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Abstract— In this paper, we present a closed-form expression
of a Bayesian Cramér-Rao lower bound for the estimation of a
dynamical phase offset in a non-data-aided BPSK transmitting
context. This kind of bound is derived considering two different
scenarios: a first expression is obtained in an off-line context
and then, a second expression in an on-line context logically
follows. The SNR-asymptotic expressions of this bound drive us
to introduce a new asymptotic bound, namely the Asymptotic
Bayesian Cramér-Rao Bound. This bound is close to the classical
Bayesian bound but is easier to evaluate.

I. INTRODUCTION

During the last decade, synchronization has become one
of the most challenging task of digital receivers. On the
one hand, since the advent of very powerful error correcting
codes (see e.g., [1]–[3]), the synchronizers have to properly
operate at Signal-to-Noise Ratios (SNRs) lower than ever
before. On the other hand, the high data-rate requirements
of future communication standards imply rapidly varying
synchronization parameters at the receiver. In order to cope
with such stressful environments, Maximum-Likelihood (ML)
synchronization performance are often a desirable feature.
Unfortunately, the ML estimator is often unfeasible in practice.
Hence, sub-optimal synchronizers have been proposed, see
e.g., [4].

In order to assess the performance of such synchronizers,
lower bounds on mean-squared estimation error are needed.
In particular, the family of Cramér-Rao Bounds (CRBs) [5],
[6] has been shown to give tight estimation lower bounds
in a number of practical scenarios, (see e.g., [7]–[11] for
CRB contributions associated to synchronization problems).
Rife et al. [7] and Cowley [8] have derived CRB closed-
form expressions for constant phase-offset estimation in the so-
called Data-Aided (DA) and Non-Data-Aided (NDA) scenar-
ios, respectively. In [9], the authors proposed a semi-analytical
method enabling to efficiently evaluate CRBs in Code-Aided
(CA) scenarios. A Modified CRB (MCRB), easier to evaluate
than the standard CRB, has been introduced in [12], [13]. The
MCRB is usually looser than the CRB but it is equivalent
to the CRB at high SNR [14]. More recently, the problem
of deriving CRBs suited to time-varying parameters has been
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addressed throughout the Bayesian context. In [15], the authors
propose a general framework for deriving analytical expression
of on-line or also called filtering CRBs. In [16], the authors
developed a numerical graph-based algorithm to evaluate the
CRB in time-varying scenarios.

In this contribution, we address the open problem of de-
riving an analytical expression of the off-line or also called
smoothing Bayesian CRB (BCRB) for time-varying phase
estimation in NDA scenarios.

Explicit expressions of the BCRB and its modified version
are provided in an off-line scenario. This bound helps us to
evaluate and also to predict the estimator performance without
any particular assumption or simulation restriction. Moreover,
an on-line interpretation follows. The asymptotic cases at low
and high SNR are presented. In particular it is shown that the
Modified BCRB (MBCRB) is equal to the derived asymptote
at high SNR. A new asymptote-based bound is then introduced
simplifying the general expressions of the BCRB.

This paper is organized as follows. In Section II we set the
system model. After recalling in Section III the different kinds
of Cramér-Rao bounds, we derive in Section IV the off-line
BCRB. In Section V the asymptotic cases are considered
and we present the asymptote-based lower bound. Next, the
closed-form expression of the BCRB in the on-line context is
given (Section VI). Finally, the different results are illustrated
and interpreted in Section VII.

The notational convention adopted is as follows: italic
indicates a scalar quantity, as in a; boldface indicates a vector
quantity, as in a and capital boldface indicates a matrix quan-
tity as in A. The (m,n)th entry of matrix A is denoted [A]m,n.
The matrix transpose operator is indicated by a superscript T

as in AT . |.| denotes the modulus of a scalar quantity or the
determinant of a matrix quantity. an

m represents the vector
[am · · · an]T , where m and n are positive integers (m < n).
<{a} and ={a} are respectively the real and the imaginary
part of a. Exy [.] denotes the expectation over x and y. bk is
equal to the integer part of k. δk,l is the Kronecker symbol. ∇θ

and ∆θ
ψ represent the first and second-order partial derivatives

operator i.e., ∇θ =
[

∂
∂θ1

· · · ∂
∂θK

]T

and ∆θ
ψ = ∇ψ∇T

θ .

