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TWISTED GEOMETRIC SATAKE EQUIVALENCE: REDUCTIVE CASE

SERGEY LYSENKO

Abstract. In this paper we extend the twisted Satake equivalence established in [8] for
almost simple groups to the case of split reductive groups.

1. Introduction

Let G be a connected reductive group over an algebraically closed field. Brylinski-Deligne
have developed the theory of central extensions of G by K2. According to Weissman [16],
this is a natural framework for the representation theory of metaplectic groups over local
and global fields (allowing to formulate a conjectural extension of the Langlands program for
metaplectic groups). One may hope the geometric Langlands program could also naturally
extend to this setting. As a step in this direction, in this paper we extend the twisted Satake
equivalence established in [8] for almost simple groups to the case of reductive groups. Our
input data model an extension of G by K2 (and cover all the isomorphism classes of such
extensions).

2. Main result

2.1. Notations. Let k be an algebraically closed field. Let G be a split reductive group
over k, T ⊂ B ⊂ G be a maximal torus and a Borel subgroup. Let Λ (resp., Λ̌) denote
the coweights (resp., weights) lattice of T . Let W denote the Weyl group of (T,G). Set
O = k[[t]] ⊂ F = k((t)). As in ([12], Section 3.2), we denote by E

s(T ) the category of pairs: a
symmetric bilinear form κ : Λ⊗Λ→ Z, and a central super extension 1→ k∗ → Λ̃s → Λ→ 1
whose commutator is (γ1, γ2)c = (−1)κ(γ1,γ2).

Let X be a smooth projective connected curve over k. Write Ω for the canonical line
bundle on X . Fix once and for all a square root Ω

1
2 of Ω.

Let Pθ(X,Λ) denote the category of theta-data ([3], Section 3.10.3). Recall the functor

Es(T ) → Pθ(X,Λ) defined in ([12], Lemma 4.1). Let (κ, Λ̃s) ∈ Es(T ), so for γ ∈ Λ we
are given a super line ǫγ and isomorphisms cγ1,γ2 : ǫγ1 ⊗ ǫγ2 →̃ ǫγ1+γ2 . For γ ∈ Λ let λγ =
(Ω

1
2 )⊗−κ(γ,γ) ⊗ ǫγ . For the evident isomorphisms ′cγ1,γ2 : λγ1 ⊗ λγ2 →̃λγ1+γ2 ⊗ Ωκ(γ1,γ2) then

(κ, λ, ′c) ∈ Pθ(X,Λ). This is the image of (κ, Λ̃s) by the above functor.
Let Sch/k denote the category of k-schemes of finite type with Zarisky topology. The n-th

Quillen K-theory group of a scheme form a presheaf on Sch/k as the scheme varies. As in
[5], Kn denotes the associated sheaf on Sch/k for the Zariski topology.

Denote by Vect the tensor category of vector spaces. Pick a prime ℓ invertible in k, write
Q̄ℓ for the algebraic closure of Qℓ. We work with (perverse) Q̄ℓ-sheaves for étale topology.
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2.2. Motivation. According to Weissman [16], the metaplectic input datum is an integer
n ≥ 1 and an extension 1 → K2 → E → G → 1 as in [5]. It gives rise to a W -invariant
quadratic form Q : Λ→ Z, for which we get the corresponding even symmetric bilinear form
κ : Λ⊗ Λ→ Z given by κ(x1, x2) = Q(x1 + x2)−Q(x1)−Q(x2), xi ∈ Λ.

The extension E yields an extension

1→ K2(F )→ E(F )→ G(F )→ 1

The tame symbol gives a map (·, ·)st : K2(F )→ k∗. The push-out by this map is an extension

1→ k∗ → E(k)→ G(F )→ 1

It is the set of k-points of an extension of group ind-schemes over k

(1) 1→ Gm → E→ G(F )→ 1

Assume n ≥ 1 invertible in k. For a character ζ : µn(k)→ Q̄∗
ℓ denote by Lζ the corresponding

Kummer sheaf on Gm.
Pick an injective character ζ : µn(k) → Q̄∗

ℓ . For a suitable section of (1) over G(O), we
are interested in the category PervG,ζ of G(O)-equivariant Q̄ℓ-perverse sheaves on E/G(O)
with Gm-monodromy ζ , that is, equipped with (Gm,Lζ)-equivariant structure. One wants
to equip it with a structure of a symmetric monoidal category (and actually a structure of
a chiral category as in [9]), and prove a version of the Satake equivalence for it.

2.2.1. One has the exact sequence 1 → T1 → T → G/[G,G] → 1, where T1 ⊂ [G,G]
is a maximal torus. Write Λab (resp., Λ̌ab) for the coweights (resp., weights) lattice of
Gab = G/[G,G]. The kernel of Λ → Λab is the rational closure in Λ of the coroots lattice.
Let J denote the set of connected components of the Dynkin diagram, Ij denote the set of
vertices of the j-th connected component of the Dynkin diagram, I = ∪j∈J Ij the set of
vertices of the Dynkin diagram. For i ∈ I let αi (resp., α̌i) be the corresponding simple
coroot (resp., root). One has Gad =

∏
j∈J Gj, where Gj is a simple group. Let gj = LieGj .

Write Λad for the coweights lattice of Gad. Write Rj (resp., Řj) for the set coroots (resp.,
roots) of Gj. Let R (resp. Ř) denote the set of coroots (resp., roots) of G. For j ∈ J let
κj : Λad ⊗ Λad → Z denote the Killing form for Gj, that is,

κj =
∑

α̌∈Řj

α̌⊗ α̌

Note that
κj

2
: Λad ⊗ Λad → Z. We also view κj if necessary as a bilinear form on Λ.

There is m ∈ N such that mκ is of the form

κ̄ = −β −
∑

j∈J

cjκj

for some cj ∈ Z and some even symmetric bilinear form β : Λab ⊗Λab → Z. So, relaxing our
assumption on the characteristic, the following setting is sufficient.
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2.3. Input data. For each j ∈ J let Lj be the (Z/2Z-graded purely of parity zero) line
bundle on GrG whose fibre at gG(O) is det(gj(O) : gj(O)

g). Write Ea
j for the punctured

total space of the line bundle Lj over G(F ). This is a central extension

(2) 1→ Gm → Ea
j → G(F )→ 1,

here a stands for ‘adjoint’. It splits canonically over G(O). The commutator of (2) on T (F )
is given by

(λ1 ⊗ f1, λ2 ⊗ f2)c = (f1, f2)
−κj(λ1,λ2)
st

for λi ∈ Λab, fi ∈ F ∗. Recall that for f, g ∈ F ∗ the tame symbol is given by

(f, g)st = (−1)v(f)v(g)(gv(f)f−v(g))(0)

Assume also given a central extension

(3) 1→ Gm → Eβ → Gab(F )→ 1

in the category of group ind-schemes whose commutator (·, ·)c : Gab(F ) × Gab(F ) → Gm

satisfies

(λ1 ⊗ f1, λ2 ⊗ f2)c = (f1, f2)
−β(λ1,λ2)
st

for λi ∈ Λab, fi ∈ F ∗. Here β : Λab ⊗ Λab → Z is an even symmetric bilinear form. This is a
Heisenberg β-extension ([3], Definition 10.3.13). Its pull-back under G(F )→ Gab(F ) is also
denoted Eβ by abuse of notations. Assume also given a splitting of Eβ over Gab(O).

