right]$. The map $\hat{\nu}_{23}$ has been defined in Section 6.3.1. Consider the diagram

$$
\begin{array}{cl}
\hat{Y}_{0} \stackrel{\hat{\nu}_{12}}{\leftarrow} & U_{3} \xrightarrow{\hat{\nu}_{13}} \hat{Y}_{0} \\
& \downarrow \hat{\nu}_{23} \\
& \hat{Y}_{0},
\end{array}
$$

where $\hat{\nu}_{\tilde{\sim}}, \hat{\nu}_{13}$ are defined by $\hat{\nu}_{13}(\tilde{L}, \tilde{N}, \tilde{M})=\hat{\nu}_{23}(\tilde{N}, \tilde{L}, \tilde{M})$ and $\hat{\nu}_{12}(\tilde{L}, \tilde{N}, \tilde{M})=\hat{\nu}_{23}(\tilde{M}, \tilde{L}, \tilde{N})$ for $(\tilde{L}, \tilde{N}, \tilde{M}) \in U_{3}$. From Lemma 10 one derives the following.

Lemma 19. One has canonical isomorphisms $\hat{\nu}_{12}^{*} \Theta_{\psi} \widetilde{\rightarrow} \hat{\nu}_{23}^{*} \Theta_{\psi} \widetilde{\rightarrow} \hat{\nu}_{13}^{*} \Theta_{\psi}^{-1}$ over U_{3}.
Definition 8. Let \hat{F}_{0} be the perverse sheaf on $\hat{Y}_{0} \times H$ given by $\hat{F}_{0}=\operatorname{pr}_{1}^{*} \Theta_{\psi}^{-1} \otimes F_{0}$. It is understood that we take the inverse image of F_{0} under the projection $\hat{Y}_{0} \times H \rightarrow Y_{0} \times H$. Let F be the intermediate extension of \hat{F}_{0} under $\hat{Y}_{0} \times H \hookrightarrow \hat{Y} \times H$. The restriction of F under the natural map $\hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times H \rightarrow \hat{Y} \times H$ is also denoted by F. Note that \hat{F}_{0} is \hat{G}-equivariant (cf. Remark 10).

Combining Lemmas 18, 19 with Corollary [1, one gets the following.
Corollary 2. There is a canonical isomorphism over $U_{3} \times H$

$$
\begin{equation*}
\left(\hat{\nu}_{12}^{*} \hat{F}_{0}\right) *\left(\hat{\nu}_{23}^{*} \hat{F}_{0}\right) \widetilde{\rightarrow}\left(\hat{\nu}_{23}^{*} \Theta_{\psi}^{2}\right) \otimes \hat{\nu}_{13}^{*} \hat{F}_{0} \tag{31}
\end{equation*}
$$

Denote also by $\hat{\nu}_{13}: U_{13} \rightarrow \hat{Y}$ the map $\hat{\nu}_{13}(\tilde{L}, \tilde{N}, \tilde{M})=\hat{\nu}_{23}(\tilde{N}, \tilde{L}, \tilde{M})$ for $(\tilde{L}, \tilde{N}, \tilde{M}) \in U_{13}$. The cartesian square

$$
\begin{array}{cccc}
U_{3} \times H & \hookrightarrow & U_{13} \times H \\
& \downarrow \hat{\nu}_{13} \times \mathrm{id} & & \downarrow \hat{\nu}_{13} \times \mathrm{id} \\
\hat{Y}_{0} \times H & \hookrightarrow & \hat{Y} \times H
\end{array}
$$

together with Lemma 18 yield a canonical isomorphism over $U_{13} \times H$

$$
\begin{equation*}
\left(\hat{\nu}_{13} \times \mathrm{id}\right)^{*} F \widetilde{\rightarrow}\left(\nu_{12}^{*} F_{0}\right) *\left(\nu_{23}^{*} F_{0}\right) \tag{32}
\end{equation*}
$$

obtained by the intermediate extension from $U_{3} \times H$. This gives an explicit formula for F. Further, the diagram is canonically 2 -commutative

Restricting (32) under $i_{U} \times \mathrm{id}: Y_{0} \times H \rightarrow U_{13} \times H$, one gets an isomorphism

$$
\left(p_{Y_{0}} \times \mathrm{id}\right)^{*}(\mathfrak{t} \times \mathrm{id})^{*} F \widetilde{\rightarrow}\left(p_{Y_{0}} \times \mathrm{id}\right)^{*}\left(i_{\Delta}\right)!\alpha_{\Delta}^{*} \mathcal{L}_{\psi}[2 \operatorname{dim} \mathcal{L}(\tilde{V})+n+2]
$$

Since $p_{Y_{0}}$ has connected fibres, the latter isomorphism descends under $p_{Y_{0}} \times \mathrm{id}: Y_{0} \times H \rightarrow$ $\mathcal{L}(\tilde{V}) \times H$ to an isomorphism

$$
(\mathfrak{t} \times \mathrm{id})^{*} F \widetilde{\rightarrow}\left(i_{\Delta}\right)!\alpha_{\Delta}^{*} \mathcal{L}_{\psi}[2 \operatorname{dim} \mathcal{L}(\tilde{V})+n+2]
$$

By construction, \hat{F}_{0} is act $_{l r}$-equivariant, $\left(Z(H), \mathcal{L}_{\psi}\right)$-equivariant, and \hat{G}-equivariant (this property holds over $\hat{Y}_{0} \times H$ and is preserved by the intermediate extension).
7.1.5 Consider the scheme $Y \times_{\mathcal{L}(\tilde{V})} Y$ classifying $((\tilde{L}, \tilde{N}) \in Y,(\tilde{N}, \tilde{M}) \in Y)$. Define the gerb $\hat{Y} \times_{\mathcal{L}(\tilde{V})} \hat{Y}$ over it as the $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$-gerb obtained from $\hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V})$ by extension of the structure group

$$
\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z},(a, b, c) \mapsto(b-a, c-b)
$$

So, a point of $\hat{Y} \times_{\mathcal{L}(\tilde{V})} \hat{Y}$ is a collection $((\hat{L}: \hat{N}) \in \hat{Y},(\hat{N}: \hat{M}) \in \hat{Y})$. Extending further the structure group with respect to $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 4 \mathbb{Z},(u, v) \mapsto u+v$, one gets the gerb $\hat{Y} \times \mathcal{L}(\tilde{V})$, the corresponding morphism of stacks

$$
\gamma^{\prime}: \hat{Y} \times_{\mathcal{L}(\tilde{V})} \hat{Y} \rightarrow \hat{Y} \times \mathcal{L}(\tilde{V})
$$

sends $((\hat{L}: \hat{N}),(\hat{N}: \hat{M}))$ to $((\hat{L}: \hat{M}), \tilde{N})$. Write $\gamma: \hat{Y} \times_{\mathcal{L}(\tilde{V})} \hat{Y} \rightarrow \hat{Y}$ for $\mathrm{pr}_{1} \circ \gamma^{\prime}$. A straightforward calculation yields the following.

