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TWISTED GEOMETRIC SATAKE EQUIVALENCE: REDUCTIVE CASE
SERGEY LYSENKO

ABSTRACT. In this paper we extend the twisted Satake equivalence established in []] for
almost simple groups to the case of split reductive groups.

1. INTRODUCTION

Let G be a connected reductive group over an algebraically closed field. Brylinski-Deligne
have developed the theory of central extensions of G by Ks. According to Weissman [16],
this is a natural framework for the representation theory of metaplectic groups over local
and global fields (allowing to formulate a conjectural extension of the Langlands program for
metaplectic groups). One may hope the geometric Langlands program could also naturally
extend to this setting. As a step in this direction, in this paper we extend the twisted Satake
equivalence established in [§] for almost simple groups to the case of reductive groups. Our
input data model an extension of G by K, (and cover all the isomorphism classes of such
extensions).

2. MAIN RESULT

2.1. Notations. Let k be an algebraically closed field. Let G be a split reductive group
over k, T C B C G be a maximal torus and a Borel subgroup. Let A (resp., A) denote
the coweights (resp., weights) lattice of 7. Let W denote the Weyl group of (T, G). Set
O =k[[t]] € F =Ek((t)). Asin ([12], Section 3.2), we denote by £°(T") the category of pairs: a
symmetric bilinear form x : A® A — Z, and a central super extension 1 — k* — A — A — 1
whose commutator is (y;,y2). = (—1)F0172),

Let X be a smooth projective connected curve over k. Write €2 for the canonical line
bundle on X. Fix once and for all a square root O3 of Q.

Let P(X,A) denote the category of theta-data ([3], Section 3.10.3). Recall the functor
&(T) — PY(X,A) defined in ([I2], Lemma 4.1). Let (x,A%) € &%(T), so for v € A we
are given a super line €7 and isomorphisms ¢ : € ® €2 = 2 For v € A let A7 =
(Q2)®=0") & €. For the evident isomorphisms /c¢¥72 : A\ @ X2 =3 \n+72 @ QF(1:92) then
(k,\,’¢) € PP(X,A). This is the image of (k, A*) by the above functor.

Let Sch/k denote the category of k-schemes of finite type with Zarisky topology. The n-th
Quillen K-theory group of a scheme form a presheaf on Sch/k as the scheme varies. As in
[5], K, denotes the associated sheaf on Sch/k for the Zariski topology.

Denote by Vect the tensor category of vector spaces. Pick a prime ¢ invertible in k, write

Q for the algebraic closure of Q,. We work with (perverse) Q,-sheaves for étale topology.
1
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2.2. Motivation. According to Weissman [16], the metaplectic input datum is an integer
n > 1 and an extension 1 - Ky — E — G — 1 as in [5]. It gives rise to a W-invariant
quadratic form ) : A — Z, for which we get the corresponding even symmetric bilinear form
K:A®AN— Z given by k(xq1,22) = Q(z1 + 22) — Q(x1) — Q(x2), x; € A.

The extension FE yields an extension

1= Ky(F)— E(F)— G(F)—1
The tame symbol gives a map (-, +)s : Ko(F) — k*. The push-out by this map is an extension
1=k —-Ek) —GF)—1
It is the set of k-points of an extension of group ind-schemes over k
(1) 1-G,—-E—->GUF)—1

Assume n > 1 invertible in k. For a character ¢ : u,(k) — Q} denote by £, the corresponding
Kummer sheaf on G,,.

Pick an injective character ¢ : p,(k) — Q. For a suitable section of () over G(O), we
are interested in the category Pervg ¢ of G(O)-equivariant Qp-perverse sheaves on E/G(0O)
with G,,-monodromy ¢, that is, equipped with (G,,, £¢)-equivariant structure. One wants
to equip it with a structure of a symmetric monoidal category (and actually a structure of
a chiral category as in [9]), and prove a version of the Satake equivalence for it.

2.2.1. One has the exact sequence 1 — T} — T — G/|G,G] — 1, where T} C [G, G|
is a maximal torus. Write Ag, (resp., Ag) for the coweights (resp., weights) lattice of
Ga = G/|G,G]. The kernel of A — A, is the rational closure in A of the coroots lattice.
Let J denote the set of connected components of the Dynkin diagram, J; denote the set of
vertices of the j-th connected component of the Dynkin diagram, J = Ujc; J; the set of
vertices of the Dynkin diagram. For i € J let «; (resp., &;) be the corresponding simple
coroot, (resp., root). One has G4 = HJEJ Gj, where G is a simple group. Let g; = Lie G;.

Write Ayq for the coweights lattice of Goq. Write R; (resp., Rj) for the set coroots (resp.,
roots) of G;. Let R (resp. R) denote the set of coroots (resp., roots) of G. For j € J let
Kj  Nag ® Ngg — Z denote the Killing form for G;, that is,

Note that ”—23 : Ngg ® Ngg — Z. We also view & if necessary as a bilinear form on A.
There is m € N such that mk is of the form

k= —ﬁ — Z Cj Iij
jedJ
for some c¢; € Z and some even symmetric bilinear form 5 : Ay ® Ay — Z. So, relaxing our
assumption on the characteristic, the following setting is sufficient.
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2.3. Input data. For each j € J let £, be the (Z/2Z-graded purely of parity zero) line
bundle on Grg whose fibre at gG(0) is det(g;(0) : g;(0)?). Write Ef for the punctured

total space of the line bundle £; over G(F'). This is a central extension
(2) 1= Gn— B — G(F) =1,
here a stands for ‘adjoint’. It splits canonically over G(O). The commutator of (2) on T'(F)
is given by
(M ® f1, A2 ® fa)e = (f1, fz);eﬁj(/\l’)\z)
for \; € Aw, fi € F*. Recall that for f,g € F* the tame symbol is given by