Let N ≥ 1, assume N invertible in k. Let ζ : µN(k) → Q̄∗
ℓ be an injective character.

Assume given cj ∈ Z for j ∈ J .
The sum of the extensions (Ea

j )
cj , j ∈ J and the extension Eβ is an extension

(4) 1→ Gm → E→ G(F )→ 1

equipped with the induced section over G(O). Set GraG = E/G(O). Let PervG,ζ denote the
category of G(O)-equivariant perverse sheaves on GraG with Gm-monodromy ζ . This means,
by definition, a (Gm,Lζ)-equivariant structure. Set

PervG,ζ = PervG,ζ[−1] ⊂ D(GraG)

Let Gm act on E via the homomorphism Gm → Gm, z 7→ zN . Let G̃rG denote the stack
quotient of GraG by this action of Gm. We view PervG,ζ as a full category of the category of

perverse sheaves on G̃rG via the functor K 7→ pr∗K. Here pr : GraG → G̃rG is the quotient
map. As in [8], the above cohomological shift is a way to avoid some sign problems.

Let us make a stronger assumption that we are given a central extension

(5) 1→ K2 → Vβ → Gab → 1

as in [5] such that passing to F -points and further taking the push-out by the tame symbol
K2(F ) → Gm yields the extension (3). Recall that on the level of ind-schemes the tame
symbol map

(6) (·, ·)st : F
∗ × F ∗ → Gm
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is defined in [6], see also ([1], Sections 3.1-3.3). Assume that the splitting of (3) over G(O)
is the following one. The composition K2(O) → K2(F ) with the tame symbol map factors
through 1 →֒ Gm, hence a canonical section Gab(O)→ Eβ of (3). Denote by

(7) 1→ Gm → Vβ → Λab → 1

the pull-back of (3) by Λab → Gab(F ), λ 7→ tλ. This is the central extension over k corre-
sponding to (5) by the Brylinski-Deligne classification [5]. The extension (7) is given by a
line ǫγ (of parity zero as Z/2Z-graded) for each γ ∈ Λab together with isomorphisms

cγ1,γ2 : ǫγ1 ⊗ ǫγ2 →̃ ǫγ1+γ2

for γi ∈ Λab subject to the conditions in the definition of Es(T ) ([12], Section 3.2.1). Let

(8) 1→ Gm → VE → Λ→ 1

be the pull-back of (4) under Λ → G(F ), λ 7→ tλ. The commutator in (8) is given by
(λ1, λ2)c = (−1)κ̄(λ1,λ2), where

κ̄ = −β −
∑

j∈J

cjκj

Let Gm act on VE via the homomoprhism Gm → Gm, z 7→ zN . Let V̄E be the stack quotient
of VE by this action of Gm. It fits into an extension of group stacks

(9) 1→ B(µN)→ V̄E → Λ→ 1

Set

Λ♯ = {λ ∈ Λ | κ̄(λ) ∈ NΛ̌}

We further assume that (8) is the push-out of the extension

(10) 1→ µ2 → VE,2 → Λ→ 1

Recall that the exact sequence

(11) 1→ µN → µ2N → µ2 → 1

yields a morphism of abelian group stacks µ2 → B(µN), and the push-out of (10) by this
map identifies canonically with (9). For N odd the sequence (11) splits canonically, so we
get a morphism of group stacks

(12) Λ→ V̄E,

which is a section of (9). Our additional input datum is a morphism for any N of group
stacks tE : Λ♯ → V̄E extending Λ♯ →֒ Λ. For N odd tE is required to coincide with the
restriction of (12). For N even such tE exists, because the restriction of (8) to Λ♯ is abelian
in that case.

2.4. Category PervG,ζ.
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2.4.1. Let Aut(O) be the group ind-scheme over k such that , for a k-algebra B, Aut(O)(B)
is the automorphism group of the topological B-algebra B⊗̂O (as in [8], Section 2.1). Let
Aut0(O) be the reduced part of Aut(O). The group scheme Aut0(O) acts naturally on the
exact sequence (2) acting trivially on Gm and preserving G(O). The group scheme Aut0(O)
acts naturally on F , and the tame symbol (6) is Aut0(O)-invariant. So, by functoriality,
Aut0(O) acts on (3) acting trivially on Gm. By functoriality, this gives an action of Aut0(O)
on (4) such that Aut0(O) acts trivially on Gm.

2.4.2. For λ ∈ Λ let tλ ∈ GrG denote the image of t under λ : F ∗ → G(F ). The set of
G(O)-orbits on GrG idetifies with the set Λ+ of dominant coweights of G. For λ ∈ Λ+ write
Grλ for the G(O)-orbit on GrG through tλ. The G-orbit through tλ identifies with the partial
flag variety B

λ = G/P λ, where P λ is a paraboic subgroup whose Levi has the Weyl group
W λ ⊂ W coinciding with the stabilizor of λ in W . For λ ∈ Λ+ let Graλ be the preimage of
Grλ in GraG.

The action of the loop rotation group Gm ⊂ Aut0(O) contracts Grλ to Bλ ⊂ Grλ, we
denote by ω̃λ : Grλ → Bλ the corresponding map.

For a free O-module E write Ec̄ for its geometric fibre. Let Ω be the completed module
of relative differentials of O over k. For a root α̌ let gα̌ ⊂ g denote the corresponding root
subspace. We fix a pinning Φ of G giving trivializations φα̌ : gα̌ →̃ k for all α̌ ∈ Ř.

If ν̌ ∈ Λ̌ is orthogonal to all coroots α of G satisfying 〈α̌, λ〉 = 0 then we denote by O(ν̌)
the G-equivariant line bundle on Bλ corresponding to the character ν̌ : P λ → Gm. The line
bundle O(ν̌) is trivialized at 1 ∈ Bλ.

Sometimes, we view β as β : Λ → Λ̌, similarly for κj : Λ → Λ̌. The group Aut0(O) acts
on Ωc̄ by the character denoted ǫ̌.