Lemma 20. Consider the diagram

\[

\]

where p is the structure map sending $(\hat{L}: \hat{M})$ to (\tilde{L}, \tilde{M}). The two maps thus obtained from U_{3} to Y coincide, but the triangle in the above diagram is not 2-commutative. More precisely, the two sections so obtained of the gerb \hat{Y} over U_{3} differ by the $\mathbb{Z} / 4 \mathbb{Z}$-torsor $\mathcal{C}(\tilde{L}, \tilde{N}, \tilde{M})^{2}$, where $(\tilde{L}, \tilde{N}, \tilde{M}) \in U_{3}$.

For $i=1,2$ let $\gamma_{i}: \hat{Y} \times_{\mathcal{L}(\tilde{V})} \hat{Y} \rightarrow \hat{Y}$ denote the projection to the i-th term. To finish the proof of Theorem 1 , it remains to establish the convolution property of F. We actually prove it in the following form.

Proposition 9. There is a canonical isomorphism over $\left(\hat{Y} \times_{\mathcal{L}(\tilde{V})} \hat{Y}\right) \times H$

$$
\begin{equation*}
\left(\gamma_{1}^{*} F\right) *\left(\gamma_{2}^{*} F\right) \widetilde{\rightarrow} \gamma^{*} F \tag{33}
\end{equation*}
$$

Proof
Step 1. Let $\left(\hat{Y} \times_{\mathcal{L}(\tilde{V})} \hat{Y}\right)_{0} \subset\left(\hat{Y} \times_{\mathcal{L}(\tilde{V})} \hat{Y}\right)$ be the open substack obtained by the base change $U_{3} \subset Y \times_{\mathcal{L}(\tilde{V})} Y$. In view of Lemma 20, the isomorphism of Corollary 2 descends under the covering

$$
\hat{\nu}_{12} \times \hat{\nu}_{23}: U_{3} \rightarrow\left(\hat{Y} \times{ }_{\mathcal{L}(\tilde{V})} \hat{Y}\right)_{0}
$$

to the desired isomorphism (33) over $\left(\hat{Y} \times_{\mathcal{L}(\tilde{V})} \hat{Y}\right)_{0} \times H$.
Step 2. It suffices to show that $\left(\gamma_{1}^{*} F\right) *\left(\gamma_{2}^{*} F\right)$ is perverse, the intermediate extension under the open immersion

$$
\left(\hat{Y} \times_{\mathcal{L}(\tilde{V})} \hat{Y}\right)_{0} \times H \subset\left(\hat{Y} \times_{\mathcal{L}(\tilde{V})} \hat{Y}\right) \times H
$$

Let us first explain the idea informally, at the level of 'functions'. For ($\hat{L}: \hat{M}) \in \hat{Y}$ write $F_{\hat{L}: \hat{M}}$ for the restriction of F to this point, this is a 'function' on H. For $(\tilde{L}, \tilde{M}) \in Y_{0}$ write $\mathbb{F}_{\tilde{L}, \tilde{M}}$ for the restriction of F_{0} to this point, this is also a 'function' on H (as in the proof of Lemma 18).

Let $((\hat{L}: \hat{N}),(\hat{N}: \hat{M})) \in \hat{Y} \times_{\mathcal{L}(\tilde{V})} \hat{Y}$. Pick any $\tilde{S}, \tilde{T} \in \mathcal{L}(\tilde{V})$ such that

- $(\tilde{L}, \tilde{S}, \tilde{N}),(\tilde{N}, \tilde{T}, \tilde{M}) \in U_{13}$,
- $\hat{\nu}_{13}(\tilde{L}, \tilde{S}, \tilde{N})=(\hat{L}: \hat{N}), \hat{\nu}_{13}(\tilde{N}, \tilde{T}, \tilde{M})=(\hat{N}: \hat{M})$,
- $\tilde{S} \cap \tilde{T}=\tilde{S} \cap \tilde{M}=0$.

By (32), we get (up to some explicit volumes that we omit)

$$
\begin{aligned}
F_{\hat{L}: \hat{N}} * F_{\hat{N}: \hat{M}}=\left(\mathbb{F}_{\tilde{L}, \tilde{S}} * \mathbb{F}_{\tilde{S}, \tilde{N}}\right) *\left(\mathbb{F}_{\tilde{N}, \tilde{T}} * \mathbb{F}_{\tilde{T}, \tilde{M}}\right)=C(\tilde{S}, \tilde{N}, \tilde{T}) \mathbb{F}_{\tilde{L}, \tilde{S}} * \mathbb{F}_{\tilde{S}, \tilde{T}} * \mathbb{F}_{\tilde{T}, \tilde{M}}= \\
C(\tilde{S}, \tilde{N}, \tilde{T}) C(\tilde{S}, \tilde{T}, \tilde{M}) \mathbb{F}_{\tilde{L}, \tilde{S}} * \mathbb{F}_{\tilde{S}, \tilde{M}}=C(\tilde{S}, \tilde{N}, \tilde{T}) C(\tilde{S}, \tilde{T}, \tilde{M}) F_{\hat{L}: \hat{M}}
\end{aligned}
$$

where $(\hat{L}: \hat{M})=\nu_{13}(\tilde{L}, \tilde{S}, \tilde{M})$. Now we turn back to the geometric setting.
Step 3. Consider the scheme \mathcal{X} classifying $(\tilde{L}, \tilde{S}, \tilde{N}) \in U_{13},(\tilde{N}, \tilde{T}, \tilde{M}) \in U_{13}$ such that $\tilde{S} \cap \tilde{T}=$ $\tilde{S} \cap \tilde{M}=0$. Let

$$
\zeta: \mathcal{X} \rightarrow \hat{Y} \times_{\mathcal{L}(\tilde{V})} \hat{Y}
$$

be the map sending the above collection to $\left(\hat{\nu}_{13}(\tilde{L}, \tilde{S}, \tilde{N}), \hat{\nu}_{13}(\tilde{N}, \tilde{T}, \tilde{M})\right)$. It is smooth and surjective. It suffices to show that

$$
\zeta^{*}\left(\left(\gamma_{1}^{*} F\right) *\left(\gamma_{2}^{*} F\right)\right)
$$

is a shifted perverse sheaf on $\mathcal{X} \times H$, the intermediate extension from $\zeta^{-1}\left(\left(\hat{Y} \times_{\mathcal{L}(\tilde{V})} \hat{Y}\right)_{0}\right) \times H$.
Let $\mu: \mathcal{X} \rightarrow U_{13}$ be the map sending a point of \mathcal{X} to $(\tilde{L}, \tilde{S}, \tilde{M})$. Applying (32) several times as in Step 2, we learn that there is a rank one local system \mathcal{J} on \mathcal{X} such that

$$
\zeta^{*}\left(\left(\gamma_{1}^{*} F\right) *\left(\gamma_{2}^{*} F\right)\right) \widetilde{\rightarrow} \mathcal{J} \otimes \mu^{*} \hat{\nu}_{13}^{*} F
$$

over $\mathcal{X} \times H$. Since F is an irreducible perverse sheaf, our assertion follows.
Thus, Theorem \square is proved.
7.1.6 Given k-points $\hat{L}, \hat{M} \in \hat{\mathcal{L}}(\tilde{V})$, let $F_{\hat{L}, \hat{M}}$ be the $*$-restriction of F under $(\hat{L}, \hat{M}) \times$ id $: H \rightarrow$ $\hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times H$. Define the functor $\mathcal{F}_{\hat{L}, \hat{M}}: \mathrm{D} \mathcal{H}_{\tilde{M}} \rightarrow \mathrm{D} \mathcal{H}_{\tilde{L}}$ by

$$
\mathcal{F}_{\hat{L}, \hat{M}}(K)=F_{\hat{L}, \hat{M}} * K
$$

By Theorem for $\hat{L}, \hat{N}, \hat{M} \in \hat{\mathcal{L}}(\tilde{V})$ the diagram is canonically 2 -commutative

$$
\begin{array}{lll}
\mathrm{D} \mathcal{H}_{\tilde{M}} & \stackrel{\mathcal{F}_{\hat{N}, \hat{M}}}{\rightarrow} \quad \mathrm{D} \mathcal{H}_{\tilde{N}} \\
& \searrow \mathcal{F}_{\hat{L}, \hat{M}} \downarrow \mathcal{F}_{\hat{L}, \hat{N}} \\
& \mathrm{D} \mathcal{H}_{\tilde{L}}
\end{array}
$$

