N

N

Scalability and availability for massively multiplayer
online games

Guillaume Turchini, Sebastien Monnet, Olivier Marin

» To cite this version:

Guillaume Turchini, Sebastien Monnet, Olivier Marin. Scalability and availability for massively mul-
tiplayer online games. 11th European Dependable Computing Conference (EDCC 2015), Sep 2015,
Paris, France. hal-01226608

HAL Id: hal-01226608
https://hal.science/hal-01226608
Submitted on 9 Nov 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01226608
https://hal.archives-ouvertes.fr

Scalability and availability for massively
multiplayer online games

Guillaume Turchini
LIP6
Université Pierre et Marie Curie
Paris, France

Abstract—MMOGs (Massively Multiplayer Online Games) are
getting ever more popular, but current game server architectures
do not scale with the number of players. Instead of addressing
the issue, the most common workaround in the industry is to use
multiple distinct and non communicating game servers. After a
brief overview of existing game server architectures and methods
to distribute server load, this position paper outlines another kind
of architecture that should scale and discusses the difficulty of
evaluating game platforms on a large scale.

I. INTRODUCTION

Designing a scalable game server architecture that guaran-
tees availability for every player is no easy task. An MMOG
server must accomodate a large number of connected players,
offering each of them a consistent view of the game world
and the best possible quality of service for a great gaming
experience. In particular, short response times for player
actions are often essential [1].

Adapting the capacity of the game server architecture to
achieve satisfactory availability is very complex because the
number of players connected to a game varies significantly
during the day. Figure 1 shows the wide variation of the
average number of players connected to a single World of War-
craft Realm during the day between January and September
2006 [2]: it becomes very crowded around 11pm and almost
deserted around 7am. Such a variation can lead to a game
server crash if the server is not powerful enough. In fact, game
server architectures have a long tradition of crashing every
time a new highly anticipated game is released. Usually the
main solution is to highly oversize the game server to absorb
player peaks. However this leads to a higher cost of the server
architecture, with mostly underused machines.

Adding to this complexity, the distribution of player avatars
in the game world is very skewed. Players often congregate
around “hotspots” like towns. Different methods of splitting
the game world help reducing the load of a single machine
hosting the game server.

To support many players, some MMOG solve the problem
by game design. For instance, Dragon Quest X reduces the
possible interactions between players : groups are composed
of 4 players and only able to cheer other groups, thus reducing
the time constraint. This paper only considers MMOG with
high number of players and high interaction between them.

Sebastien Monnet
LIP6
Université Pierre et Marie Curie
Paris, France

Olivier Marin
LIP6
Université Pierre et Marie Curie
Paris, France

400 600
| |

Number of players
200
| |

L B I
0O 2 4 6 8 10 12 14 16 18 20 22 24

Hour of the day

Fig. 1: Average daily distribution of the number of
connected players in a single World of Warcraft realm

This paper compares the scalability of exisiting architec-
tures, proposes hints towards improved scalability with respect
to the number of connected players and paves the way for the
simulation of scalable game server architectures.

II. VIRTUAL WORLD PARTITIONING

Several partitioning methods that are common to different
architectures allow the management of very large amounts of
players.

Zoning divides the world in different zones managed by
different machines. Game designers often separate these zones
with fixed and arbitrary geographical limits. Players may incur
a significant waiting time (loading screen) between these zones
while they are transferred between servers. Connecting players
to two servers in an “overlap” zone at the border can acheive
seamless transfers. Zones borders can also be dynamic to avoid
player congestions, but dynamic zoning is more complex and
costly, especially when player mobility is high.

Instead of cutting the world into zones, Sharding consists in
duplicating the world and separating players into small groups:
each group plays on a different copy of the world, called a
“Realm” or a “World” in most games. Analogous to poker
tables, shards can be added according to the demand, but they
remain fully separate and there can be no communication or
interaction among them.

Instancing corresponds to having multiple copy of a zone,
possibly on different servers, each copy having a smaller
amount of player. This can lead to strange situations, like
having a meeting at some place, but players cannot see each

other. This is how “dungeons” in role playing games are often
managed to have the same content experienced by different
groups without interference.

Cloning consists in multiple machines that manage the same
zone. This method allows concurrent computations associated
with the same zone, such as pathfinding for different units in
real time strategy games.

The problem with Sharding and Instancing is that players
cannot really play together. The cloning method is not always
applicable because it can involve multiple locking between
servers that modify the same values, which can lead to a very
high latency. The efficiency of zoning is closely tied to player
locations that can vary drastically during the game.