The error function is defined as erf (x) = 2√
π

∫ x

0
e−t2dt.

The actual value of an unknown parameter is indicated by the
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superscript ? as in θ?.

II. SYSTEM MODEL

We consider the transmission of a BPSK modulated se-
quence a = [a1 · · · aK ]T over an Additive White Gaussian
Noise (AWGN) channel affected by some carrier phase offsets
stacked in a vector θ = [θ1 · · · θK ]T . Assuming that the
received signal has been ideally filtered and sampled at the
optimum sampling instant, the discrete-time baseband signal
y = [y1 · · · yK ]T is given by

yk = akejθk + nk with k = 1 . . . K, (1)

where ak is the kth unknown transmitted BPSK symbol
(ak = ±1) and nk is a zero-mean circular Gaussian noise
with known variance σ2

n. We suppose that the system operates
in a NDA synchronization mode, i.e., the transmitted symbols
are independent and identically distributed (i.i.d.) with p(ak =
a) = 1

2 where a = ±1. We assume that the energy per
symbol is normalized, so that the noise variance is related
to the Es/N0-ratio as Es

N0
= 1

σ2
n

.
We consider the case of a Wiener phase-offset evolution,

i.e.,
θk = θk−1 + wk, (2)

where wk is an i.i.d. zero-mean Gaussian noise with known
variance σ2

w. This model is commonly used [17], [18] to
describe the behavior of practical oscillators for which the
frequency is randomly perturbated. As the phase is the integral
of the frequency, the phase variance increases with time index
k. This phenomenon is thus non stationary and one readily
obtains that var (θk) = var (θk−1) + σ2

w.
In order to recover the transmitted symbols, practical re-

ceivers have first to estimate the carrier phase offsets cor-
rupting the received observations and perturbing the whole
data recovery. Phase estimation can actually be considered
following two main scenarios:

i) Off-line synchronization: the receiver waits until the
whole observation frame, i.e., y = [y1 · · · yK ]T , has
been received. Then, it processes all the observations
to compute the estimates of the carrier phase offsets
θ = [θ1 · · · θK ]T .

ii) On-line synchronization: the receiver estimates θk upon
the arrival of the kth observation, i.e., yk. The phase
estimate is then computed based on the current and
previous observations only, i.e., yk

1 = [y1 y2 · · · yk]T .
In the sequel, the Cramér-Rao bound evaluation will be

considered within the context of both the off-line and the on-
line scenarios.

III. CRAMÉR-RAO BOUNDS: SOME USEFUL EXPRESSIONS

A natural question which arises when designing estimators
is the ultimate accuracy that can be achieved in the estimation
operation. The family of CRBs (partially) answers this ques-
tion by providing a lower bound on the Mean Square Error
(MSE) achievable by any unbiased estimator. Different kinds
of CRBs can be considered. In the following, we briefly recall
general expressions of these bounds.

A. The Standard Cramér-Rao Bound and its Modified Version

Let θ̂(y) denote an unbiased estimator of θ. Then the
estimator θ̂(y) satisfies the following inequality

Ey|θ=θ?

[
(θ̂(y)− θ?) (θ̂(y)− θ?)T

] ≥ SCRB (θ?), (3)

where SCRB is the Standard CRB (SCRB) and θ? is the actual
parameter value. The SCRB is equal to the inverse of the
Fisher Information Matrix (FIM) F(θ?) defined by [6]

F(θ?) = Ey|θ=θ?

[−∆θ
θ log p(y|θ)|θ=θ?

]
. (4)

The practical evaluation of the FIM for modulated signals is
generally quite tedious because of the symbols a which are
nuisance parameters. In order to circumvent this problem a
”Modified” CRB has been proposed [12] and comes from the
inversion of the following matrix:

G(θ?) = Ea Ey|a,θ=θ?