(F,9)e = (=) (") f=)(0)

Assume also given a central extension
(3) 1 -Gy — Es = Gup(F) — 1

in the category of group ind-schemes whose commutator (-, ). : Gap(F) X Gu(F) — Gy,
satisfies
(M ® f1, 20 @ fo)e = (fr, fo)

for \; € Agy, f; € F*. Here B : Ay ® Agpy — Z is an even symmetric bilinear form. This is a
Heisenberg [-extension ([3], Definition 10.3.13). Its pull-back under G(F) — G (F') is also
denoted Ej by abuse of notations. Assume also given a splitting of Eg over Gy, (0).

Let N > 1, assume N invertible in k. Let ¢ : un(k) — Q} be an injective character.
Assume given ¢; € Z for j € J.

The sum of the extensions (£5)%, j € J and the extension Fg is an extension

(4) 1-G,—->E—-GF)—1

equipped with the induced section over G(0O). Set Grag = E/G(0O). Let Perve ¢ denote the
category of G(0)-equivariant perverse sheaves on Grag with G,,-monodromy ¢. This means,
by definition, a (G,,, £¢)-equivariant structure. Set

Perve ¢ = Pervg ¢[—1] C D(Grag)

Let G,,, act on E via the homomorphism G,, — G,,,, z — 2. Let (f}vrg denote the stack
quotient of Grag by this action of G,,. We view Perve ¢ as a full category of the category of

perverse sheaves on Grg via the functor K — pr* K. Here pr : Grag — Grg is the quotient
map. As in [§], the above cohomological shift is a way to avoid some sign problems.
Let us make a stronger assumption that we are given a central extension

(5) 1=Ky =V — Gy — 1

as in [5] such that passing to F-points and further taking the push-out by the tame symbol
Ky(F) — G,, yields the extension (B]). Recall that on the level of ind-schemes the tame
symbol map

(6) (st : F* X F* = Gy,
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is defined in [6], see also ([1], Sections 3.1-3.3). Assume that the splitting of [B]) over G(O)
is the following one. The composition K5(O) — Ky(F') with the tame symbol map factors
through 1 < G,,, hence a canonical section Gy,(0) — Ej of ([3). Denote by

(7) 1-Gn—=Vs—=Ap—1

the pull-back of @) by Aw — Ga(F), A + t*. This is the central extension over k corre-
sponding to (B) by the Brylinski-Deligne classification [5]. The extension (7)) is given by a
line €7 (of parity zero as Z/2Z-graded) for each v € A, together with isomorphisms

2N R 2 =t
for ; € Ay subject to the conditions in the definition of £°(T") ([12], Section 3.2.1). Let
(8) 1-G,—=>Vg—>A—>1

be the pull-back of @) under A — G(F), A — t*. The commutator in (§) is given by
(A1, Ag)e = (=1)F122) where
K= —5 — Z CiRj

jed
Let G,, act on Vg via the homomoprhism G,,, = G,,, z — 2. Let Vi be the stack quotient
of Vg by this action of G,,. It fits into an extension of group stacks

(9) 1= Buy) = Ve —A—1

Set
A ={ e A|R(\) € NA}

We further assume that (8) is the push-out of the extension
(10) 1= pg— Ve > A—1
Recall that the exact sequence
(11) 1 = pun = plony — pog — 1

yields a morphism of abelian group stacks pus — B(uy), and the push-out of (I0) by this
map identifies canonically with (@). For N odd the sequence (II) splits canonically, so we
get a morphism of group stacks

(12) A= Vi,

which is a section of ([@). Our additional input datum is a morphism for any N of group
stacks tg : A* — Vi extending A' < A. For N odd tz is required to coincide with the
restriction of ([2). For N even such tg exists, because the restriction of (8) to A* is abelian
in that case.

2.4. Category Pervg .
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2.4.1. Let Aut(O) be the group ind-scheme over k such that , for a k-algebra B, Aut(0)(B)
is the automorphism group of the topological B-algebra B®O (as in [§], Section 2.1). Let
Aut®(0) be the reduced part of Aut(OQ). The group scheme Aut’(O) acts naturally on the
exact sequence (@) acting trivially on G,,, and preserving G(O). The group scheme Aut’(O)
acts naturally on F, and the tame symbol (@) is Aut’(O)-invariant. So, by functoriality,
Aut’(0) acts on (@) acting trivially on G,,. By functoriality, this gives an action of Aut®(O)
on (@) such that Aut’(O) acts trivially on G,y,.

2.4.2. For A € A let t* € Grg denote the image of ¢t under \ : F* — G(F). The set of
G(0)-orbits on Grg idetifies with the set A™T of dominant coweights of G. For A € AT write
Gr* for the G(O)-orbit on Grg through t*. The G-orbit through ¢* identifies with the partial
flag variety B* = G/P?*, where P” is a paraboic subgroup whose Levi has the Weyl group
WA C W coinciding with the stabilizor of A in W. For A € A* let Gra be the preimage of
Gr* in Grag.

The action of the loop rotation group G,, C Aut’(OQ) contracts Gr* to B* C Gr*, we
denote by @, : Gr* — B* the corresponding map.