III. GAME SERVER ARCHITECTURES

Different architectures support these partitioning strategies,
the most common being the Client-Server architecture. The
server handles all update requests from every player, updates
the current world state accordingly and sends back player
views of the world. This architecture may involve multiple
machines with load-balancing mechanisms. However, as a
server can only handle a finite number of players, the number
of players a static number of servers can handle is also finite.
Hence this architecture does not really scale up to an unlimited
number of players and is really vulnerable to machine crashes.

Peer-to-Peer [3], [4] architectures incorporate the server
logic into the client program: the architecture uses CPU
power and network capacity of the players to contribute to
the server power. However, game editors are reticent to this
kind of architecture. One reason is that this prevents monthly
subscription schemes: since all the server logic is already
embedded into the client, players can freely set up their own
virtual world. It also involves more development as churn and
cheating are harder to handle. As cheating is a real problem on
a persistent world (the cheat becomes a permanent advantage),
it is carefully checked. This implies a bigger latency due to
the need of agreement on legal player actions.

Hybrid solutions [5] retain the weaknesses of both previous
architectures. For instance, Super Peers hosted either on player
nodes or on trusted servers represent single points of failure.

A proposed alternative is an architecture that provisions
VMs on a Cloud service. The game server launches new
VMs during load peaks, and shuts them down when the load
decreases.

IV. OUR CASE FOR SIMULATION

To the best of our knowledge, the literature on Cloud
Gaming does not yet comprise any algorithms that handle
insertions and deletions of VMs on demand. In an academic
context, Cloud computing is hard to experiment on because
of its cost. Besides, simulation facilitates automation of the
experiments and allows their reproducilbility: same latencies,
same player mobility, ...

Another issue is that provisioning algorithms depend mostly
on player distribution inside the game world because their
aim is to adapt the sharing of the world between servers.

Fig. 2: Example of an avatar distribution on a map

Unfortunately there are few player movement traces available
and many of them lack precision. For instance, available World
of Warcraft traces indicate only the zone of the player and not
the exact position. We will therefore have to generate realistic
traces to test our algorithms.

Our mobility model is a refinement of Blue Banana [6].
Players gather around hotspots in a power law density. They
move on short distances inside a hotspot and travel in straight
lines between hotspots similarly to Lévy Flights. This mimics
movements of people around real-life cities, where it’s harder
to move in the center of the city and highways concentrate
traffic between cities. Most game worlds include forbidden
zones such as oceans or high mountains on the map: our model
integrates such zones that prevent player movement. Our
model also accounts for player connections/disconnections
along daily player variations.

V. CONCLUSION

This paper describes a seamless scalable game server ar-
chitecture that takes advantage of VMs in Cloud services
to increase processing power in crowded zones. Since the
architecture depends mostly on the player distribution and
since available traces lack precision, we propose a mobility
model for the generation of traces. Our future work aims to
generate even more realistic traces with group formations and
different player activities and profiles. We will then develop
load balancing and provisioning algorithms for our Cloud
server architecture and compare them to existing architectures
using the generated traces.

REFERENCES

[1] M. Claypool and K. Claypool, “Latency can kill: Precision and deadline
in online games,” in ACM SIGMM Conference on Multimedia Systems,
2010, pp. 215-222.

[2] Y.-T. Lee and K.-T. Chen, “Is server consolidation beneficial to mmorpg?
a case study of world of warcraft,” in Cloud Computing, July 2010, pp.
435-442.

[3] J. Keller and G. Simon, “Solipsis: A massively multi-participant virtual
world.” in Parallel and Distributed Processing Techniques and Applica-
tions, 2003, pp. 262-268.

[4] O. Beaumont, A.-M. Kermarrec, L. Marchal, and E. Riviere, “Voronet: A
scalable object network based on voronoi tessellations,” in Parallel and
Distributed Processing Symposium, 2007, pp. 1-10.

[51 A. P. Yu and S. T. Vuong, “Mopar: a mobile peer-to-peer overlay
architecture for interest management of massively multiplayer online
games,” in Online Games, Network and Operating System Support for
Digital Audio and Video, 2005, pp. 99-104.

[6] S. Legtchenko, S. Monnet, and G. Thomas, “Blue Banana: resilience
to avatar mobility in distributed MMOGS,” in Dependable Systems and
Networks (DSN), 2010, pp. 171-180.