To see that $\mathcal{F}_{\hat{L}, \hat{M}}$ preserves perversity, pick $\tilde{N} \in \mathcal{L}(\tilde{V})$ such that $\tilde{N} \cap \tilde{M}=\tilde{N} \cap \tilde{L}=0$ and use the commutativity of the latter diagram. This reduces the question to the case $\tilde{L} \cap \tilde{M}=0$, in the latter case $\mathcal{F}_{\hat{L}, \hat{M}}$ is nothing but the Fourier transform between the dual vector spaces L, M for the perfect pairing $\omega: L \times M \rightarrow 2 R$. Here $L=\tilde{L} \otimes_{R} k, M=\tilde{M} \otimes_{R} k$. This completes the definition of (26).
7.1.7 For a k-point $\hat{M} \in \hat{\mathcal{L}}(\tilde{V})$ let $i_{\hat{M}}: \hat{\mathcal{L}}(\tilde{V}) \rightarrow \hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times H$ be the map sending \hat{L} to ($\hat{L}, \hat{M}, 0$). Let

$$
\begin{equation*}
\mathcal{F}_{\hat{M}}: \mathrm{DH}_{\tilde{M}} \rightarrow \mathrm{D}(\hat{\mathcal{L}}(\tilde{V})) \tag{34}
\end{equation*}
$$

be the functor sending a complex K to $i_{\hat{M}}^{*}\left(F * \operatorname{pr}_{3}^{*} K\right)[\operatorname{dim} \mathcal{L}(\tilde{V})-\operatorname{dim} H]$. For any k-points $\hat{M}, \hat{N} \in \hat{\mathcal{L}}(\tilde{V})$ the diagram commutes

$$
\begin{array}{ll}
\mathrm{DH}_{\tilde{M}} & \xrightarrow[\mathcal{F}_{\hat{M}}]{\rightarrow} \quad \mathrm{D}(\hat{\mathcal{L}}(\tilde{V})) \\
& \searrow \mathcal{F}_{\hat{N}, \hat{M}} \uparrow \mathcal{F}_{\hat{N}} \\
& \mathrm{DH} \mathcal{H}_{\tilde{N}}
\end{array}
$$

Lemma 21. The functor $\mathcal{F}_{\hat{N}}$ is exact for the perverse t-structures.
Proof Let $\tilde{V} \rightrightarrows \tilde{M} \oplus \tilde{M}^{*}$ be a decomposition of \tilde{V} into an orthogonal sum of two free lagrangian submodules. Remind the open subscheme $\mathcal{U}(\tilde{M})=\{\tilde{L} \in \mathcal{L}(\tilde{V}) \mid \tilde{L} \cap \tilde{M}=0\} \subset \mathcal{L}(\tilde{V})$, it identifies naturally with $\operatorname{Sym}^{!2}(\tilde{M})$. It suffices to show that for any above decomposition the composition

$$
\begin{equation*}
\mathcal{H}_{\tilde{M}} \stackrel{\mathcal{F}_{\hat{H}}}{ } \mathrm{D}(\hat{\mathcal{L}}(\tilde{V})) \rightarrow \mathrm{D}(\mathcal{U}(\tilde{M})) \tag{35}
\end{equation*}
$$

is exact, where the second arrow is the restriction under the canonical section $\mathcal{U}(\tilde{M}) \rightarrow \hat{\mathcal{L}}(\tilde{V})$.
Let $M=\tilde{M} \otimes_{R} k$. The functor $\mathcal{H}_{\tilde{M}} \rightarrow \mathrm{P}\left(M^{*}\right)$ sending K to $\bar{K}=\left(\tau_{\tilde{M}^{*}}\right)^{*} K[-n-2]$ is an equivalence. Remind the map $\bar{\pi}: M^{*} \rightarrow \operatorname{Sym}^{* 2}\left(\tilde{M}^{*}\right)$ from Section 4.1. One checks that (35)) sends \bar{K} to $\operatorname{Four}_{\psi}\left(\bar{\pi}_{!} \bar{K}\right) \in \mathrm{P}\left(\operatorname{Sym}^{!2}(\tilde{M})\right)$. We are done.

Definition 9. The non-ramified Weil category $W(\hat{\mathcal{L}}(\tilde{V}))$ is the essential image of the functor (34). This is a full subcategory in $\mathrm{P}(\hat{\mathcal{L}}(\tilde{V}))$ independent of the choice of a k-point $\hat{M} \in \hat{\mathcal{L}}(\tilde{V})$.

The group \hat{G} acts naturally on $\hat{\mathcal{L}}(\tilde{V})$, hence also on $\mathrm{P}(\hat{\mathcal{L}}(\tilde{V}))$. This action preserves the full subcategory $W(\hat{\mathcal{L}}(\tilde{V}))$.
7.1.8 Let pr: $\bar{C} \rightarrow \hat{\mathcal{L}}(\tilde{V})$ be the vector bundle whose fibre at \hat{L} is L, where $L=\tilde{L} \otimes_{R} k$. Let act $_{l}: \bar{C} \times H \rightarrow \hat{\mathcal{L}}(\tilde{V}) \times H$ be the map sending $(\hat{L}, h, x \in L)$ to $\left(\hat{L}, \tau_{\tilde{L}}(x) h\right)$. A perverse sheaf $K \in \mathrm{P}(\hat{\mathcal{L}}(\tilde{V}) \times H)$ is act ${ }_{l}$-equivariant if it is equipped with an isomorphism

$$
\operatorname{act}_{l}^{*} K \widetilde{\rightarrow} \operatorname{pr}^{*} K
$$

satisfying the usual associativity property, and whose restriction to the unit section is the identity.
Definition 10. The Weil category $W(\tilde{V})$ is the category of pairs (K, σ), where $K \in \mathrm{P}(\hat{\mathcal{L}}(\tilde{V}) \times H)$ is act l_{l}-equivariant and $\left(Z(H), \mathcal{L}_{\psi}\right)$-equivariant, and

$$
\sigma: F * \operatorname{pr}_{23}^{*} K \rightrightarrows \operatorname{pr}_{13}^{*} K
$$

is an isomorphism. Here $\operatorname{pr}_{13}, \operatorname{pr}_{23}: \hat{\mathcal{L}}(\tilde{V}) \times \hat{\mathcal{L}}(\tilde{V}) \times H \rightarrow \hat{\mathcal{L}}(\tilde{V}) \times H$ are the corresponding projections. It is required that σ is compatible with the associativity constraint and the unit section constraint of F.