For a free O-module & write &; for its geometric fibre. Let 2 be the completed module
of relative differentials of O over k. For a root ¢ let g C g denote the corresponding root
subspace. We fix a pinning ® of G giving trivializations ¢4 : g* = k for all & € R.

If 7 € A is orthogonal to all coroots a of G satisfying (@, A\) = 0 then we denote by O(%)
the G-equivariant line bundle on B* corresponding to the character v : P* — G,,,. The line
bundle O(¥) is trivialized at 1 € B*.

Sometimes, we view 3 as 3 : A — A, similarly for x; : A — A. The group Aut’(0) acts
on )z by the character denoted é.

Lemma 2.1. Let A € A™T.
i) For each j € J the pinning ® yields a uniquely defined Z/27-graded Aut®(O)-equivariant

isomorphism
Kj (A,)

Ljlar =% * ®@@30(k;(N))
ii) The restriction of the line bundle Eg/G(0O) — Grg to Gr* is constant with fibre €*, where
A € Ay is the image of X. The group G(O) acts on it by the character G(O) — G o G,

BN

and Aut®(O) acts on it by € =

Proof We only give the proof of the last part of ii), the rest is left to a reader. Pick a
bilinear form B : Ay, @ Ay, — Z such that B +'B = 8, where 'B(A;, \2) = B(Xs, A1) for
Ai € Ay For this calculation we may assume Eg = G, X G4 (F') with the product given by
(21, u1) (20, u2) = (2120.f (U1, u2), urtg) for u; € Gup(F), 2 € G,y Here f: Gop(F) X Gop(F) —
G,, is the unique bimultiplicative map such that

f()\l ® f1, Ao ® f2) — (fh f2)8—tB()\1,)\2)
Let g € Aut®(0) and b = €(g). Then g sends (1, %) to (1, ') € (F(t*, 047, 1)(1, 1) Gy (0).

BX)

Finally, f(t*, ") =b= "2 . O
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Set AB+ = AP A+, For A € A* the scheme Gra® admits a G(O)-equivariant local system
with G,,-monodromy ¢ if and only if A\ € AT,

By Lemma 2.T], for A € A* there is a Aut®(O)-equivariant isomorphism between Gra* and
the punctured (that is, with zero section removed) total space of the line bundle

_ RGN

O, QaI0(—=R(N)

over Gr. Write Q2(0) for the groupoid of square roots of €. For & € Q2(0) and A € AbT
define the line bundle £, ¢ on Gr* as

RGN K\
Lre=¢&E " ®®)\O(_%)

Let £y ¢ denote the punctured total space of Ly¢. Let py : Lye — Gra® be the map
over Gr* sending z to zV. Let W be the G(O)-equivariant rank one local system on Gra*
with G,,-monodromy ¢ equipped with an isomorphism p;Ws = Q,. Let A} € Pervg be
the intermediate extension of Wp[dim Gr*] under Gra* — Grag. The perverse sheaf A
is defined up to a scalar automorphism (for G semi-simple it is defined up to a unique
isomorphism).

Y —
Let Gr' denote the restriction of the gerb Gre to Gr*. For A € APt the map p, yields a
—~
section sy : Gr* — Gr .

Lemma 2.2. If A € A** then A} has non-trivial usual cohomology sheaves only in degrees
of the same parity.

Proof Let Flg denote the affine flag variety of G, ¢ : Flg — Grg the projection, write

G : Flg — Grg for the map obtained from ¢ by the base change Grg — Grg. It suffices to
prove this parity vanishing for g*A3, this is done in [10]. O

Lemma 2.2 implies as in ([2], Proposition 5.3.3) that the category Perve ¢ is semisimple.

2.5. Convolution. Let 7 be the automorphism of E x E sending (g,h) to (g,gh). Let
G(O) x G(0) x G,, act on E x E so that («, 3,0) sends (g,h) to (¢87b71, Bbha). Write
E Xg)xc,, Grag for the quotient of E x E under this free action. Then 7 induces an
isomorphism

7 E X G(O)XCpm Grag — Grg x Grag

sending (g, hG(0)) to (gG(0O), ghG(0Q)), where g € G(F) is the image of g € E. Let m be the
composition of 7 with the projection to Grag. Let pg : E — Grag be the map h — hG(0O).
As in [§], we get a diagram

xid
GraG X Grag pc%l E x GraG qg E XG(O)XxGm Grag ﬁ) Gl"ag,

where ¢ is the quotient map under the action of G(O) X G,,.
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For K; € Pervg ¢ define the convolution K%Ky € D(Grag) by K%Ky = mK € D(Grag),
where K[1] is a perverse sheaf on E X (0)xg,, Grag equipped with an isomorphism

4ok = pe K WK,

Since qg is a G(O) x G,,-torsor, and p K W K is naturally equivariant under G(0O) x G-
action, K is defined up to a unique isomorphism. As in ([§], Lemma 2.6), one shows that
K x Ky € ]P)GI"VG’C.

For K; € Pervg ¢ one similarly defines the convolution K; * Ky * K3 € Pervg ¢ and shows
that (K * Ky)* K3 = Ky * Kox K3 — Ky * (K3 * K3) canonically. Besides, A2 is a unit object
in Pervag.

2.6. Fusion. As in [§], we are going to show that the convolution product on Perve . can
be interpreted as a fusion product, thus leading to a commutativity constraint on Perve ..

Fix & € Q29 Let Auto(O) = Aut(0, &) be the group scheme defined in (8], Section 2.3),
let Aut9(O) be the preimage of Aut” in Auty(O).