[−∆θ
θ log p(y|a, θ)|θ=θ?

]
. (5)

Unlike the SCRB, it is usually possible to derive a closed form
expression of the MCRB. In particular, in [12], the analytical
expression associated to a constant phase offset is derived:

MCRB =
1

2K

(
Es

N0

)−1

, (6)

where K is the number of observations. Note that although
easier to evaluate than the SCRB, the MCRB is also generally
looser. In the particular case of high-SNR transmissions, it has
however been shown [14] that the MCRB corresponds to the
SCRB. We can also notice that equation (6) coincides with the
CRB provided in [7]. This bound is computed in the case of
an unmodulated scenario or, equivalently, of a DA scenario.

B. The Bayesian Cramér-Rao Bound and its Modified Version

The standard and the modified CRBs are not suited to
time-varying parameter estimation. In particular, they do not
take into account the statistical dependence which may exist
between phase offsets at different instants.

This dependence is naturally considered within the Bayesian
framework: on the one hand, prior distribution p(θ) implicitly
models the time dependence between stochastic phase offsets;
on the other hand, Bayesian framework is intrinsically based
on the knowledge of a vector prior distribution p(θ).

Within this context, a Bayesian CRB (BCRB) has been
proposed in [19] such that

Ey,θ

[
(θ̂(y)− θ) (θ̂(y)− θ)T

] ≥ BCRB. (7)

Unlike the SCRB and the MCRB, the BCRB does not depend
on a particular value θ?. The BCRB is the inverse of the
Bayesian Information Matrix (BIM), which from [19] can be
written as

B = Eθ

[
F(θ)

]
+ Eθ

[−∆θ
θ log p(θ)

]
, (8)

where F(θ) is the FIM defined in (4). Each term of the BIM
(8) plays a different role: the first term can be interpreted as
the average information about θ brought by the observations
y whereas the second term can be regarded as the information
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available from the prior knowledge of θ, i.e., p(θ). This term
allows us to take into account the time dependence between
phase offsets at different instants.

Similarly to the MCRB, a modified version of the BCRB
has been considered in [20]. This Modified BCRB (MBCRB)
is the inverse of the following information matrix

C = Eθ

[
G(θ)

]
+ Eθ

[−∆θ
θ log p(θ)

]
, (9)

where G(θ) is the modified Fisher information matrix defined
in (5). The MBCRB is usually easier to compute than the
BCRB but it is also looser [20].

IV. THE OFF-LINE BCRB AND ITS MODIFIED VERSION
FOR DYNAMICAL PHASE ESTIMATION

In this section, we derive an analytical expression of the
BCRB associated to an off-line carrier-phase-offset estimation.
We proceed as follows. We first obtain analytical expressions
of the two terms contributing to the BIM (8). Then, the
expression of the diagonal elements of the inverse of the BIM
are derived. In addition, we also give an analytical expression
of the MBCRB.

A. Computation of Eθ[F(θ)]

Eθ[F(θ)] corresponds to the first term in the right-hand side
of equation (8). This term evaluation requires the computation
of the Fisher information matrix F(θ), which in turn requires
the evaluation of the Hessian of the log-likelihood function
log p(y|θ). Using the observation model defined in section II,
one has that the log-likelihood function can be expanded as

log p(y|θ) = log
∑
a

p(y|a,θ) p(a). (10)

Using the whiteness of the noise and the independence of the
transmitted symbols, one then obtains that

∆θ
θ log p (y|θ) =

K∑

k=1

∆θ
θ log p (yk|θk) . (11)

It is important to note that each term of the sum (11) is a
matrix with only one non-zero element at most, namely,

[
∆θ

θ log p (yk|θk)
]
k,k

=
∂2

∂θ2
k

log p (yk|θk) . (12)