The group \hat{G} acts on $\hat{\mathcal{L}}(\tilde{V}) \times H$ sending $(g \in \hat{G}, \hat{L}, h)$ to $(g \hat{L}, g h)$. This action extends to an action of \hat{G} on the category $W(\tilde{V})$. One has a natural functor $W(\tilde{V}) \rightarrow W(\hat{\mathcal{L}}(\tilde{V}))$, we don't know if this is an equivalence.

Appendix A. Generalities on H-gerbs

A. 1 The notion of a group stack on an arbitrary site is essentially given in [5], where it is called a gr-champ. Here is its algebro-geometric version. Let S be a scheme, \mathcal{G} be an algebraic S-stack. Call it a group stack over S if we are given an action map $\nu: \mathcal{G} \times_{S} \mathcal{G} \rightarrow \mathcal{G}$, a unit section $i: S \rightarrow \mathcal{G}$ over S, and the associativity 2-morphism $\alpha: \nu \circ(\nu \times \mathrm{id}) \rightarrow \nu \circ(\mathrm{id} \times \nu)$ making the following diagram 2 -commutative

$$
\begin{array}{ccc}
\mathcal{G} \times{ }_{S} \mathcal{G} \times \times_{S} \mathcal{G} & \xrightarrow{\nu \times \mathrm{id}} & \mathcal{G} \times{ }_{S} \mathcal{G} \\
\downarrow \text { id } \times \nu & & \downarrow \nu \\
\mathcal{G} \times{ }_{S} \mathcal{G} & \xrightarrow{\nu} & \mathcal{G}
\end{array}
$$

The morphism α should satisfy the following pentagone axiom. For a scheme T and T-points $C_{1}, C_{2}, C_{3}, C_{4} \in \mathcal{G}$ the diagram commutes

We should also be given 2-morphisms $\tau_{l}: \nu \circ(i \times \mathrm{id}) \rightarrow \mathrm{id}$ and $\tau_{r}: \nu \circ(\mathrm{id} \times i) \rightarrow \mathrm{id}$ making the following diagrams 2-commutative

Writing O for the unit object of \mathcal{G}, the restrictions $\tau_{l}, \tau_{r}: O O \rightarrow O$ should coincide. Further, the morphisms $\alpha, \tau_{l}, \tau_{r}$ should be compatible, namely, for a scheme T and T-points $C_{1}, C_{2} \in \mathcal{G}$ the diagrams commute

where O is the unit section of \mathcal{G}. Finally, we require that for any scheme T and any T-point $C \in \mathcal{G}$, writing \mathcal{G}_{T} for the category fibre of \mathcal{G} over T, the functors $\mathcal{G} \times{ }_{S} T \rightarrow \mathcal{G} \times{ }_{S} T, D \mapsto C D$ and $\mathcal{G} \times{ }_{S} T \rightarrow \mathcal{G} \times{ }_{S} T, D \mapsto D C$ are isomorphisms of T-stacks. (We do not explicitely choose a quasi-inverse under multiplication, as we are interested only in actions of \mathcal{G}).
A.2.1 The notion of a torsor over a group stack is defined in (5], Definition 6.1). Let us formulate its version for algebraic stacks.

Let S be a scheme, \mathcal{G} be a group stack over S, write $\nu: \mathcal{G} \times{ }_{S} \mathcal{G} \rightarrow \mathcal{G}$ for the product morphism, let $i: S \rightarrow \mathcal{G}$ be the unity morphism.

Let Y be an S-scheme and $\hat{Y} \rightarrow Y$ be an algebraic stack over Y. An action of \mathcal{G} on \hat{Y} over Y is a data of an action map $m: \mathcal{G} \times{ }_{S} \hat{Y} \rightarrow \hat{Y}$ over Y, and a 2 -morphism $\mu: m \circ(\nu \times \mathrm{id}) \rightarrow m \circ(\mathrm{id} \times m)$ making the following diagram 2-commutative

$$
\begin{array}{ccc}
\mathcal{G} \times{ }_{S} \mathcal{G} \times{ }_{S} \hat{Y} & \xrightarrow{\nu \times \text { id }} & \mathcal{G} \times_{S} \hat{Y} \tag{36}\\
\downarrow \text { id } \times m & & \downarrow m \\
\mathcal{G} \times{ }_{S} \hat{Y} & \xrightarrow{m} & \hat{Y}
\end{array}
$$

The 2-morphism μ should satisfy the pentagone axiom. Namely, for any test scheme T and T-points $C_{1}, C_{2}, C_{3} \in \mathcal{G}, D \in \hat{Y}$ the diagram commutes

$$
\begin{array}{cccc}
\left(\left(C_{1} C_{2}\right) C_{3}\right) D & & \rightarrow & \\
\downarrow \mu & & \left(C_{1}\left(C_{2} C_{3}\right)\right) D \\
\downarrow \mu \\
\left(C_{1} C_{2}\right)\left(C_{3} D\right) & \stackrel{\mu}{\rightarrow} C_{1}\left(C_{2}\left(C_{3} D\right)\right) \stackrel{\mu}{\bullet} & C_{1}\left(\left(C_{2} C_{3}\right) D\right),
\end{array}
$$

where the top horizontal arrow is the associativity constraint for the group stack \mathcal{G}. We further should be given a 2-morphism $\lambda: m \circ(i \times \mathrm{id}) \rightrightarrows$ id making the following diagram 2-commutative

$$
\begin{array}{cc}
\hat{Y} & \xrightarrow{i \times \text { id }} \\
& \searrow \text { id } \\
& \mathcal{G} \times{ }_{S} \hat{Y} \\
& \downarrow m \\
& \hat{Y}
\end{array}
$$

The morphisms μ and λ should be compatible, namely, for a test scheme T and T-points $C \in$ $\mathcal{G}, D \in \hat{Y}$ the diagrams commute

where O is the unit object of \mathcal{G}, and τ_{l}, τ_{r} are parts of data for the group stack \mathcal{G}.
$A \mathcal{G}$-torsor over an S-scheme Y is a data of an algebraic stack $\hat{Y} \rightarrow Y$ over Y, an action of \mathcal{G} on \hat{Y} over Y such that two additional conditions hold. First, $m \times \mathrm{pr}_{2}: \mathcal{G} \times{ }_{S} \hat{Y} \rightarrow \hat{Y} \times_{Y} \hat{Y}$ should be an isomorphism. Second, after localization in fppf topology in Y there should exist an isomorphism $\hat{Y} \leftrightarrows Y \times_{S} \mathcal{G}$ such that the action map becomes isomorphic to the left translations on \mathcal{G}.