Let A € ABF. Since py : Ly — Gra® is Aut9(O)-equivariant, the action of Aut’(9) on
Grag lifts to a Aut)(O)-equivariant structure on A. As in ([8], Section 2.3) one shows that
the corresponding Autd(O)-equivariant structure on each A is unique.

For x € X let O, be the completed local ring at = € X, F, its fraction field. Write F%
for the trivial G-torsor on a base. Write Grg, = G(F,)/G(0,) for the corresponding affine
grassmanian. Recall that Grg, can be seen as the ind-scheme classifying a G-torsor J on
X together with a trivialization v : F = FL |x_,.

For m > 1 let Grg xm and Gxm be defined as in ([§], Section 2.3). Recall that Grg xm
is the ind-scheme classifying (z1,...,2,) € X™, a G-torsor F5 on X, and a trivialization
Fe=FL |x_us,. Here Gxm is a group scheme over X™ classifying {(zy,...,2,) € X™, u},
where p is an automorphism of F% over the formal neighbourhood of D = U;z; in X.

For j € J let £; xm be the (Z/2Z-graded purely of parity zero) line bundle on Grg xm
whose fibre at (Fg, x;) is

det RI'(X,, (g;)50,) ® det RI'(X, (9)54) "

Here for a G-module V' and a G-torsor F¢ on a base S we write Vg, for the induced vector
bundle on S. 1
As in Section 2.1 our choice of Q2 yields a functor

(13) & (Gap) = P’ (X, Ap)

Let 0y € P(X, Ay) denote the image under this functor of the extension () with the bilinear
form —f.

For a reductive group H write Buny for the stack of H-torsors on X. Write Pic(Bung) for
the groupoid of super line bundles on Buny. For u € 7 (H) write Bun’; for the connected
component of Buny classifying H-torsors of degree —p. Similarly, for p € m (G) we denote
by Grf, the connected component containing t*G(0) for any X € A over .
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Recall the functor P?(X, A,) — Pic(Bung,,) defined in ([12], Section 4.2.1, formula (18)).
Let L3 € Pic(Bung,,) denote the image of §, under this functor. It is purely of parity zero
as Z/27Z-graded. For i € Ay, we have a map ¢, : X — Bung,,, © — O(uz). By definition,

L ()P0 g e

For m > 11let £z xm be the pull-back of £5 under Grg xm» — Bung,,. Let Grag xm» denote

the punctured total space of the line bundle over Grg

Lpxm @ (® (Ljxm)9)
jed

ab?

Remark 2.1. The line bundle £z xm is Gxm-equivariant. For (z1,...,2,) € X™ let

{y1, - yst ={x1, ..., xm}

with y; pairwise different. Let p; € A for 1 < i < s. Consider a point n € Grg xm over
n € Grg,, xm given by ?%ab(— > i, wiy;) with the evident trivialization over X — U,y;. The
fibre of Gxm at (x1,...,2,) is [[_, G(O,,), this group acts on the fibre (L5 xm), by the
character

SGO.—>sGabO.—>sGab Y G
[1600,) = ] Cur(0y,) = ] Gur 24"
=1 =1 =1

Since the line bundles £; xm are also G ym-equivariant, the action of G xm on Grg xm is lifted
to an action on Grag, xm.

Let Pervg ¢ xm be the category of G ym-equivariant perverse sheaves on Grag xm with
G,,-monodromy (. Set

Perve e xm = Pervg e xm[—m — 1] C D(Grag xm)
For z € X let D, = SpecO,, D} = Spec F,,. The analog of the convolution diagram from

([8], Section 2.3) is the following one, where the left and right squares are cartesian:

Pa.x Ja,.x S m
GraG,XxGraG,X — CG,X — COHVG7X = Gl"aG7X2

\ 3 3 \

PG, x 4G,x m
GIG’XXGIG7X — CG,X — COHVG7X = GI&G’X2

Here the low row is the convolution diagram from [8]. Namely, Cg x is the ind-scheme
classifying collections:

(14) x1, 22 € X, G-torsors I, Fg on X with v; : T = I [x—a,, 1 : TG =T |,
The map pg x forgets p;. The ind-scheme Convg x classifies collections:
(15) 1,75 € X, G-torsors T4, F7 on X,

isomorphisms v : T = F& |x—e, and 0 : F& = Fa | x—ay

The map my sends this collection to (x1, 79, Fg) together with the trivialization no vy :
?%:?G |X—SL‘1—1‘2'



TWISTED GEOMETRIC SATAKE EQUIVALENCE: REDUCTIVE CASE 9

The map g x sends (I4) to (IH), where F¢ is obtained by gluing F¢ on X — x5 and FZ
on D,, using their identification over D} via v, Lo,
For j € J there is a canonical Z/2Z-graded isomorphism
(16) o xmxLjx> = pox(Lix B Ljx)
Lemma 2.3. There is a canonical Z/27-graded isomorphism
(17) G xmxLpx2 = Pox(Lsx W Lg x)

Proof This isomorphism comes from the corresponding isomorphism for G, so for this
proof we may assume G = G For a point (I4)) of Cs x consider its image under gg x given
by ([[H). Note that Fo = FL, ® F2 with the trivialization vy @ vy : F& @ F& = F |x 0y —a-
One gets by ([12], Proposition 4.2)

(L8)gt,m) © (£8)(52,0m) = (L6)7s, @ (La)gz, ® ((PLENS ) = (Ls)gs,002

with the notations of loc.cit. Here we used the following trivialization (_BL;’ggé ) — k. For-

getting about nilpotents for simplicity, we may assume F2 = F(vz,) for some v € A with
the evident trivialization over X — x5. Then