As a direct consequence, the Hessian ∆θ
θ log p (y|θ) is a

diagonal matrix with the kth diagonal element given by
equation (12). Moreover, because of the circularity of the ob-
servation noise, the expectation of equation (12) with respect
to p (yk|θk) does not depend on θk. One then obtains

Eθ [F (θ)] = JDIK , (13)

where IK is the K ×K identity matrix and JD is defined as
follows

JD , Ey,θ

[
−∂2 log p (yk|θk)

∂θ2
k

]
. (14)

B. Computation of Eθ[∆θ
θ log(p(θ))]

Due to the Wiener structure of the phase model (2),
∆θ

θ log p (θ) can be expanded as

∆θ
θ log p (θ) = ∆θ

θ log p (θ1) +
K∑

k=2

∆θ
θ log p (θk|θk−1) .

(15)

Let us detail the expressions of each term contributing to
equation (15). The first term is a matrix with only one non-
zero element, namely, the entry (1, 1) which is equal to

[
∆θ

θ log p (θ1)
]
1,1

=
∂2 log p (θ1)

∂θ2
1

. (16)

The other terms in (15) are matrices with only four non-zero
elements, namely, the entries (k−1, k−1), (k−1, k), (k, k−1)
and (k, k). Due to the Gaussian nature of the noise, one finds

[
∆θ

θ log p (θk|θk−1)
]

k,k
=

[
∆θ

θ log p (θk|θk−1)
]

k−1,k−1

=
−1
σ2

w

, (17)
[
∆θ

θ log p (θk|θk−1)
]

k,k−1
=

[
∆θ

θ log p (θk|θk−1)
]

k−1,k

=
1

σ2
w

. (18)

Taking (16), (17) and (18) into account, one finally obtains

− Eθ[∆θ
θ log p(θ)] =



1
σ2

w
− Eθ1

[
∂2

∂θ2
1

log p(θ1)
]

− 1
σ2

w
0 . . . 0

− 1
σ2

w

2
σ2

w
− 1

σ2
w

. . .
...

...
. . . . . . . . . 0

... − 1
σ2

w

2
σ2

w
− 1

σ2
w

0 . . . 0 − 1
σ2

w

1
σ2

w




(19)

In the sequel, for the sake of conciseness, we will set
Eθ1

[
∂2 log p(θ1)

∂θ2
1

]
= 0. This corresponds to the case of a non-

informative prior about θ1 (see [21]). The reasoning which
is made in the following could however be extended to the
general case, at the expense of some more difficult derivations
and would not modify our results interpretation.

C. Analytical Expression of the Off-Line BCRB

In this subsection, an analytical expression of the diagonal
elements of the inverse of the BIM is derived. From (13)
and (19) one readily obtains that the BIM has a particular
mathematical structure, i.e.,

BK = b




A + 1 1
1 A 1

. . . . . . . . .
1 A 1

1 A + 1




, (20)

where A and b are defined as A , −σ2
wJD − 2 and b ,

−1/σ2
w. In particular, BK is a symmetric sparse matrix having
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an (almost) periodical structure. Based on these observations,
we show in Appendix I that the kth diagonal element of B−1

K

can be expressed as
[
B−1

K

]
k,k

=
1

|BK |
[
ρ2
1 (b + r1)

2
rK−3
1 + ρ2

2(b + r2)2rK−3
2

− b2

A− 2
(rk−2

1 rK−k−1
2 + rK−k−1

1 rk−2
2 )

]
,

(21)

where

r1 , 1
σ2

w

+
JD

2

(
1−

√
1 +

4
JDσ2

w

)
, (22)

r2 , 1
σ2

w

+
JD

2

(
1 +

√
1 +

4
JDσ2

w

)
, (23)

ρ1 ,

√
1 + 4

σ2
wJD

− 1− 2
σ2

wJD

2
√

1 + 4
σ2

wJD

, (24)

ρ2 ,

√
1 + 4

σ2
wJD

+ 1 + 2
σ2

wJD

2
√

1 + 4
σ2

wJD

, (25)

Note that (21) together with (22)-(25) provides an analytical
expression of the off-line BCRB associated to the estimation of
θk. This function of index k depends only on three parameters:
the number of observations K, the phase noise variance σ2

w

and the observation noise variance σ2
n (or equivalently JD, see

equation (14)). The evaluation of JD is discussed in Section
V.