Lemma 2.1. Let λ ∈ Λ+.
i) For each j ∈ J the pinning Φ yields a uniquely defined Z/2Z-graded Aut0(O)-equivariant
isomorphism

Lj |Grλ →̃Ω
κj (λ,λ)

2
c̄ ⊗ ω̃∗

λO(κj(λ))

ii) The restriction of the line bundle Eβ/G(O)→ GrG to Grλ is constant with fibre ǫλ̄, where

λ̄ ∈ Λab is the image of λ. The group G(O) acts on it by the character G(O) → G
β(λ)
→ Gm,

and Aut0(O) acts on it by ǫ̌
β(λ,λ)

2 .

Proof We only give the proof of the last part of ii), the rest is left to a reader. Pick a
bilinear form B : Λab ⊗ Λab → Z such that B + tB = β, where tB(λ1, λ2) = B(λ2, λ1) for
λi ∈ Λab. For this calculation we may assume Eβ = Gm×Gab(F ) with the product given by
(z1, u1)(z2, u2) = (z1z2f̄(u1, u2), u1u2) for ui ∈ Gab(F ), zi ∈ Gm. Here f̄ : Gab(F )×Gab(F )→
Gm is the unique bimultiplicative map such that

f̄(λ1 ⊗ f1, λ2 ⊗ f2) = (f1, f2)
−B(λ1,λ2)
st

Let g ∈ Aut0(O) and b = ǫ̌(g). Then g sends (1, tλ̄) to (1, bλ̄tλ̄) ∈ (f̄(tλ̄, bλ̄)−1, 1)(1, tλ̄)Gab(O).

Finally, f̄(tλ̄, bλ̄) = b−
β(λ̄,λ̄)

2 . �
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Set Λ♯,+ = Λ♯ ∩Λ+. For λ ∈ Λ+ the scheme Graλ admits a G(O)-equivariant local system
with Gm-monodromy ζ if and only if λ ∈ Λ♯,+.

By Lemma 2.1, for λ ∈ Λ+ there is a Aut0(O)-equivariant isomorphism between Graλ and
the punctured (that is, with zero section removed) total space of the line bundle

Ω
−

κ̄(λ,λ)
2

c̄ ⊗ ω̃∗
λO(−κ̄(λ))

over Grλ. Write Ω
1
2 (O) for the groupoid of square roots of Ω. For E ∈ Ω

1
2 (O) and λ ∈ Λ♯,+

define the line bundle Lλ,E on Grλ as

Lλ,E = E
−

κ̄(λ,λ)
N

c̄ ⊗ ω̃∗
λO(−

κ̄(λ)

N
)

Let
◦

Lλ,E denote the punctured total space of Lλ,E. Let pλ :
◦

Lλ,E → Graλ be the map
over Grλ sending z to zN . Let Wλ

E
be the G(O)-equivariant rank one local system on Graλ

with Gm-monodromy ζ equipped with an isomorphism p∗λW
λ
E
→̃ Q̄ℓ. Let Aλ

E
∈ PervG,ζ be

the intermediate extension of Wλ
E
[dimGrλ] under Graλ →֒ GraG. The perverse sheaf Aλ

E

is defined up to a scalar automorphism (for G semi-simple it is defined up to a unique
isomorphism).

Let G̃r
λ
denote the restriction of the gerb G̃rG to Grλ. For λ ∈ Λ♯,+ the map pλ yields a

section sλ : Grλ → G̃r
λ
.

Lemma 2.2. If λ ∈ Λ♯,+ then Aλ
E
has non-trivial usual cohomology sheaves only in degrees

of the same parity.

Proof Let FlG denote the affine flag variety of G, q : FlG → GrG the projection, write

q̃ : F̃lG → G̃rG for the map obtained from q by the base change G̃rG → GrG. It suffices to
prove this parity vanishing for q̃∗Aλ

E
, this is done in [10]. �

Lemma 2.2 implies as in ([2], Proposition 5.3.3) that the category PervG,ζ is semisimple.

2.5. Convolution. Let τ be the automorphism of E × E sending (g, h) to (g, gh). Let
G(O) × G(O) × Gm act on E × E so that (α, β, b) sends (g, h) to (gβ−1b−1, βbhα). Write
E ×G(O)×Gm GraG for the quotient of E × E under this free action. Then τ induces an
isomorphism

τ̄ : E×G(O)×Gm GraG →̃ GrG×GraG

sending (g, hG(O)) to (ḡG(O), ghG(O)), where ḡ ∈ G(F ) is the image of g ∈ E. Let m be the
composition of τ̄ with the projection to GraG. Let pG : E→ GraG be the map h 7→ hG(O).
As in [8], we get a diagram

GraG×GraG
pG×id
← E×GraG

qG→ E×G(O)×Gm
GraG

m
→ GraG,

where qG is the quotient map under the action of G(O)×Gm.
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ForKi ∈ PervG,ζ define the convolution K1∗K2 ∈ D(GraG) by K1∗K2 = m!K ∈ D(GraG),
where K[1] is a perverse sheaf on E×G(O)×Gm

GraG equipped with an isomorphism

q∗GK →̃ p∗GK1 ⊠K2

Since qG is a G(O)×Gm-torsor, and p∗GK1 ⊠K2 is naturally equivariant under G(O)×Gm-
action, K is defined up to a unique isomorphism. As in ([8], Lemma 2.6), one shows that
K1 ∗K2 ∈ PervG,ζ.

For Ki ∈ PervG,ζ one similarly defines the convolution K1 ∗K2 ∗K3 ∈ PervG,ζ and shows
that (K1 ∗K2)∗K3 →̃K1 ∗K2 ∗K3 →̃K1 ∗ (K2 ∗K3) canonically. Besides, A

0
E
is a unit object

in PervG,ζ.

2.6. Fusion. As in [8], we are going to show that the convolution product on PervG,ζ can
be interpreted as a fusion product, thus leading to a commutativity constraint on PervG,ζ.

Fix E ∈ Ω
1
2
(O). Let Aut2(O) = Aut(O,E) be the group scheme defined in ([8], Section 2.3),

let Aut02(O) be the preimage of Aut0 in Aut2(O).

Let λ ∈ Λ♯,+. Since pλ :
◦

Lλ,E → Graλ is Aut02(O)-equivariant, the action of Aut0(O) on
GraG lifts to a Aut02(O)-equivariant structure on Aλ

E
. As in ([8], Section 2.3) one shows that

the corresponding Aut02(O)-equivariant structure on each Aλ
E
is unique.