- univ -~ —Bv -~
( BL&%,&%) - (Lglc( ))mz — k,

the latter isomorphism is obtained from p : I = 3¢ |p,,. O
The isomorphisms (I6]) and (I7) allow to define the map i x exactly as in ([8], Section 2.3),

this is the product of the corresponding maps.
Now for K; € Pervg ¢ x there is a (defined up to a unique isomorphism) perverse sheaf

Ki5[3] on 6&;7@7)( equipped with §¢, x K12 = pg x (K1XK3). Moreover K3 has G,,,-monodromy
(. We let
K1 *xx Ky = mx1 K19
As in ([8], Section 2.3) one shows that K xx Ky € Pervg ¢ x2.
Let & € Q2(0). As in loc.cit., one has the Aut)(O)-torsor X, — X whose fibre over x is

the scheme of isomorphisms between (Qé ,0,) and (€,0). One has the isomorphisms
Grax = X X autg(o) Gt and  Grag x =X, X autg(0) Grag
Since any K € Perve ¢ is Aut)(O)-equivariant, we get the fully faithful functor
70 Pervg e — Pervg e x

sending K to the descent of Q, X K under X, x Grag — Grag, x.

Let U C X? be the complement to the diagonal. Let j : Grag x2(U) < Grag x» be the
preimage of U. Let i : Grag x — Grag x2 be obtained by the base change X — X?. Recall
that mx is an isomorphism over Grag x2(U). For F; € Pervg ¢ letting K; = 7°F; define

Kig [r:= Kig |GraGyX2(U)



10 SERGEY LYSENKO

as above, it is placed in perverse degree 3. Then K *xy Ky — ji.(Ki2 |y) and 79(F; *
Fy) = i*(Kq *x K3). So, the involution o of Grag x2 interchanging z; yields

TO(Fl * Fg) :Z*jl*(Klg |U)/;>—/’L*.]|*(K21 ‘U) :TO(FQ * Fl),

because o*(K12 |y) = K21 |y canonically. As in [§], the associativity and commutativity
constraints are compatible, so Pervg ¢ is a symmetric monoidal category.

Remark 2.2. Let Pgo)(Grag) denote the category of G(O)-equivariant perverse sheaves on
Grag. One has the covariant self-functor x on Pg)(Grag) induced by the map E — E,
2z 27! Then K — KV := D(xK)[—2] is a contravariant functor Pervg . — Pervg . As in
([8], Remark 2.8), one shows that RHom(K * Ky, K3) — RHom(K;, K3 % KJ). So, K3 * Ky
represents the internal Hom(K>, K3) in the sense of the tensor structure on Perve .. Besides,
*(K1 * Ky) = (xK>) x (xK1) canonically.

2.7. Main result. Below we introduce a tensor category Pervﬂ;’c obtained from Pervg by

some modification of the commutativity constraint. Let T, = Spec k[Af] be the torus whose
weight lattice is AF.

For a € Q* written as a = a;/ay with a; € Z prime to each other and as > 0, say that as
is the denominator of a. Recall that we assume N invertible in k.

Theorem 2.1. There is a connected reductive group GC over Q; and a canonical equivalence
of tensor categories

Pervﬂ;’c = Rep(Gy).

There is a canonical inclusion T, C G¢ whose image is a mazimal torus in G¢. The Weyl
groups of G and GC viewed as subgroups of Aut(Aﬁ) are the same. Qur choice of a Borel
subgroup T' C B C G yields a Borel subgroup Tg C BC C GC The corresponding simple roots
(resp., coroots) of (G¢,T;) are d;cy (resp., &;/8;) for i € J. Here §; is the denominator of

Ez(ai,ai)
2N

Remark 2.3. 1) The root datum described in Theorem 2.]is defined uniquely. The roots are
H2N .
Then d,« is a root of G . Any root of G is of this form. Compare with the metaplectic
root datum appeared in ([13], [16], [15]).

ii) We hope there could exist an improved construction, which is a functor from the category
of central extensions 1 — Ky — E — G — 1 over k to the 2-category of symmetric monoidal
categories, IV — Pervg g such that Perve g is tensor equivalent to the category Rep(G' g) of
representations of some connected reductive group E.

iii) A similar monoidal category has been studied in [15]. However, only the case when k is
of characteristic zero was considered in [15], and it contains some imprecisions, for example,
([15], Proposition 11.3.6) is wrong as stated.

the union of W-orbits of simple roots. For a € R let J, denote the denominator of
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3. PrRooF oF THEOREM [2.1]

3.1. Functors F},. Let P C G be a parabolic subgroup containing B. Let M C P be its
Levi factor containing 7. Let Jy; C J be the subset parametrizing the simple roots of M.
Write
1-5G, >Ey > MF)—-1

for the restriction of (@) to M(F). It is equipped with an action of Aut’(0) and a section
over M(OQ) coming from the corresponding objects for (4)).

Write Gryy, Grp for the affine grassmanians for M, P respectively. For 6§ € (M) write
Crf, for the connected component of Gry; containing t* M (0O) for any A € A over 6 € m;(M).
The diagram M < P — G yields the following diagram of affine grassmanians

t ]
GI"M (i Gl"p —P> GI"G .

Let Gr% be the connected component of Grp such that tp restricts to a map t : Gr% — Grf,.
Write 5% : Gr% — Grg for the restriction of sp. The restriction of §% to (Gr%),.q is a locally
closed immesion.