D. The Off-line MBCRB

We now consider the MBCRB, (see equation (9)). The
second term in the right-hand side of (9) has already been
computed in section IV-B. The first term Eθ

[
G(θ)

]
requires

the evaluation of G(θ) which corresponds to the modified
Fisher information matrix defined in (5). Using the observation
model, one has that ∆θ

θ log p(y|a, θ) is a diagonal matrix
where

[∆θ
θ log p(y|a, θ)]k,k =

∂2

∂θ2
k

log p(yk|ak, θk). (26)

Due to the Gaussian distribution of the noise, one further finds
that

∂2

∂θ2
k

log p(yk|ak, θk) =
2
σ2

n

< (−a∗kyke−jθk
)
. (27)

Consequently, one obtains that

[G(θ)]k,k = Ea Ey|a,θ

[− 2
σ2

n

< (−a∗kyke−jθk
)]

(28)

= Ea[
2
σ2

n

|ak|2] (29)

=
2
σ2

n

. (30)

One can observe that [G(θ)]−1
k,k = 1

2

(
Es

N0

)−1

, which cor-
responds to the MCRB (6) for K = 1 observation. As

straightforwardly Eθ

[
G(θ)

]
= 2/σ2

n IK , the modified BIM
is obtained exactly like the BIM of subsection IV-C with
JM , 2

σ2
n

playing the role of JD in equation (20). Note,
however, that the MBCRB is usually looser than the BCRB.

V. EVALUATION OF JD AND ASYMPTOTE-BASED LOWER
BOUND

In this section we first point out that, in the general case,
the evaluation of JD implies to resort to numerical integration.
We then derive the high-SNR and low-SNR asymptotes of the
BCRB, and emphasize that their evaluation is easy. Finally,
we show that these asymptotes are themselves lower bounds
on the MSE. In particular, we illustrate that the combination
of the low and high SNR asymptotes leads to an alternative
(tight) lower bound, whose evaluation is straightforward.

A. Evaluation of JD

In this part, we calculate an expression of JD defined in
(14). First, using the Gaussian nature of the noise and the
equiprobability of the data symbols, one finds that

log p(yk|θk) = log
(

1
πσ2

n

e
− 1+|yk|2

σ2
n cosh

(
2
σ2

n

<(
yke−jθk

)))
.

(31)

Taking the second derivative of (31), one easily obtains that

∂2 log p(yk|θk)
∂θ2

k

= − 2
σ2

n

<(xk) tanh
( 2

σ2
n

<(xk)
)

+
4
σ4

n

=2(xk)
[
1− tanh2

(
2
σ2

n

<(xk)
)]

,

(32)

where xk , yk e−jθk . In the general case, the expectation
of (32) with respect to p(y|θ) does not have any simple
analytical solution. Hence, in practice, we have to resort to
either numerical integration methods or some approximations.
In the following, we present both the high-SNR and the low-
SNR approximations of the BCRB.

B. High-SNR BCRB asymptote

In this part, we investigate the BCRB behavior at high SNR.
From the definition of the BIM (8), only the first term, i.e.,
Eθ[F(θ)], depends on the SNR. Moreover, we have from (13)
that Eθ[F(θ)] is fully characterized by JD (14). Hence, in
the remainder of this section, we focus on the behavior of JD.

