Sur le radical kummérien des Zl-extensions

Abstract : On the basis of a previous work, we elaborate a new description of the Kummer radical associated to the first layers of Zl--extensions of a number fields K, by using inverse limits for the norm maps in the cyclotomic Zl-extension. Our main result contains, as an obvious consequence, the inclusions provided by Soogil Seo in a set of papers. By the same way we also give in the last section a similar description of the Tate kernel for universal symbols in K2.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [18 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01226725
Contributor : Jean-François Jaulent <>
Submitted on : Wednesday, April 20, 2016 - 9:54:10 AM
Last modification on : Thursday, January 11, 2018 - 6:21:22 AM
Document(s) archivé(s) le : Thursday, July 21, 2016 - 11:40:29 AM

Files

Radical.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01226725, version 2
  • ARXIV : 1511.03027

Collections

Citation

Jean-François Jaulent. Sur le radical kummérien des Zl-extensions. Acta Arithmetica, Instytut Matematyczny PAN, 2016, 175 (3), pp.245--253. ⟨hal-01226725v2⟩

Share

Metrics

Record views

82

Files downloads

57