The section M — P yields a section tp : Gry; — Grp of tp. By abuse of notations, write

s
GraM 2) Gl"ap —P> Grag

for the diagram obtained from Grj, £ Grp B Grg by the base change Grag — Grg. Note
that tp lifts naturally to a map denoted tp : Grap — Gray; by abuse of notations.

Let Pervy; ¢ denote the category of M(O)-equivariant perverse sheaves on Gray, with
G,,-monodromy (. Set

]P)GI"VM’G7C = PervM,G@[—l] C D(GI&M) .
Define the functor
FIIJ . ]P)eI'VGg — D(GI‘&M)
by Fio(K) = tpish K. Write Gra§, for the connected component of Gray, over Grf,, similarly

for Graf,. Write
PQTV?M,G,Q C Pervaa ¢

for the full subcategory of objects that vanish off Gra(jw. Set

Pervi g = @ Perv?VLGC[(Q, 200 — 2p)] .
ocmy (M)

As in [§], one shows that F}, sends Pervg ¢ to Perv'M’G’C This is a combination of the hyper-
bolic localization argument ([14], Theorem 3.5) or ([11], Proposition 12) with the dimension
estimates of ([I4], Theorem 3.2) or ([4], Proposition 4.3.3).

For the Borel subgroup B the above construction gives Fj; : Pervg . — Pervéﬂag.

Let B(M) C M be a Borel subgroup such that the preimage of B(M) under P — M
equals B. The inclusions 7' C B(M) C M yield a diagram

(18) GI"T tBﬁx)l) GI‘B(M) SEE)W) GI"M .
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Write

Grar tB(—Af) Grag(n) 53&”) Grayy
for the diagram obtained from (I8) by the base change Gra,; — Gry;. The projection
B(M) — T yields tpa : Grpany — Grp, it lifts naturally to the map denoted tp :
Grap() — Gragr by abuse of notations. For K € IE”erV']V[’aC set

Fpon(K) = (tsan )span K -
As in [§], this defines the functor F' B Pervly ¢ — Pervy o ¢, and one has canonically
(19) Fpon o Fp—Fp.

3.1.1. For j € J let £, denote the restriction of £; under sptp : Gryy — Grg. Let Af;
denote the coweights dominant for M. For A € A}, denote by Gry, the M(O)-orbit through
t*M(0O). Let Graj, be the preimage of Gry, under Gray; — Gry;. The M-orbit through
t*M(0) is isomorphic to the partial flag variety B3, = M/P3;, where the Levi subgroup of
P3; has the Weyl group coinciding with the stabilizer of A in Wj;. Here W), is the Weyl
group of M. As for GG, we have a natural map wyy y : Gry, — B,

If 7 € A is orthogonal to all coroots a of M satisfying (@, A) = 0 then we denote by O()
the M-equivariant line bundle on B}, corresponding to the character v : P}, — G,,. As
in Lemma B.I] for j € J the pinning ® yields a uniquely defined Z/2Z-graded Aut®(O)-
equivariant isomorphism

N l@j(A,A) .
Ljm |Gr;4 —Q: 7 @wy,0(k;(N))

So, for A € A}, thereis a Aut’(0)-equivariant isomorphism between Gra}/j and the punctured
total space of the line bundle

RN

Q7 @wya0(=R ()

over Gry,. Set A%t = AP A%, As for G itself, for A € A}, the scheme Gra), admits a
M (0O)-equivariant local system with G,,-monodromy ( if and only if \ € At}\’f.

As in Section 242 pick & € Q2(0). For A € A% define the line bundle £, yr¢ on Gr); as

_RON) )
L)\7M78 — 85 N ® WM)\O(_%)

Let £y are be the punctured total space of Lyare. Let pay @ Lame — Gra}/j be the
map over Gry, sending z to zV. Let W}/I,E be the rank one M (0O)-equivariant local system
Wi e on Gray, with G,,-monodromy ¢ equipped with an isomorphism PAvWise = Q. Let
Alre € Pervy ¢ be the intermediate extension of Wy, ¢[dim Gry,] to Grayy, it is defined up

to a scalar automorphism.
Set

Gry = Gry X, Gre
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—~ —
For A € A, let Gry, be the restriction of the gerb Gryy to Gry,. As for G itself, for A € A%

the map py a yields a section sy as : Gr}\\4 — Gr;\\4.

The analog of Lemma holds for the same reasons. The perverse sheaf Aj“ has non-
trivial cohomology sheaves only in degrees of the same parity. It follows that Pervy, ¢ ¢ is
semisimple.

3.1.2. More tensor structures. One equips Pervy g ¢ and Perv’y, - with a convolution prod-
uct as in Section 2.5l The convolution for these categories can be interpreted as fusion, and
this allows to define a commutativity constraint on these categories via fusion.

Each of the line bundles £; xm, L xm on Grg x= admits the factorization structure as in
([8], Section 4.1.2).

As for G, we have the ind-scheme Grj; xm for m > 1 and the group scheme Mxm over
X™ defined similarly. Let Gray g xm — Grag xm be obtained from Gry; xm — Grg xm by
the base change Grag xm — Grg xm. The group scheme Mxm acts naturally on Graps,g, xm.

Write Pervys g ¢ xm be the category of Mym-equivariant perverse sheaves on Grays g xm
with G,,,-monodromy (. Set

Pervys g.c.xm = Pervarg e xm[—m — 1].