At high SNR (i.e., σ2
n → 0), the tanh-function in (32) can

be approximated as

tanh
[

2
σ2

n

<(xk)
]
≈ sign

(
<(xk)

)
. (33)

Hence, replacing tanh in (32) by its approximation (33) and
using the definition of JD (14), one has (see Appendix III)

JD ≈ Eyk,θk

[
− 2

σ2
n

<(xk)sign
(
<(xk)

)]
(34)

=
2

σn
√

π
e
− 1

σ2
n +

2
σ2

n

erf
(

1
σn

)
. (35)
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So, taking the limit of (35) for σ2
n tending to zero, one has

that

JDh , lim
σ2

n→0
JD =

2
σ2

n

. (36)

We see therefore from (30) and (36), that the high-SNR
asymptote of the BCRB (i.e., J−1

Dh) is equal to the MBCRB.
This corroborates the result derived by Moeneclaey [14] in the
non-Bayesian case for a scalar parameter.

C. Low-SNR BCRB asymptote

We now consider the low-SNR asymptote of the BCRB
in the NDA BPSK context. Following the same reasoning as
before, we equivalently focus on the behavior of JD for σ2

n

tending to infinity.
From (32), using the fact that tanh(z) ≈ z around z = 0,

we obtain

∂2 log p (yk|θk)
∂θ2

k

≈ −
(

2
σ2

n

<(xk)
)2

+
(

2
σ2

n

=(xk)
)2

. (37)

Plugging (37) into (14), one readily obtains that the BCRB
low-SNR asymptote is

JDl , lim
σ2

n→∞
JD =

4
σ4

n

. (38)

In [22], the authors obtain a result similar to (38) in a non-
Bayesian scenario for a scalar parameter.

D. Asymptote-based Lower Bound

In this subsection, we show that the combination of the low
and high-SNR BCRB asymptotes, presented in the previous
subsections, still leads to a lower bound on the MSE. In
particular, we define the ”Asymptotic” BCRB (ABCRB) as

ABCRB ,
(
min(JDl, JDh) IK + Eθ[−∆θ

θ log p(θ)]
)−1

,

(39)

which can be evaluated with equations (19), (36) and (38). We
now show that

MBCRB ≤ ABCRB ≤ BCRB. (40)

The proof of the first inequality directly comes from the
definition of the ABCRB and of the MBCRB. The second
inequality is straightforward to show when JDh ≤ JDl

because in such a case, we have

ABCRB =
(
JDh IK + Eθ[−∆θ

θ log p(θ)]
)−1

,

=MBCRB. (41)

Since we know that BCRB ≥ MBCRB (see [20]), (40) is
proven for JDh ≤ JDl. The proof for JDl < JDh is more
lengthy and is detailed in Appendix IV. The ABCRB is thus
an easy-to-evaluate lower bound on the MSE. This Bayesian
bound which does not require any Monte-Carlo simulation is
compared to the BCRB in Section VII.

This kind of reasoning only depends on the observation
model: the ABCRB is relevant in the case of a BPSK trans-
mission. However one can adapt this asymptote-based lower
bound on any phase model system.

VI. THE ON-LINE BCRB : SEQUENTIAL CRAMÉR-RAO
BOUND

Up to this section, we have focused on the off-line scenario.
We now show how the previous results can be used in the case
of an on-line synchronization mode. In this mode, the receiver
updates the observation vector yk

1 in order to estimate θk : only
the past and the current observations are available.

In order to evaluate the performance of this kind of estima-
tor, a Posterior (on-line) Cramér-Rao Bound was derived in
[15]. Tichavsky et al. provide a method for updating the BIM
from the time index k to the time index k + 1. This method
was already applied in [23] on the same model described
by equations (1) and (2): the lower bound for the last state
parameter θk is given by the following recursive sequence

Ck+1 =
σ2

w + Ck

JDσ2
w + 1 + JDCk

and C1 =
1

JD
. (42)

On the other hand, using our previous derivations, we can
provide an alternative expression of the on-line BCRB. Indeed,
the on-line BCRB associated to observation vector yK

1 is
clearly equal to entry (K,K) of the inverse of the BIM, i.e.,[
B−1

K

]
K,K

. Using expression (21), we therefore have

CK =
[
B−1

K

]
K,K

=
1

|BK |
[
ρ2
1 (b + r1)

2
rK−3
1 + ρ2

2(b + r2)2rK−3
2

− b2

A− 2
(rK−2

1 r−1
2 + r−1

1 rK−2
2 )

]
. (43)

The behavior of the off-line (21) and of the on-line (43)
BCRBs will be studied and compared in the next section.