For x ∈ X let Ox be the completed local ring at x ∈ X , Fx its fraction field. Write F
0
G

for the trivial G-torsor on a base. Write GrG,x = G(Fx)/G(Ox) for the corresponding affine
grassmanian. Recall that GrG,x can be seen as the ind-scheme classifying a G-torsor F on
X together with a trivialization ν : F →̃F0

G |X−x.
For m ≥ 1 let GrG,Xm and GXm be defined as in ([8], Section 2.3). Recall that GrG,Xm

is the ind-scheme classifying (x1, . . . , xm) ∈ Xm, a G-torsor FG on X , and a trivialization
FG →̃F0

G |X−∪xi
. Here GXm is a group scheme over Xm classifying {(x1, . . . , xm) ∈ Xm, µ},

where µ is an automorphism of F0
G over the formal neighbourhood of D = ∪ixi in X .

For j ∈ J let Lj,Xm be the (Z/2Z-graded purely of parity zero) line bundle on GrG,Xm

whose fibre at (FG, xi) is

det RΓ(X, (gj)F0
G
)⊗ detRΓ(X, (gj)FG

)−1

Here for a G-module V and a G-torsor FG on a base S we write VFG
for the induced vector

bundle on S.
As in Section 2.1, our choice of Ω

1
2 yields a functor

(13) E
s(Gab)→ P

θ(X,Λab)

Let θ0 ∈ Pθ(X,Λab) denote the image under this functor of the extension (7) with the bilinear
form −β.

For a reductive group H write BunH for the stack of H-torsors on X . Write Pic(BunH) for
the groupoid of super line bundles on BunH . For µ ∈ π1(H) write Bunµ

H for the connected
component of BunH classifying H-torsors of degree −µ. Similarly, for µ ∈ π1(G) we denote
by GrµG the connected component containing tλG(O) for any λ ∈ Λ over µ.
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Recall the functor Pθ(X,Λab)→ Pic(BunGab
) defined in ([12], Section 4.2.1, formula (18)).

Let Lβ ∈ Pic(BunGab
) denote the image of θ0 under this functor. It is purely of parity zero

as Z/2Z-graded. For µ ∈ Λab we have a map iµ : X → BunGab
, x 7→ O(µx). By definition,

i∗µLβ →̃ (Ω
1
2 )β(µ,µ) ⊗ ǫµ

For m ≥ 1 let Lβ,Xm be the pull-back of Lβ under GrG,Xm → BunGab
. Let GraG,Xm denote

the punctured total space of the line bundle over GrG

Lβ,Xm ⊗ ( ⊗
j∈J

(Lj,Xm)cj)

Remark 2.1. The line bundle Lβ,Xm is GXm-equivariant. For (x1, . . . , xm) ∈ Xm let

{y1, . . . , ys} = {x1, . . . , xm}

with yi pairwise different. Let µi ∈ Λ for 1 ≤ i ≤ s. Consider a point η ∈ GrG,Xm over
η̄ ∈ GrGab,Xm given by F0

Gab
(−

∑s
i=1 µiyi) with the evident trivialization over X −∪iyi. The

fibre of GXm at (x1, . . . , xm) is
∏s

i=1G(Oyi), this group acts on the fibre (Lβ,Xm)η by the
character

s∏

i=1

G(Oyi)→
s∏

i=1

Gab(Oyi)→
s∏

i=1

Gab

∏
i β(µi)
−→ Gm

Since the line bundles Lj,Xm are also GXm-equivariant, the action of GXm on GrG,Xm is lifted
to an action on GraG,Xm .

Let PervG,ζ,Xm be the category of GXm-equivariant perverse sheaves on GraG,Xm with
Gm-monodromy ζ . Set

PervG,ζ,Xm = PervG,ζ,Xm[−m− 1] ⊂ D(GraG,Xm)

For x ∈ X let Dx = SpecOx, D
∗
x = SpecFx. The analog of the convolution diagram from

([8], Section 2.3) is the following one, where the left and right squares are cartesian:

GraG,X ×GraG,X

p̃G,X
← C̃G,X

q̃G,X
→ C̃onvG,X

m̃X→ GraG,X2

↓ ↓ ↓ ↓

GrG,X ×GrG,X

pG,X
← CG,X

qG,X
→ ConvG,X

mX→ GraG,X2

Here the low row is the convolution diagram from [8]. Namely, CG,X is the ind-scheme
classifying collections:

(14) x1, x2 ∈ X, G-torsors F1
G,F

2
G on X with νi : F

i
G →̃F

0
G |X−xi

, µ1 : F
1
G →̃F

0
G |Dx2

The map pG,X forgets µ1. The ind-scheme ConvG,X classifies collections:

(15) x1, x2 ∈ X, G-torsors F1
G,F

2
G on X,

isomorphisms ν1 : F
1
G →̃F

0
G |X−x1 and η : F1

G →̃FG |X−x2

The map mX sends this collection to (x1, x2,FG) together with the trivialization η ◦ ν−1
1 :

F
0
G →̃FG |X−x1−x2 .
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The map qG,X sends (14) to (15), where FG is obtained by gluing F1
G on X − x2 and F2

G

on Dx2 using their identification over D∗
x2

via ν−1
2 ◦ µ1.

For j ∈ J there is a canonical Z/2Z-graded isomorphism

(16) q∗G,Xm
∗
XLj,X2 →̃ p∗G,X(Lj,X ⊠ Lj,X)

Lemma 2.3. There is a canonical Z/2Z-graded isomorphism

(17) q∗G,Xm
∗
XLβ,X2 →̃ p∗G,X(Lβ,X ⊠ Lβ,X)

Proof This isomorphism comes from the corresponding isomorphism for Gab, so for this
proof we may assume G = Gab. For a point (14) of CG,X consider its image under qG,X given
by (15). Note that FG = F1

G ⊗ F2
G with the trivialization ν1 ⊗ ν2 : F

1
G ⊗ F2

G →̃F0
G |X−x1−x2 .

One gets by ([12], Proposition 4.2)

(Lβ)(F1
G,ν1) ⊗ (Lβ)(F2

G,ν2) →̃ (Lβ)F1
G
⊗ (Lβ)F2

G
⊗ (−β

L
univ
F1
G,F2

G
) →̃ (Lβ)F1

G⊗F2
G

with the notations of loc.cit. Here we used the following trivialization (−βLuniv
F1
G,F2

G
) →̃ k. For-

getting about nilpotents for simplicity, we may assume F2
G →̃F0

G(νx2) for some ν ∈ Λ with
the evident trivialization over X − x2. Then

(−β
L

univ
F1
G,F2

G
) →̃ (L

−β(ν)

F1
G

)x2 →̃ k,

the latter isomorphism is obtained from µ1 : F
1
G →̃F0

G |Dx2
. �

The isomorphisms (16) and (17) allow to define the map q̃G,X exactly as in ([8], Section 2.3),
this is the product of the corresponding maps.