Now let \hat{Y} and \hat{Y}^{\prime} be two \mathcal{G}-torsors over Y. A morphism of such \mathcal{G}-torsors is a pair (f, h), where $f: \hat{Y} \rightarrow \hat{Y}^{\prime}$ is a morphism over Y, and $h: m \circ(\mathrm{id} \times f) \rightarrow f \circ m$ is a 2-morphism making the following diagram 2-commutative

Besides, μ, μ^{\prime} and h should be compatible, namely, for a test scheme T and T-points $C_{1}, C_{2} \in \mathcal{G}$, $D \in \hat{Y}$ the diagram commutes

Given two morphisms $\left(f_{1}, h_{1}\right)$ and $\left(f_{2}, h_{2}\right)$ from \hat{Y} to \hat{Y}^{\prime}, a natural transformation from $\left(f_{1}, h_{1}\right)$ to $\left(f_{2}, h_{2}\right)$ is a 2 -morphism $\phi: f_{1} \rightarrow f_{2}$ such that ϕ is compatible with the actions of \mathcal{G} on \hat{Y} and \hat{Y}^{\prime}, namely, for a test scheme T and T-points $C \in \mathcal{G}, D \in \hat{Y}$ the diagram commutes

\[

\]

A.2.2 Now assume that H is a commutative group scheme over S and \mathcal{G} is the S-stack $B(H)$, the classifying stack. Remind that for a morphism of schemes $S^{\prime} \rightarrow S$, the S^{\prime}-points of $B(H)$ is the category of $H \times{ }_{S} S^{\prime}$-torsors on S^{\prime}. Then $B(H)$ is a commutative group stack over S.

For this particular \mathcal{G} the notion of a \mathcal{G}-torsor becomes nothing but a H-gerb over Y. The definition simplifies considerably as follows ([6] Definition 2.9, p. 49). An H-ger ${ }^{2}$ over Y is a stack $\hat{Y} \rightarrow Y$ together with a 2-morphism $\rho: \operatorname{pr}_{2} \rightarrow \operatorname{pr}_{2}$, where $\operatorname{pr}_{2}: H \times_{S} \hat{Y} \rightarrow \hat{Y}$ is the projection. It is subject to the following condition. For a scheme T and a T-point $D \in \hat{Y}$ write Aut $\left.D\right|_{T}$ for the sheaf of groups on T of automorphisms of D. It is required that for any S-scheme T the map $\rho:\left.H\right|_{T} \rightarrow$ Aut $\left.D\right|_{T}$ is an isomorphism of sheaves of groups on T (in fppf topology).

Given an H-gerb $\hat{Y} \rightarrow Y$, a T-point $D \in \hat{Y}$ yields an isomorphism $\hat{Y} \times{ }_{S} T \rightrightarrows B(H) \times_{S} T$, then the action map $m: B(H) \times_{S}\left(\hat{Y} \times_{S} T\right) \rightarrow \hat{Y} \times_{S} T$ becomes the morphism

$$
B(H) \times_{S} B(H) \times_{S} T \rightarrow B(H) \times_{S} T
$$

sending $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, t\right)$ to $\left(\mathcal{F}_{1} \otimes \mathcal{F}_{2}, t\right)$. Here \mathcal{F}_{i} are H-torsors over T.
Given two H-gerbs \hat{Y} and \hat{Y}^{\prime} over Y, a morphism of H-gerbs is a 1 -morphism $f: \hat{Y} \rightarrow \hat{Y}^{\prime}$ such that for any scheme T, any T-points $D \in \hat{Y}, \sigma \in H$ we have $f\left(\rho_{\hat{Y}}(\sigma)\right)=\rho_{\hat{Y}^{\prime}}(\sigma)$. We strengthen that there is no need to provide in addition a 2-morphism h as in A.2.1 (it is constructed uniquely out of the other data).
A. 3 Assume in addition that G is a group scheme over S, and G acts on an S-scheme Y over S. The H-gerb $\hat{Y} \rightarrow Y$ then gives rise to a group stack \hat{G} over G defined as follows. For an S-scheme T the T-points of \hat{G} is the category of pairs (g, f), where $g \in G(T)$ and

$$
f: g^{*}\left(\hat{Y} \times{ }_{S} T\right) \rightrightarrows \widehat{Y} \times_{S} T
$$

is an isomorphism of H-gerbs over $Y \times_{S} T$. A morphism from $\left(g_{1}, f_{1}\right)$ to $\left(g_{2}, f_{2}\right)$ exists only under the condition $g_{1}=g_{2}$ and it is a natural transformation from f_{1} to f_{2}.

The product morphism $\hat{G} \times_{S} \hat{G} \rightarrow \hat{G}$ sends a T-point $\left(g_{1}, f_{1}\right),\left(g_{2}, f_{2}\right)$ to the T-point $\left(g_{1} g_{2}, f\right)$, where f is the composition

$$
g_{2}^{*} g_{1}^{*}\left(\hat{Y} \times_{S} T\right) \xrightarrow{g_{2}^{*} f_{1}} g_{2}^{*}\left(\hat{Y} \times_{S} T\right) \xrightarrow{f_{2}} \hat{Y} \times_{S} T,
$$

Assume that the element of $\mathrm{H}^{2}(Y, H)$ corresponding to \hat{Y} is stable under G, so that $\hat{G} \rightarrow G$ is surjective. Assume also the following condition:
(*) For any geometric point $s \in S$ any H-torsor on $Y \times_{S} s$ is trivial
Then \hat{G} is algebraic and fits into an exact sequence of group stacks over k

$$
1 \rightarrow B(H) \rightarrow \hat{G} \rightarrow G \rightarrow 1
$$

[^1]Besides, \hat{G} acts naturally on \hat{Y}, and the projection $\hat{Y} \rightarrow Y$ is equivariant with respect to the homomorphism $\hat{G} \rightarrow G$. The action map $\hat{G} \times{ }_{S} \hat{Y} \rightarrow \hat{Y}$ sends a T-point $(g, f) \in \hat{G}(T), D \in \hat{Y}(T)$ to $p\left(f^{-1} D\right)$, where p is given by the diagram, whose square is cartesian

$$
\begin{array}{ccccc}
\hat{Y} \times_{S} T & \xrightarrow{f^{-1}} & g^{*}\left(\hat{Y} \times_{S} T\right) & \xrightarrow{p} & \hat{Y} \times_{S} T \\
& \downarrow & \downarrow & & \downarrow \\
& Y \times_{S} T & \xrightarrow{g} & Y \times_{S} T
\end{array}
$$

A. 4 Let \mathcal{G} be an algebraic group stack over S. Assume that \hat{Y} is an algebraic stack over S, and \mathcal{G} acts on \hat{Y} over S. Assume that for any scheme T and T-points $g \in \mathcal{G}, y \in \hat{Y}$ the natural map $\operatorname{Aut}_{G_{T}}(g) \rightarrow \operatorname{Aut}_{\hat{Y}_{T}}(g y)$ is injective. Here G_{T} is the category fibre of G over T, similarly for \hat{Y}_{T}. According to ([10], Section 2.4.4), in this case one might define the stack quotient \hat{Y} / \mathcal{G}, which is a priori a 2 -stack, it turns out to be representable by a 1 -stack (we don't claim anything about algebraicity of the latter).