Let Aut(0O) act on Gray via its quotient Aut’(Q). Then every object of Perv ¢ ¢ admits
a unique Aut9(O)-equivariant structure. On has

GraM,QX :XQ XAutg(O) GraM,
and as above one gets a fully faithful functor
79 Pervag,c — Pervara e x

Define the commutativity constraint on Pervy g, and Perv)y, . . via fusion as in Section 2.6l
As in [§], one checks that Pervy, ¢ and IP’ervMG’C are symmetric monoidal categories. Ex-
actly as in ([8], Lemma 4.1), one proves the following.

Lemma 3.1. The functors Fp, Fp,,), F are tensor functors, and (L3) is an isomorphism
of tensor functors. [J

3.2. Fiber functor. Recall from Section BT that for A € A the scheme Gra}. admits a
T (O)-equivariant local system with G,,-monodromy ( if and only if A\ € A*. View an object

of Pervy g as a complex on Gry. The map tg from Section defines for each A € Af a

—~—
section tyg : Grj — Grp. For K € Pervy g the complex ] g K is constant and placed in
degree zero, so we view as a vector space denoted FR(K). Let

Fr= @ Fp:Pervrg, — Vect
Y

This is a fibre functor on Pervy g . By ([7], Theorem 2.11) we get
Perveyg,c — Rep(T¢).
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For v € A* write F' By for the functor Fj ) followed by restriction to Gray. Write
Fyp : Pervy g — Vect for the functor

FTFB(M)[<V 2pm)]
In particular, this definition applies for M = G and gives the functor F¢ : PervG ¢ — Vect.
For v € A as in SectionB.one has the map /) : Grigayy = Gry. Let GrB ) denote the
restriction of the gerb Gry; under Grigan — Gry. Forv e Ati the section t, g : Gr; — (f}vr;

yields by restriction under tj,, the section that we denote t, pary : Grigy — &;( M)

Lemma 3.2. If v € Af, A € A% then FY (Ajre) has a canonical base consisting of those
connected components of
Gripn N Gry,

over which the (shifted) local system ti’B(M)AM ¢ is constant. Here we view Ay ¢ as a perverse

sheaf on Gry. In particular, for w € Wy one has
Fy ) (Adre) = Qu
Proof Exactly as in ([8], Lemma 4.2). O

Consider the following Z/2Z-grading on PerV/M,G,C' For 0 € m (M) call an object of
IP’erv(ij,C[(Q, 2pp — 2p)] of parity (0,2p) mod 2, the latter expression depends only on the
image of 6 in 7, (G). As in [§], this Z/2Z-grading on Perv), - is compatible with the tensor
structure. In particular, for M = G we get a Z/2Z-grading on Pervg .. The functors Fp,
and F é( Ay are compatible with these gradings.

Write Vect® for the tensor category of Z/27Z-graded vector spaces. Let Pefv?\x[,c,g be the
category of even objects in IP’erVMG’C ® Vect®. Let IP’ervaC be the category of even objects in
Perve  ® Vect®. We get a canonical equivalence of tensor categories sh : Pervg,a ¢ — Pervy .
The functors Fp,p, Fp, Flp yields tensor functors

:
Fg B4

h
(20) Perv’, ¢ Perv?, ’ IP’erVT o

whose composition is F g. Write F? : IP)erVHG’C — Vect for the functor Fr o sh o F FB. By
Lemma 3.2, F® does not annihilate a non-zero object, so it is faithful. By Remark 2.2
IP’ervE;vC is a rigid abelian tensor category. Since F" is exact and faithful, it is a fibre functor.

By ([7], Theorem 2.11), Aut®(F¥) is represented by an affine group scheme GC over Q. We
get an equivalence of tensor categories
(21) Perve, . = Rep(G¢)

An analog of Remark holds also for M, so Fr o sh o FB(M) : IP)ervgu’G’C — Vect is a

fibre functor that yields an affine group scheme Mg and an equivalence of tensor categories
IP’erV?VLG’C = Rep(M;). The diagram (20) yields homomorphisms 7, — M; — G¢.
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3.3. Structure of GC-

3.3.1. For A € A* write G for the closure of Gr* in Grg. Let @g denote the preimage
of Gr in Grag.

Lemma 3.3. If \,u € Ag\’/f then A}jg appears in A;}M * A’XM with multiplicity one.

Proof We will give a proof only for M = G, the generalization to any M being straightfor-
ward. Write E* (resp., EA) for the preimage of Gragy (resp., of @g) in E. As in Section 2.5
we get the convolution map m™M* : o X G(0)xCrm @é — @?f”. Let W be the preimage of
Gra)(‘;r“ under m™*. Then m** restricts to an isomorphism W — Grag”‘ is an isomorphism,
and W c E* X G(0)xGn Grag is open. 0

Write Ag = {\ € A| (\,@) = 0 for all @ € R}. The biggest subgroup in Ab* is AF N A,.
If Ai,..., \. generate Ag\’j as a semi-group then @§:1AR}, ¢ is a tensor generator of Pervg\/LG’C
in the sense of ([7], Proposition 2.20), so M, is of finite type over Q.

If M. acts nontrivially on Z € Pervy; g then consider the strictly full subcategory of
Pefv?\x[,c,g whose objects are subquotients of Z%™ m > 0. By Lemma [3.3], this subcategory
is not stable under the convolution, so M, is connected by ([7], Corollary 2.22). Since
Pervy ¢ ¢ is semisimple, M, is reductive by ([7], Proposition 2.23).

By Lemma B2, for A € A%, w € Wy, the weight w()\) of Ty appears in F*(A3e)- So, T:
is closed in M, by ([7], Proposition 2.21).

For v € A% write V for the irreducible representation of M; corresponding to Al e via
the above equivalence IP’erv?mG’C = Rep(M,).