Now for Ki ∈ PervG,ζ,X there is a (defined up to a unique isomorphism) perverse sheaf

K12[3] on C̃onvG,X equipped with q̃∗G,XK12 →̃ p̃∗G,X(K1⊠K2). MoreoverK12 hasGm-monodromy
ζ . We let

K1 ∗X K2 = m̃X!K12

As in ([8], Section 2.3) one shows that K1 ∗X K2 ∈ PervG,ζ,X2.

Let E ∈ Ω
1
2 (O). As in loc.cit., one has the Aut02(O)-torsor X̂2 → X whose fibre over x is

the scheme of isomorphisms between (Ω
1
2
x ,Ox) and (E,O). One has the isomorphisms

GrG,X →̃ X̂2 ×Aut02(O)
GrG and GraG,X →̃ X̂2 ×Aut02(O)

GraG

Since any K ∈ PervG,ζ is Aut02(O)-equivariant, we get the fully faithful functor

τ 0 : PervG,ζ → PervG,ζ,X

sending K to the descent of Q̄ℓ ⊠K under X̂2 ×GraG → GraG,X .
Let U ⊂ X2 be the complement to the diagonal. Let j : GraG,X2(U) →֒ GraG,X2 be the

preimage of U . Let i : GraG,X → GraG,X2 be obtained by the base change X → X2. Recall
that m̃X is an isomorphism over GraG,X2(U). For Fi ∈ PervG,ζ letting Ki = τ 0Fi define

K12 |U := K12 |GraG,X2 (U)
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as above, it is placed in perverse degree 3. Then K1 ∗X K2 →̃ j!∗(K12 |U) and τ 0(F1 ∗
F2) →̃ i∗(K1 ∗X K2). So, the involution σ of GraG,X2 interchanging xi yields

τ 0(F1 ∗ F2) →̃ i∗j!∗(K12 |U) →̃ i∗j!∗(K21 |U) →̃ τ 0(F2 ∗ F1),

because σ∗(K12 |U) →̃K21 |U canonically. As in [8], the associativity and commutativity
constraints are compatible, so PervG,ζ is a symmetric monoidal category.

Remark 2.2. Let PG(O)(GraG) denote the category of G(O)-equivariant perverse sheaves on
GraG. One has the covariant self-functor ⋆ on PG(O)(GraG) induced by the map E → E,
z 7→ z−1. Then K 7→ K∨ := D(⋆K)[−2] is a contravariant functor PervG,ζ → PervG,ζ . As in
([8], Remark 2.8), one shows that RHom(K1 ∗K2, K3) →̃ RHom(K1, K3 ∗K

∨
2 ). So, K3 ∗K

∨
2

represents the internal Hom(K2, K3) in the sense of the tensor structure on PervG,ζ. Besides,
⋆(K1 ∗K2) →̃ (⋆K2) ∗ (⋆K1) canonically.

2.7. Main result. Below we introduce a tensor category Perv♮G,ζ obtained from PervG,ζ by

some modification of the commutativity constraint. Let Ťζ = Spec k[Λ♯] be the torus whose
weight lattice is Λ♯.

For a ∈ Q∗ written as a = a1/a2 with ai ∈ Z prime to each other and a2 > 0, say that a2
is the denominator of a. Recall that we assume N invertible in k.

Theorem 2.1. There is a connected reductive group Ǧζ over Q̄ℓ and a canonical equivalence
of tensor categories

Perv♮G,ζ →̃Rep(Ǧζ).

There is a canonical inclusion Ťζ ⊂ Ǧζ whose image is a maximal torus in Ǧζ. The Weyl
groups of G and Ǧζ viewed as subgroups of Aut(Λ♯) are the same. Our choice of a Borel
subgroup T ⊂ B ⊂ G yields a Borel subgroup Ťζ ⊂ B̌ζ ⊂ Ǧζ . The corresponding simple roots
(resp., coroots) of (Ǧζ , Ťζ) are δiαi (resp., α̌i/δi) for i ∈ I. Here δi is the denominator of
κ̄(αi,αi)

2N
.

Remark 2.3. i) The root datum described in Theorem 2.1 is defined uniquely. The roots are

the union of W -orbits of simple roots. For α ∈ R let δα denote the denominator of κ̄(α,α)
2N

.

Then δαα is a root of Ǧζ. Any root of Ǧζ is of this form. Compare with the metaplectic
root datum appeared in ([13], [16], [15]).
ii) We hope there could exist an improved construction, which is a functor from the category
of central extensions 1→ K2 → E → G→ 1 over k to the 2-category of symmetric monoidal
categories, E 7→ PervG,E such that PervG,E is tensor equivalent to the category Rep(ǦE) of
representations of some connected reductive group E.
iii) A similar monoidal category has been studied in [15]. However, only the case when k is
of characteristic zero was considered in [15], and it contains some imprecisions, for example,
([15], Proposition II.3.6) is wrong as stated.
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3. Proof of Theorem 2.1

3.1. Functors F ′
P . Let P ⊂ G be a parabolic subgroup containing B. Let M ⊂ P be its

Levi factor containing T . Let IM ⊂ I be the subset parametrizing the simple roots of M .
Write

1→ Gm → EM →M(F )→ 1

for the restriction of (4) to M(F ). It is equipped with an action of Aut0(O) and a section
over M(O) coming from the corresponding objects for (4).

Write GrM ,GrP for the affine grassmanians for M,P respectively. For θ ∈ π1(M) write
GrθM for the connected component of GrM containing tλM(O) for any λ ∈ Λ over θ ∈ π1(M).
The diagram M ← P → G yields the following diagram of affine grassmanians

GrM
tP← GrP

sP→ GrG .

Let GrθP be the connected component of GrP such that tP restricts to a map tθP : GrθP → GrθM .
Write sθP : GrθP → GrG for the restriction of sP . The restriction of sθP to (GrθP )red is a locally
closed immesion.

The section M → P yields a section rP : GrM → GrP of tP . By abuse of notations, write

GraM
rP→ GraP

sP→ GraG

for the diagram obtained from GrM
rP→ GrP

sP→ GrG by the base change GraG → GrG. Note
that tP lifts naturally to a map denoted tP : GraP → GraM by abuse of notations.

Let PervM,G,ζ denote the category of M(O)-equivariant perverse sheaves on GraM with
Gm-monodromy ζ . Set

PervM,G,ζ = PervM,G,ζ[−1] ⊂ D(GraM) .

Define the functor
F ′
P : PervG,ζ → D(GraM)

by F ′
P (K) = tP !s

∗
PK. Write GraθM for the connected component of GraM over GrθM , similarly

for GraθP . Write

PervθM,G,ζ ⊂ PervM,G,ζ

for the full subcategory of objects that vanish off GraθM . Set

Perv′M,G,ζ = ⊕
θ∈π1(M)

PervθM,G,ζ[〈θ, 2ρ̌M − 2ρ̌〉] .