Assume that \mathcal{G} is smooth of finite type over S. Let K be an ℓ-adic perverse sheaf on \hat{Y} (here ℓ is invertible on S). Say that K is \mathcal{G}-equivariant if we are given an isomorphism

$$
\xi: m^{*} K \rightrightarrows \operatorname{pr}_{2}^{*} K
$$

of shifted perverse sheaves for the maps $m, \mathrm{pr}_{2}: \mathcal{G} \times_{S} \hat{Y} \rightarrow \hat{Y}$, where m is the action map. It is subject to the following conditions (in the notation of A.2.1). The diagram of morphisms (of shifted perverse sheaves on $\mathcal{G} \times{ }_{S} \mathcal{G} \times{ }_{S} \hat{Y}$) induced by (36) should be commutative

$$
\begin{aligned}
& (\nu \times \mathrm{id})^{*} m^{*} K \xrightarrow{(\nu \times \mathrm{id})}{ }^{*} \xi \quad \operatorname{pr}_{3}^{*} K \quad \rightrightarrows \operatorname{pr}_{23}^{*} \operatorname{pr}_{2}^{*} K \\
& \downarrow \mu^{*} \quad \uparrow \mathrm{pr}_{23}^{*} \xi \\
& (\mathrm{id} \times m)^{*} m^{*} K \xrightarrow{(\mathrm{id} \times m)^{*} \xi}(\mathrm{id} \times m)^{*} \operatorname{pr}_{2}^{*} K \xrightarrow{\leftrightharpoons} \operatorname{pr}_{23}^{*} m^{*} K
\end{aligned}
$$

This means that for a scheme T and T-points $C_{1}, C_{2} \in \mathcal{G}, D \in \hat{Y}$ the diagram commutes

$$
\begin{array}{ccc}
K_{\left(C_{1} C_{2}\right) D} & \xrightarrow{\xi} & K_{D} \\
\downarrow \mu^{*} & & \uparrow \xi \\
K_{C_{1}\left(C_{2} D\right)} & \xrightarrow{\xi} & K_{C_{1} D}
\end{array}
$$

where K with a subscript denotes the corresponding $*$-restriction.
We used the following. Given two stacks \mathcal{Y}, \mathcal{Z} and an ℓ-adic complex K on \mathcal{Y}, the inverse image of K is a functor
$\{$ category of 1-morphisms $\mathcal{Z} \rightarrow \mathcal{Y}\} \rightarrow\{$ the derived category of ℓ - adic sheaves on $\mathcal{Z}\}$
Further, for any T-point $D \in \hat{Y}$, writing O for the unit section of \mathcal{G}, the diagram of ℓ-adic complexes on T should commute

$$
\begin{array}{rlrl}
K_{O D} & \xrightarrow{\lambda^{*}} & K_{D} \\
& \searrow \xi \xi & \| \\
& K_{D}
\end{array}
$$

Appendix B. Comparison with The local field case

B. 1 In this section we show that the Weil representation considered in Section 2 is obtained by some reduction from the Weil representation over the non archimedian local field of characteristic zero (and residual characteristic two).

Let F be a finite unramified extension of $\mathbb{Q}_{2}, \mathcal{O} \subset F$ be the ring of integers and k be the residue field of \mathcal{O}. Set $R=\mathcal{O} / 4 \mathcal{O}$, so R is the ring of Witt vectors of length two over k. Let q be the number of elements of k.

Let W be a F-vector space of dimension $2 n$ with symplectic form $\langle.,\rangle:. W \times W \rightarrow F$. Write $H(W)$ for the Heisenberg group $W \tilde{\times} F$ with operation

$$
\left(w_{1}, z_{1}\right)\left(w_{2}, z_{2}\right)=\left(w_{1}+w_{2}, z_{1}+z_{2}+\frac{1}{2}\left\langle w_{1}, w_{2}\right\rangle\right)
$$

The symbol $\tilde{\times}$ will refer to the above product.
As above, $l \neq 2$. Fix an additive character $\chi_{0}: \mathbb{Q}_{2} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ whose conductor is \mathbb{Z}_{2}. Assume that the restriction $\chi_{0}: \frac{1}{4} \mathbb{Z}_{2} / \mathbb{Z}_{2} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ is the character $\psi: \mathbb{Z} / 4 \mathbb{Z} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ we fixed in Section 1. Let $\chi: F \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ be given by $\chi(z)=\chi_{0}(\operatorname{tr} z)$, here $\operatorname{tr}: F \rightarrow \mathbb{Q}_{2}$ is the trace.

A subgroup in $A \subset W$ is closed iff $\mathbb{Z}_{2} A \subset A$ (cf. [20], p.32). For a closed subgroup $A \subset W$ let $A^{\perp}=\{w \in W \mid\langle w, a\rangle \in \mathcal{O}$ for all $a \in A\}$. Say that a \mathcal{O}-lattice $M \subset W$ is a symplectic lattice iff $M^{\perp}=M$.

For a closed subgroup $A \subset W$ with $A^{\perp}=A$ let $\bar{A}=A \tilde{\times} F \subset H(W)$, this is a subgroup. The group $A \tilde{\times}\left(\frac{1}{2} \mathcal{O} / \mathcal{O}\right)$ is abelian. The whole difficulty comes from the fact that there are no natural way to extend the character χ from F to \bar{A}.

Let $M \subset W$ be a symplectic lattice. Consider the $\operatorname{group}(M / 2 M) \tilde{\times}\left(\frac{1}{2} \mathcal{O} / \mathcal{O}\right)$, it is abelian (and naturally has a structure of a commutative unipotent algebraic group over k). Let ϕ : $M / 2 M \rightarrow \frac{1}{2} \mathcal{O} / \mathcal{O}$ be a quadratic form such that

$$
\phi\left(m_{1}+m_{2}\right)-\phi\left(m_{1}\right)-\phi\left(m_{2}\right)=\frac{1}{2}\left\langle m_{1}, m_{2}\right\rangle
$$

for all $m_{i} \in M / 2 M$. It yields a splitting of the exact sequence of abelian groups

$$
0 \rightarrow \frac{1}{2} \mathcal{O} / \mathcal{O} \rightarrow(M / 2 M) \tilde{\times}\left(\frac{1}{2} \mathcal{O} / \mathcal{O}\right) \rightarrow M / 2 M \rightarrow 0
$$

given by $m \mapsto(m, \phi(m))$. Once such ϕ is chosen, we get a unique character $\chi_{\phi}: \bar{M} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ extending χ. Namely, for $(m, z) \in M \tilde{\times} F$ we set $\chi_{\phi}(m, z)=\chi(\phi(m)+z)$.