Lemma 3.4. The torus TC 15 mazximal in MC- There 1s a unique Borel subgroup TC C
B(M); C M; whose set of dominant weights is Ag\’j.

Proof First, let us show that for vy, 1 € A’j{j the T, ¢-weight 11 415 appears with multiplicity
one in Vi @ V7. For Ay, Ag € A write Ay < A if Ay — Ay is a sum of some positive coroots
for (G, B). By ([14], Theorem 3.2) combined with Lemma B.2} if v € A" appears in V}} then
wr < X for any w € W. By Lemma B3 the T, ¢-weight v appears in V}; with multiplicity
one. Our claim follows.

Let T C Mc be a maximal torus containing 7, ¢. By Lemma [3.2] for each v € Ag\’/f there is
a unique character v/ of 7" such that the two conditions are verified: the composition T, —
A G, equals v; the T"-weight v/ appears in V};. The map v +— v/ is a homomoprhism
of semigroups, so we can apply ([§], Lemma 4.4). This gives a unique Borel subgroup
T, ¢ B(M). C M whose set of dominant weights is in bijection with A%, Since v — 1/

is a bijection between Ag\’/f and the dominant weights of B(M),, the torus T; is maximal in
M. O
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For M = G write B; = B(G).. So, A»* are dominant weights for (G, B¢). If A € Ab+ lies
in the W-orbit of v € A% then as in Lemma B2 one shows that Al e appears in F. 5(AD).
By ([7], Proposition 2.21) this implies that M is closed in G¢.

3.3.2. Rank one. Let M be the standard subminimal Levi subgroup of G corresponding to
the simple root ¢;. Let j € J be such that i € J;. Let A* = Hom(A¥, Z) denote the coweights
lattice of TC- Note that &; € Af. Then

{7 e A*| (\, ) >0forall X e AL}

is a Z-span of a multiple of ¢&;. So, the group Mc is of semisimple rank 1, and its unique
simple coroot is of the form &;/m; for some m; € Q, m; > 0.

Take any \ € Ag\’/f with (A, &;) > 0. Write s; € W for the simple reflection corresponding
to ¢;. By Lemma B2, Fj; (A}, ) and F]f/}'(’\) (Aje) do not vanish, so A — s;(A) is a multiple
of the positive root of Mg. So, the unique simple root of Mg is m;cy. It follows that the
simple reflection for (T¢, M) acts on A* as A — A — (A, 25) (m,a) = s;(A). We must show
that m; = ;. '

By ([14], Theorem 3.2) the scheme Grg ) N Gry, is non empty if and only if

V:)\,A—Oéi,A—QOéi,...,A— <>\,d2>042
For 0 < k < (A, &;) and v = X\ — ka; one has
GTE(M) N Gr?h /—_\)/Gm X A<)\7di>_k_l .

Let M, for the simply-connected cover of the derived group of M, Let T be the preimage
of TN[M,M]in M,. Let Gry, denote the affine grassmanian for M. Let Ay, = Za; denote
the coweights lattice of Tj. Write £y, for the ample generator of the Picard group of Gryy,.
This is the line bundle with fibre det(V4(0) : V5(0)9) at gMy(O), where Vj is the standard
representation of M. Let fy : Gry, — Grg be the natural map

For j/ € J the line bundle fj£; is trivial unless j' = j, and

kj(eg,a4)

foly = Lar

Besides, the restriction of the line bundle Eg/G.q(O) under Gryy, LY Grg — Grg,, is trivial.

Assume that A = aa; with @ > 0,a € Z such that A € Af. Let v = ba; with b € Z such
that — A <v <A\

Write U C M (F) for the one-parameter unipotent subgroup corresponding to the affine
root space t~%*’gs.. Let Y be the closure of the U-orbit through M (Q) in Gry. It is
a T-stable subscheme Y = P!. The T-fixed points in Y are t/M(O) and t~*M(O). The
natural map Gryy, — Gry; induces an isomorphism Gryz, — (Gr9,),eq at the level of reduced
ind-schemes. So, we may consider the restriction of £, to Y, which identifies with Op1 (a+b).
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Iij(V,V)

The restriction of £; to Grp,, is the constant line bundle with fibre ; * . Let a €

Iij(V,V)
Q; * be a nonzero element. Viewing it as a section of

“j(ai’ai)
L

over Y, it will vanish only at t*M(O) with multiplicity (a + b)x;(a;, o;)/2. Tt follows that
the shifted local system t 5 M)Af\‘u will have the G,,-monodromy

C(a+b)0j rj o ) /2

This local system is trivial if and only if (a+0b)&(c, ;) /2 € NZ. We may assume ai(q;, ;) €
2NZ. Then the above condition is equivalent to bk (ay, ;) € 2NZ. The smallest positive
integer b satisfying this condition is ¢;. So, m; = ;.

3.3.3. Let now M be a standard Levi corresponding to a subset J,; C J. The semigroup
{v e A*| (\ ) >0forall A e AR}

is the Q_-closure in A of the Z,-span of positive coroots of Mg with respect to the Borel
B (M). Since the edges of this convex cone are directed by ¢;, @ € I, the simple coroots of
Mg are positive rational multiples of &;, i € Jy;. Since we know already that &;/d;, i € Iy,
are coroots of M, we conclude that the simple coroots of Mc are &;/0;, i € Jpy. In turn, this
implies that MC is a Levi subgroup of GC- Finally, we conclude that the Weyl groups of G
and of G viewed as subgroups of Aut(A?) are the same. Theorem 211 is proved.
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