As in [8], one shows that F ′
P sends PervG,ζ to Perv′M,G,ζ. This is a combination of the hyper-

bolic localization argument ([14], Theorem 3.5) or ([11], Proposition 12) with the dimension
estimates of ([14], Theorem 3.2) or ([4], Proposition 4.3.3).

For the Borel subgroup B the above construction gives F ′
B : PervG,ζ → Perv′T,G,ζ.

Let B(M) ⊂ M be a Borel subgroup such that the preimage of B(M) under P → M
equals B. The inclusions T ⊂ B(M) ⊂M yield a diagram

(18) GrT
rB(M)
→ GrB(M)

sB(M)
→ GrM .
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Write

GraT
rB(M)
→ GraB(M)

sB(M)
→ GraM

for the diagram obtained from (18) by the base change GraM → GrM . The projection
B(M) → T yields tB(M) : GrB(M) → GrT , it lifts naturally to the map denoted tB(M) :
GraB(M) → GraT by abuse of notations. For K ∈ Perv′M,G,ζ set

F ′
B(M)(K) = (tB(M))!s

∗
B(M)K .

As in [8], this defines the functor F ′
B(M) : Perv

′
M,G,ζ → Perv′T,G,ζ, and one has canonically

(19) F ′
B(M) ◦ F

′
P →̃F ′

B .

3.1.1. For j ∈ J let Lj,M denote the restriction of Lj under sP rP : GrM → GrG. Let Λ+
M

denote the coweights dominant for M . For λ ∈ Λ+
M denote by GrλM the M(O)-orbit through

tλM(O). Let GraλM be the preimage of GrλM under GraM → GrM . The M-orbit through
tλM(O) is isomorphic to the partial flag variety Bλ

M = M/P λ
M , where the Levi subgroup of

P λ
M has the Weyl group coinciding with the stabilizer of λ in WM . Here WM is the Weyl

group of M . As for G, we have a natural map ω̃M,λ : GrλM → Bλ
M .

If ν̌ ∈ Λ̌ is orthogonal to all coroots α of M satisfying 〈α̌, λ〉 = 0 then we denote by O(ν̌)
the M-equivariant line bundle on B

λ
M corresponding to the character ν̌ : P λ

M → Gm. As
in Lemma 2.1, for j ∈ J the pinning Φ yields a uniquely defined Z/2Z-graded Aut0(O)-
equivariant isomorphism

Lj,M |GrλM
→̃Ω

κj (λ,λ)

2
c̄ ⊗ ω̃∗

M,λO(κj(λ))

So, for λ ∈ Λ+
M there is a Aut0(O)-equivariant isomorphism between GraλM and the punctured

total space of the line bundle

Ω
− κ̄(λ,λ)

2
c̄ ⊗ ω̃∗

M,λO(−κ̄(λ))

over GrλM . Set Λ♯,+
M = Λ♯ ∩ Λ+

M . As for G itself, for λ ∈ Λ+
M the scheme GraλM admits a

M(O)-equivariant local system with Gm-monodromy ζ if and only if λ ∈ Λ♯,+
M .

As in Section 2.4.2 pick E ∈ Ω
1
2 (O). For λ ∈ Λ♯,+

M define the line bundle Lλ,M,E on GrλM as

Lλ,M,E = E
− κ̄(λ,λ)

N
c̄ ⊗ ω̃∗

M,λO(−
κ̄(λ)

N
)

Let
◦

Lλ,M,E be the punctured total space of Lλ,M,E. Let pλ,M :
◦

Lλ,M,E → GraλM be the
map over GrλM sending z to zN . Let Wλ

M,E be the rank one M(O)-equivariant local system

Wλ
M,E on GraλM with Gm-monodromy ζ equipped with an isomorphism p∗λ,MWλ

M,E →̃ Q̄ℓ. Let

Aλ
M,E ∈ PervM,G,ζ be the intermediate extension of Wλ

M,E[dimGrλM ] to GraM , it is defined up
to a scalar automorphism.

Set

G̃rM = GrM ×GrGG̃rG



TWISTED GEOMETRIC SATAKE EQUIVALENCE: REDUCTIVE CASE 13

For λ ∈ Λ+
M let G̃r

λ

M be the restriction of the gerb G̃rM to GrλM . As for G itself, for λ ∈ Λ♯,+
M

the map pλ,M yields a section sλ,M : GrλM → G̃r
λ

M .
The analog of Lemma 2.2 holds for the same reasons. The perverse sheaf Aλ

M,E has non-
trivial cohomology sheaves only in degrees of the same parity. It follows that PervM,G,ζ is
semisimple.

3.1.2. More tensor structures. One equips PervM,G,ζ and Perv′M,G,ζ with a convolution prod-
uct as in Section 2.5. The convolution for these categories can be interpreted as fusion, and
this allows to define a commutativity constraint on these categories via fusion.

Each of the line bundles Lj,Xm,Lβ,Xm on GrG,Xm admits the factorization structure as in
([8], Section 4.1.2).

As for G, we have the ind-scheme GrM,Xm for m ≥ 1 and the group scheme MXm over
Xm defined similarly. Let GraM,G,Xm → GraG,Xm be obtained from GrM,Xm → GrG,Xm by
the base change GraG,Xm → GrG,Xm . The group scheme MXm acts naturally on GraM,G,Xm .

Write PervM,G,ζ,Xm be the category of MXm-equivariant perverse sheaves on GraM,G,Xm

with Gm-monodromy ζ . Set

PervM,G,ζ,Xm = PervM,G,ζ,Xm[−m− 1] .

Let Aut02(O) act on GraM via its quotient Aut0(O). Then every object of PervM,G,ζ admits
a unique Aut02(O)-equivariant structure. On has

GraM,G,X →̃ X̂2 ×Aut02(O)
GraM ,

and as above one gets a fully faithful functor

τ 0 : PervM,G,ζ → PervM,G,ζ,X

Define the commutativity constraint on PervM,G,ζ and Perv′M,G,ζ via fusion as in Section 2.6.

As in [8], one checks that PervM,G,ζ and Perv′M,G,ζ are symmetric monoidal categories. Ex-
actly as in ([8], Lemma 4.1), one proves the following.