Then we get a model of the Weil representation of $H(W)$

$$
\mathcal{H}_{M, \phi}=\left\{f: H(W) \rightarrow \overline{\mathbb{Q}}_{\ell} \mid f(w h)=\chi_{\phi}(w) f(h), w \in \bar{M}\right.
$$

there is an open subgroup $M_{1} \subset W$ such that $\left.f(h(w, 0))=f(h), w \in M_{1}, h \in H(W)\right\}$

Let $G(F)=\mathbb{S p}(W)(F)$ and $G(\mathcal{O})$ be the stabilizor of M in $G(F)$. The group $G(F)$ acts on $H(W)$ by automorphisms, namely $g \in G(F)$ sends (w, z) to $(g w, z)$. Write $\rho: H(W) \rightarrow$ $\operatorname{Aut}\left(\mathcal{H}_{M, \phi}\right)$ for the action by right translations. The model $\mathcal{H}_{M, \phi}$ yields the metaplectic extension

$$
\begin{equation*}
1 \rightarrow \overline{\mathbb{Q}}_{\ell}^{*} \rightarrow \tilde{G}(F) \rightarrow G(F) \rightarrow 1 \tag{37}
\end{equation*}
$$

where

$$
\tilde{G}(F)=\left\{(g, \xi) \mid g \in G(F), \xi \in \operatorname{Aut}\left(\mathcal{H}_{M, \phi}\right) ; \rho(g h) \circ \xi=\xi \circ \rho(h), \text { for } h \in H(W)\right\}
$$

Let $G_{\phi}(\mathcal{O})$ be the group of those $g \in G(\mathcal{O})$ whose image in $\operatorname{Sp}(M / 2 M)$ preserves ϕ. Then for all $g \in G_{\phi}(\mathcal{O}), h \in \bar{M}$ we have $\chi_{\phi}(g h)=\chi_{\phi}(h)$. It follows that $G_{\phi}(\mathcal{O})$ acts on $\mathcal{H}_{M, \phi}$, namely $g \in G_{\phi}(\mathcal{O})$ sends $f \in \mathcal{H}_{M, \phi}$ to $g f$ given by $(g f)(h)=f\left(g^{-1} h\right), h \in H(W)$. This is a splitting of (37) over $G_{\phi}(\mathcal{O})$.

The space $\mathcal{H}_{M, \phi}$ has a distinguished vector v_{M}, which is extension by zero under $\bar{M} \hookrightarrow H(W)$ of the function $\chi_{\phi}: \bar{M} \rightarrow \overline{\mathbb{Q}}_{\ell}$. It also has a distinguished linear functional $e_{M}: \mathcal{H}_{M, \phi} \rightarrow \overline{\mathbb{Q}}_{\ell}$ sending f to $f(0)$.
Remark 11. For any ϕ as above there is a lattice $2 M \subset N \subset M$ such that $N / 2 M \subset M / 2 M$ is a lagrangian, and ϕ vanishes identically on $N / 2 M$.
B. 2 If $M_{1} \subset W$ is a \mathcal{O}-lattice such that $M_{1} \subset M_{1}^{\perp}$ then we get the induced symplectic form $\langle.,$. on M_{1}^{\perp} / M_{1} with values in F / \mathcal{O}. If moreover, $M_{1} \subset M \subset M_{1}^{\perp}$ then M / M_{1} is a lagrangian in M_{1}^{\perp} / M_{1}.

Lemma 22. Let $M_{1} \subset M$ be a \mathcal{O}-lattice. The space $\mathcal{H}_{M, \phi}^{M_{1}}:=\left\{f \in \mathcal{H}_{M, \phi} \mid f(h(w, 0))=\right.$ $f(h)$, for all $\left.w \in M_{1}\right\}$ is as follows.

1) If ϕ vanishes on $M_{1} /\left(M_{1}+2 M\right) \subset M / 2 M$ then $\mathcal{H}_{M, \phi}^{M_{1}}$ identifies (via extension by zero) with the space

$$
\left\{f: M_{1}^{\perp} \tilde{x} F \rightarrow \overline{\mathbb{Q}}_{\ell} \mid f(w h)=\chi_{\phi}(w) f(h), w \in \bar{M}\right\}
$$

The latter space is

$$
\left\{f: M_{1}^{\perp} \rightarrow \overline{\mathbb{Q}}_{\ell} \left\lvert\, f(w+y)=\chi\left(\phi(w)+\frac{1}{2}\langle y, w\rangle\right) f(y)\right., \text { for all } w \in M, y \in M_{1}^{\perp}\right\}
$$

2) We have $\mathcal{H}_{M, \phi}^{M}=0$.

Proof 1) Assume that $f \in \mathcal{H}_{M, \phi}^{M_{1}}$ does not vanish on $(w, 0) \in H(W)$. Then for any $m_{1} \in M_{1}$ we have $f(w, 0)=f\left((w, 0)\left(m_{1}, 0\right)\right)=f\left(\left(m_{1},\left\langle w, m_{1}\right\rangle\right)(w, 0)\right)=\chi\left(\phi\left(m_{1}\right)+\left\langle w, m_{1}\right\rangle\right) f((w, 0))$. So, for any $m_{1} \in M_{1}$ we have $\chi\left(\phi\left(m_{1}\right)+\left\langle w, m_{1}\right\rangle\right)=1$.
2) is easy.
Let $2 M \subset N \subset M$ be a \mathcal{O}-lattice such that $N / 2 M \subset M / 2 M$ is lagrangian, and ϕ vanishes on $N / 2 M$. Note that $N^{\perp}=\frac{1}{2} N$ and $\operatorname{dim}_{\bar{Q}_{\ell}} \mathcal{H}_{M, \phi}^{N}=q^{n}$. The action of $N^{\perp} \tilde{\times} F$ on $\mathcal{H}_{M, \phi}$ preserves
the subspace $\mathcal{H}_{M, \phi}^{N}$. The symplectic form $\langle.,\rangle:. N^{\perp} \times N^{\perp} \rightarrow \frac{1}{2} \mathcal{O}$ is non degenerate, and $N^{\perp} \tilde{x} \frac{1}{4} \mathcal{O} \subset N^{\perp} \tilde{x} F$ is a subgroup. Besides,

$$
N \tilde{\times} \mathcal{O} \subset N^{\perp} \tilde{\times} \frac{1}{4} \mathcal{O}
$$

is a normal subgroup, and the quotient will be denoted $H\left(N^{\perp} / N\right)$, it acts naturally on $\mathcal{H}_{M, \phi}^{N}$. We have an exact sequence of groups

$$
1 \rightarrow \frac{1}{4} \mathcal{O} / \mathcal{O} \rightarrow H\left(N^{\perp} / N\right) \rightarrow N^{\perp} / N \rightarrow 1
$$

Its push-forward under $\frac{1}{4} \mathcal{O} / \mathcal{O} \rightarrow \frac{1}{4} \mathcal{O} / \frac{1}{2} \mathcal{O}$ admits a splitting. Let \bar{M}_{N} be the image of $M \tilde{\times} \frac{1}{4} \mathcal{O}$ in $H\left(N^{\perp} / N\right)$. Then χ_{ϕ} yields a character still denoted $\chi_{\phi}: \bar{M}_{N} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$, and $\mathcal{H}_{M, \phi}^{N}$ identifies with the representation of $H\left(N^{\perp} / N\right)$ in

$$
\begin{equation*}
\left\{f: H\left(N^{\perp} / N\right) \rightarrow \overline{\mathbb{Q}}_{\ell} \mid f(w h)=\chi_{\phi}(w) f(h), \text { for all } w \in \bar{M}_{N}, h \in H\left(N^{\perp} / N\right)\right\} \tag{38}
\end{equation*}
$$

acting in the latter space by right translations. In this way $\mathcal{H}_{M, \phi}^{N}$ becomes the Schrodinger model of the oscillator representation of $H\left(N^{\perp} / N\right)$ for the enhanced lagrangian $M / N \subset N^{\perp} / N$. The enhanced structure $\tau: M / N \rightarrow H\left(N^{\perp} / N\right)$ is as follows. First, we have a natural surjective homomorphism

