Infinite-dimensional calculus under weak spatial regularity of the processes.

Abstract : Two generalizations of Itô formula to infinite-dimensional spaces are given. The first one, in Hilbert spaces, extends the classical one by taking advantage of cancellations, when they occur in examples and it is applied to the case of a group generator. The second one, based on the previous one and a limit procedure, is an Itô formula in a special class of Banach spaces, having a product structure with the noise in a Hilbertian component; again the key point is the extension due to a cancellation. This extension to Banach spaces and in particular the specific cancellation are motivated by path-dependent Itô calculus.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01226154
Contributeur : Francesco Russo <>
Soumis le : lundi 14 novembre 2016 - 15:44:44
Dernière modification le : samedi 18 février 2017 - 01:20:09
Document(s) archivé(s) le : mardi 21 mars 2017 - 11:27:02

Fichiers

Flandoli_Russo_ZancoAugust2016...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01226154, version 2
  • ARXIV : 1511.05744

Citation

Franco Flandoli, Francesco Russo, Giovanni Zanco. Infinite-dimensional calculus under weak spatial regularity of the processes.. 2016. 〈hal-01226154v2〉

Partager

Métriques

Consultations de
la notice

100

Téléchargements du document

23