Lemma 3.1. The functors F ′
P , F

′
B(M), F

′
B are tensor functors, and (19) is an isomorphism

of tensor functors. �

3.2. Fiber functor. Recall from Section 3.1.1 that for λ ∈ Λ the scheme GraλT admits a
T (O)-equivariant local system with Gm-monodromy ζ if and only if λ ∈ Λ♯. View an object

of PervT,G,ζ as a complex on G̃rT . The map tE from Section 2.3 defines for each λ ∈ Λ♯ a

section tλ,E : GrλT → G̃r
λ

T . For K ∈ PervT,G,ζ the complex t∗λ,EK is constant and placed in

degree zero, so we view as a vector space denoted F λ
T (K). Let

FT = ⊕
λ∈Λ♯

F λ
T : PervT,G,ζ → Vect

This is a fibre functor on PervT,G,ζ. By ([7], Theorem 2.11) we get

PervT,G,ζ →̃Rep(Ťζ) .
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For ν ∈ Λ♯ write F ′ν
B(M) for the functor F ′

B(M) followed by restriction to GraνT . Write
F ν
M : PervM,G,ζ → Vect for the functor

F ν
TF

′ν
B(M)[〈ν, 2ρ̌M〉]

In particular, this definition applies for M = G and gives the functor F ν
G : PervG,ζ → Vect.

For ν ∈ Λ as in Section 3.1 one has the map tνB(M) : GrνB(M) → GrνT . Let G̃r
ν

B(M) denote the

restriction of the gerb G̃rM under GrνB(M) → GrM . For ν ∈ Λ♯ the section tν,E : GrνT → G̃r
ν

T

yields by restriction under tνB(M) the section that we denote tν,B(M) : GrνB(M) → G̃r
ν

B(M).

Lemma 3.2. If ν ∈ Λ♯, λ ∈ Λ♯,+
M then F ν

M(Aλ
M,E) has a canonical base consisting of those

connected components of
GrνB(M) ∩GrλM

over which the (shifted) local system t∗ν,B(M)A
λ
M,E is constant. Here we view Aλ

M,E as a perverse

sheaf on G̃rM . In particular, for w ∈ WM one has

F
w(λ)
M (Aλ

M,E) →̃ Q̄ℓ

Proof Exactly as in ([8], Lemma 4.2). �

Consider the following Z/2Z-grading on Perv′M,G,ζ. For θ ∈ π1(M) call an object of

PervθM,G,ζ[〈θ, 2ρ̌M − 2ρ̌〉] of parity 〈θ, 2ρ̌〉 mod 2, the latter expression depends only on the

image of θ in π1(G). As in [8], this Z/2Z-grading on Perv′M,G,ζ is compatible with the tensor
structure. In particular, for M = G we get a Z/2Z-grading on PervG,ζ. The functors F ′

P

and F ′
B(M) are compatible with these gradings.

Write Vectǫ for the tensor category of Z/2Z-graded vector spaces. Let Perv♮M,G,ζ be the

category of even objects in Perv′M,G,ζ ⊗Vectǫ. Let Perv♮G,ζ be the category of even objects in

PervG,ζ ⊗Vectǫ. We get a canonical equivalence of tensor categories sh : Perv♮
T,G,ζ →̃ PervT,G,ζ.

The functors F ′
B(M), F

′
P , F

′
B yields tensor functors

(20) Perv♮G,ζ

F ♮
P→ Perv♮M,G,ζ

F ♮
B(M)
→ Perv♮T,G,ζ

whose composition is F ♮
B. Write F ♮ : Perv♮G,ζ → Vect for the functor FT ◦ sh ◦ F

♮
B. By

Lemma 3.2, F ♮ does not annihilate a non-zero object, so it is faithful. By Remark 2.2,
Perv♮G,ζ is a rigid abelian tensor category. Since F ♮ is exact and faithful, it is a fibre functor.

By ([7], Theorem 2.11), Aut⊗(F ♮) is represented by an affine group scheme Ǧζ over Q̄ℓ. We
get an equivalence of tensor categories

(21) Perv♮G,ζ →̃Rep(Ǧζ)

An analog of Remark 2.2 holds also for M , so FT ◦ sh ◦ F
♯
B(M) : Perv♮M,G,ζ → Vect is a

fibre functor that yields an affine group scheme M̌ζ and an equivalence of tensor categories

Perv♮M,G,ζ →̃Rep(M̌ζ). The diagram (20) yields homomorphisms Ťζ → M̌ζ → Ǧζ .
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3.3. Structure of Ǧζ.

3.3.1. For λ ∈ Λ+ write Gr
λ
for the closure of Grλ in GrG. Let Gra

λ

G denote the preimage

of Gr
λ
in GraG.

Lemma 3.3. If λ, µ ∈ Λ♯,+
M then A

λ+µ
M,E appears in Aλ

M,E ∗A
µ
M,E with multiplicity one.

Proof We will give a proof only for M = G, the generalization to any M being straightfor-

ward. Write Eλ (resp., E
λ
) for the preimage of GraλG (resp., of Gra

λ

G) in E. As in Section 2.5,

we get the convolution map mλ,µ : E
λ
×G(O)×Gm

Gra
µ

G → Gra
λ+µ

G . Let W be the preimage of

Graλ+µ
G under mλ,µ. Then mλ,µ restricts to an isomorphism W → Graλ+µ

G is an isomorphism,
and W ⊂ Eλ ×G(O)×Gm GraµG is open. �

Write Λ0 = {λ ∈ Λ | 〈λ, α̌〉 = 0 for all α̌ ∈ Ř}. The biggest subgroup in Λ♯,+ is Λ♯ ∩ Λ0.

If λ1, . . . , λr generate Λ♯,+
M as a semi-group then ⊕r

i=1A
λi

M,E is a tensor generator of Perv♮M,G,ζ

in the sense of ([7], Proposition 2.20), so M̌ζ is of finite type over Q̄ℓ.
If M̌ζ acts nontrivially on Z ∈ PervM,G,ζ then consider the strictly full subcategory of

Perv♮M,G,ζ whose objects are subquotients of Z⊕m, m ≥ 0. By Lemma 3.3, this subcategory

is not stable under the convolution, so M̌ζ is connected by ([7], Corollary 2.22). Since
PervM,G,ζ is semisimple, M̌ζ is reductive by ([7], Proposition 2.23).

By Lemma 3.2, for λ ∈ Λ♯,+
M , w ∈ WM the weight w(λ) of Ťζ appears in F ♮(Aλ

M,E). So, Ťζ

is closed in M̌ζ by ([7], Proposition 2.21).

For ν ∈ Λ♯,+
M write V ν

M for the irreducible representation of M̌ζ corresponding to Aν
M,E via

the above equivalence Perv♮M,G,ζ →̃Rep(M̌ζ).

Lemma 3.4. The torus Ťζ is maximal in M̌ζ . There is a unique Borel subgroup Ťζ ⊂

B̌(M)ζ ⊂ M̌ζ whose set of dominant weights is Λ♯,+
M .