$$
\delta: N^{\perp} \tilde{\times}\left(\frac{1}{4} \mathcal{O} / \mathcal{O}\right) \rightarrow H\left(N^{\perp} / N\right)
$$

then for $m \in M$ we have $\tau(m \bmod N)=\delta(m,-\phi(m))$.
Now let $G_{N} \subset G(F)$ be the stabilizor of N. Let \tilde{G}_{N} be its preimage in $\tilde{G}(F)$. Since G_{N} preserves $N \times\{0\} \subset H(W)$, it follows that \tilde{G}_{N} acting on $\mathcal{H}_{M, \phi}$ preserves $\mathcal{H}_{M, \phi}^{N}$. The group G_{N} acts naturally on $N^{\perp} \tilde{\times} \frac{1}{4} \mathcal{O}$, and the action of G_{N} on $H\left(N^{\perp} / N\right)$ factors through an action of $\operatorname{Sp}\left(N^{\perp} / 2 N\right)$. Set $V=N^{\perp} / N$ and $\tilde{V}=N^{\perp} / 2 N$.

One gets the 'finite' metaplectic extension $1 \rightarrow \overline{\mathbb{Q}}_{\ell}^{*} \rightarrow \tilde{G}_{\tilde{V}} \rightarrow \mathbb{S p}(\tilde{V}) \rightarrow 1$, where

$$
\tilde{G}_{\tilde{V}}=\left\{\left(g, \xi_{0}\right) \mid g \in \mathbb{S p}(\tilde{V}), \xi_{0} \in \operatorname{Aut}\left(\mathcal{H}_{M, \phi}^{N}\right) ; \rho_{0}(g h) \circ \xi_{0}=\xi_{0} \circ \rho_{0}(h), \text { for } h \in H\left(N^{\perp} / N\right)\right\}
$$

Here ρ_{0} is the action of $H\left(N^{\perp} / N\right)$ by right translations in (38), and ξ_{0} is an automorphism of the corresponding $\overline{\mathbb{Q}}_{\ell}$-vector space.

Let $G_{N, 1}$ be the kernel of $G_{N} \rightarrow \mathbb{S p}(\tilde{V})$. Then $G_{N, 1} \subset G_{\phi}(\mathcal{O})$, and the composition $G_{N, 1} \hookrightarrow$ $G_{\phi}(\mathcal{O}) \hookrightarrow \tilde{G}(F)$ realizes $G_{N, 1}$ as a normal subgroup in \tilde{G}_{N}. This normal subgroup acts trivially on $H\left(N^{\perp} / N\right)$, hence a morphism of exact sequences

$$
\begin{aligned}
1 \rightarrow \underset{\ell}{\overline{\mathbb{Q}}_{\ell}^{*}} \rightarrow \tilde{G}_{\tilde{V}} & \rightarrow \operatorname{Sp}(\tilde{V}) \\
\uparrow \mathrm{idd}^{\uparrow} & \rightarrow 1 \\
1 & \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}
\end{aligned} \rightarrow \tilde{G}_{N} \rightarrow G_{N} \rightarrow 1
$$

yielding an isomorphism $\left(\tilde{G}_{N}\right) / G_{N, 1} \rightrightarrows \tilde{G}_{\tilde{V}}$.

References

[1] A. A. Albert, Symmetric and alternate matrices in an arbitrary field. I, Trans. Amer. Math. Soc. 43 (1938), 386-436
[2] R. Baeza, Quadratic forms over semilocal rings, LNM 655 (1978), Springer-Verlag
[3] R. Baeza, Some algebraic aspects of quadratic forms over fields of characteristic two, Documenta Math. Quadratic form LSU (2001), p. 49-63
[4] N. Bourbaki, Éléments des mathématiques, Algèbre, Ch. 9, Formes sesquilinéaires et formes quadratiques, Hermann (1959)
[5] L. Breen, Bitorseurs et cohomologie non abélienne, The Grothendieck Festschrift, Birkhauser (1990) p. 401-477
[6] L. Breen, On the classification of 2-gerbes and 2-stacks, Astérisque 225 (1994), Société mathématique de France
[7] J.-L. Brylinski, Differentialble cohomology of gauge groups, math.DG/0011069
[8] J.-L. Brylinski, P. Deligne, Central extensions of reductive groups by K_{2}, Publ. Math. de l'IHES, 94 (2001), p. 5-85
[9] J.-L. Brylinski, D. D. McLaughlin, The geometry of the first Pontryagin class and of line bundles on loop spaces I, Duke Math. Jour. 35 (1994), 603-638
[10] J.-F. Dat, Lemme fondamental et endoscopie, une approche géométrique (d'après Laumon et Ngô), exposé Bourbaki 2004-05, Nu. 940
[11] R. K. Dennis, M. R. Stein, K_{2} of discrete valuation rings, Adv. in Math. 18 (1975), p. 182-238
[12] D. Gaitsgory, On De Jong's conjecture, Israel J. of Math. 157 (2007), p. 155-191
[13] M.J. Greenberg, Schemata over local rings, Ann. of Math., (2) 73 (1961), p. 624-648
[14] Sh. Gurevich, R. Hadani, The Weil representation in characteristic two, arXiv:0808.1664 (to appear in Advances of Math.)
[15] G. Hiss, A. Zalesski, The Weil-Steinberg character of finite classical groups, Representation Theory 13 (2009), p. 427-459
[16] I. M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math 95 (1973), 594635
[17] V. Lafforgue, S. Lysenko, Geometric Weil representation: local field case, Compos. Math. 145 (2009), no. 1, p. 56-88
[18] M. C. López-Díaz, I. F. Rúa, An invariant for quadratic forms valued in Galois rings of characteristic 4, Finite fields and their applications 13 (2007), p. 946-961
[19] S. Lysenko, Moduli of metaplectic bundles on curves and Theta-sheaves, Ann. Scient. Éc. Norm. Sup. 4 série, t. 39 (2006), p. 415-466
[20] C. Moeglin, M.-F. Vignéras, J.-L. Waldspurger, Correspondances de Howe sur un corps p-adique, Lecture Notes in Math. 1291, Springer-Verlag (1987)
[21] M. Saibi, Transformation de Fourier-Deligne sur les groupes unipotents, Ann. Institut Fourier, t. 46, n. 5 (1996), p. 1205-1242
$[22]$ D. A. Suprunenko, Soluble and nilpotent linear groups (In Russian), Belorussian Univ. Press, Minsk, 1958 (English translation: Amer. Math. Soc. Providence, 1963)
[23] T. Thomas, The Maslov index as a quadratic space, Math. Res. Lett. vol 13 no 6 (2006), 985-999
[24] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143-211.
[25] J. A. Wood, Witt's extension theorem for mod four valued quadratic forms, Trans. AMS, vol. 336, Number 1 (1993)

[^0]: ${ }^{1}$ The actions we consider are 'free' in a suitable sense, so that the quotient could be defined as a 1 -stack (10 , Section 2.4.4).

[^1]: ${ }^{2}$ in loc.cit. it is called an abelian H-gerb