Proof First, let us show that for ν1, ν2 ∈ Λ♯,+
M the Ťζ-weight ν1+ν2 appears with multiplicity

one in V ν1
M ⊗ V ν2

M . For λ1, λ2 ∈ Λ write λ1 ≤ λ2 if λ2 − λ1 is a sum of some positive coroots
for (G,B). By ([14], Theorem 3.2) combined with Lemma 3.2, if ν ∈ Λ♯ appears in V λ

M then
wν ≤ λ for any w ∈ W . By Lemma 3.2, the Ťζ-weight ν appears in V ν

M with multiplicity
one. Our claim follows.

Let T ′ ⊂ M̌ζ be a maximal torus containing Ťζ . By Lemma 3.2, for each ν ∈ Λ♯,+
M there is

a unique character ν ′ of T ′ such that the two conditions are verified: the composition Ťζ →

T ′ ν′
→ Gm equals ν; the T ′-weight ν ′ appears in V ν

M . The map ν 7→ ν ′ is a homomoprhism
of semigroups, so we can apply ([8], Lemma 4.4). This gives a unique Borel subgroup

Ťζ ⊂ B̌(M)ζ ⊂ M̌ζ whose set of dominant weights is in bijection with Λ♯,+
M . Since ν 7→ ν ′

is a bijection between Λ♯,+
M and the dominant weights of B̌(M)ζ , the torus Ťζ is maximal in

M̌ζ . �
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For M = G write B̌ζ = B̌(G)ζ . So, Λ
♯,+ are dominant weights for (Ǧζ , B̌ζ). If λ ∈ Λ♯,+ lies

in the W -orbit of ν ∈ Λ♯,+
M then as in Lemma 3.2 one shows that Aν

M,E appears in F ♮
P (A

λ
E
).

By ([7], Proposition 2.21) this implies that M̌ζ is closed in Ǧζ .

3.3.2. Rank one. Let M be the standard subminimal Levi subgroup of G corresponding to
the simple root α̌i. Let j ∈ J be such that i ∈ Ij. Let Λ̌

♯ = Hom(Λ♯,Z) denote the coweights
lattice of Ťζ . Note that α̌i ∈ Λ̌♯. Then

{ν̌ ∈ Λ̌♯ | 〈λ, ν̌〉 ≥ 0 for all λ ∈ Λ♯,+
M }

is a Z+-span of a multiple of α̌i. So, the group M̌ζ is of semisimple rank 1, and its unique
simple coroot is of the form α̌i/mi for some mi ∈ Q, mi > 0.

Take any λ ∈ Λ♯,+
M with 〈λ, α̌i〉 > 0. Write si ∈ W for the simple reflection corresponding

to α̌i. By Lemma 3.2, F λ
M(Aλ

M,E) and F
si(λ)
M (Aλ

M,E) do not vanish, so λ− si(λ) is a multiple

of the positive root of M̌ζ . So, the unique simple root of M̌ζ is miαi. It follows that the
simple reflection for (Ťζ , M̌ζ) acts on Λ♯ as λ 7→ λ − 〈λ, α̌i

mi
〉(miαi) = si(λ). We must show

that mi = δi.
By ([14], Theorem 3.2) the scheme GrνB(M) ∩GrλM is non empty if and only if

ν = λ, λ− αi, λ− 2αi, . . . , λ− 〈λ, α̌i〉αi .

For 0 < k < 〈λ, α̌i〉 and ν = λ− kαi one has

GrνB(M) ∩GrλM →̃Gm × A〈λ,α̌i〉−k−1 .

Let M0 for the simply-connected cover of the derived group of M , Let T0 be the preimage
of T ∩ [M,M ] in M0. Let GrM0 denote the affine grassmanian for M0. Let ΛM0 = Zαi denote
the coweights lattice of T0. Write LM0 for the ample generator of the Picard group of GrM0 .
This is the line bundle with fibre det(V0(O) : V0(O)

g) at gM0(O), where V0 is the standard
representation of M0. Let f0 : GrM0 → GrG be the natural map

For j′ ∈ J the line bundle f ∗
0Lj′ is trivial unless j

′ = j, and

f ∗
0Lj →̃L

κj (αi,αi)

2
M0

Besides, the restriction of the line bundle Eβ/Gad(O) under GrM0

f0
→ GrG → GrGab

is trivial.
Assume that λ = aαi with a > 0, a ∈ Z such that λ ∈ Λ♯. Let ν = bαi with b ∈ Z such

that −λ < ν < λ.
Write U ⊂ M(F ) for the one-parameter unipotent subgroup corresponding to the affine

root space t−a+bgα̌i
. Let Y be the closure of the U -orbit through tνM(O) in GrM . It is

a T -stable subscheme Y →̃P1. The T -fixed points in Y are tνM(O) and t−λM(O). The
natural map GrM0 → GrM induces an isomorphism GrM0 →̃ (Gr0M)red at the level of reduced
ind-schemes. So, we may consider the restriction of LM0 to Y , which identifies with OP1(a+b).
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The restriction of Lj to GrνB(M) is the constant line bundle with fibre Ω
κj (ν,ν)

2
c̄ . Let a ∈

Ω
κj (ν,ν)

2
c̄ be a nonzero element. Viewing it as a section of

L

κj (αi,αi)

2
M0

over Y , it will vanish only at t−λM(O) with multiplicity (a + b)κj(αi, αi)/2. It follows that
the shifted local system t∗ν,B(M)A

λ
M,E will have the Gm-monodromy

ζ (a+b)cjκj(αi,αi)/2

This local system is trivial if and only if (a+b)κ̄(αi, αi)/2 ∈ NZ. We may assume aκ̄(αi, αi) ∈
2NZ. Then the above condition is equivalent to bκ̄(αi, αi) ∈ 2NZ. The smallest positive
integer b satisfying this condition is δi. So, mi = δi.

3.3.3. Let now M be a standard Levi corresponding to a subset IM ⊂ I. The semigroup

{ν̌ ∈ Λ̌♯ | 〈λ, ν̌〉 ≥ 0 for all λ ∈ Λ♯,+
M }

is the Q+-closure in Λ̌♯ of the Z+-span of positive coroots of M̌ζ with respect to the Borel
B̌(M)ζ . Since the edges of this convex cone are directed by α̌i, i ∈ IM , the simple coroots of
M̌ζ are positive rational multiples of α̌i, i ∈ IM . Since we know already that α̌i/δi, i ∈ IM

are coroots of M̌ , we conclude that the simple coroots of M̌ζ are α̌i/δi, i ∈ IM . In turn, this
implies that M̌ζ is a Levi subgroup of Ǧζ . Finally, we conclude that the Weyl groups of G
and of Ǧζ viewed as subgroups of Aut(Λ♯) are the same. Theorem 2.1 is proved.
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