In addition, it is shown in Appendix II that this bound
decreases with time index K to the following limit:

lim
K→∞

[
B−1

K

]
K,K

=
−σ2

w +
√

σ4
w + 4σ2

w

JD

2
. (44)

Asymptotically with the observation size, the estimation
performance is limited both by the phase noise and the
observation noise (due to JD). Therefore, unlike the non-
Bayesian CRB [8], the BCRB does not necessarily tend to
zero when the number of observations goes to infinity.

VII. DISCUSSION

In this section we bring to the fore the behavior of the
previous bounds, namely the off-line and the on-line BCRBs
and ABCRB, by considering different scenarios.

We first consider a transmission disturbed by an AWGN
with variance σ2

n = 4 and phase noise with variance σ2
w =

0.16 rad2. Figure 1 superimposes versus time index, the on-line
BCRB (see equation (43)), its asymptote described by equation
(44), and the off-line BCRBs for different block-observation
lengths K (see equation (21)). We then obtain the lower bound
for each phase offset θk according to the considered scenario.

In the off-line context, one can see that the best phase
estimate is achieved at mid-block, whereas the estimates are
likely to be poorer at the block boarder (the proof of this
property is detailed in Appendix I-D). This stems from the fact
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that in the center position of the phase vector θ one has more
adjacent (past or future) and strongly correlated variables than
at the boarder of the phase vector. Stated more precisely, from
equation (2), the correlation coefficient between θk and θk+l

(where l is a positive integer) is equal to
√

Eθ[θ2
1]+(k−1) σ2

w

Eθ[θ2
1]+(k+l−1) σ2

w

, and thus even if a boarder phase is estimated with the same
number of observations than a mid-size position phase, the
correlation coefficient at the boarder are globally poorer than
at the center and the information cannot be exploited as well.

Concerning the on-line bound, at the beginning when the
number of observations increases, the estimator takes into
account more and more information and the estimation is
improved; the bound thus decreases and converges to its
asymptote: the estimation performance is then limited by the
phase noise and the observation noise independently of the
number of observations taken into account.

2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

4

5

6

7

8

Observation Block Length

M
S

E
 (

dB
)

Off−Line and On−Line BCRBs

On−Line BCRB
On−Line Asymptote
Off−Line BCRB

K=3 

K=5 

K=10 K=15 K=20 

Fig. 1. BCRBs versus the number of observations for σ2
n = 4, σ2

w =
0.16 rad2 (JD is evaluated over 105 Monte-Carlo trials).

We now analyze the bound behavior versus the SNR over a
block of K = 20 BPSK transmitted symbols. We illustrate
some results for two distinct phase-noise variances: σ2

w =
0.01 rad2 and σ2

w = 0.16 rad2. Figure 2 superimposes for the
two previous phase-noise variances, the BCRBs (see equation
(21)) evaluated over 107 Monte-Carlo trials and the ABCRBs
(see equation (39)) with k = bK+1

2 versus the SNR. One can
recover on Figure 2 for σ2

w = 0.16 rad2 and SNR = −6 dB,
the minimum of the off-line BCRB displayed on Figure 1 for
K = 20. We distinguish three SNR ranges.
• At high SNR, we notice that the ABCRBs in dashed lines

and the corresponding BCRBs logically merge. Moreover,
the ABCRB is close to the BCRB in the whole range
of SNR for the two phase noise variances considered.
At high SNR, both BCRBs converge to the deterministic
MCRB evaluated for K = 1 observation [12], [13] i.e.,
MCRB = 1/JDh. In this range of SNR, the information
provided by each observation yk is preponderant over the
a priori knowledge of θ. Consequently in this case the
observations are reliable enough to only take into account
the present observation yk in order to estimate θk and this

−20 −10 0 10 20 30 40

−40

−30

−20

−10

0

10

20

SNR (dB)

M
S

E
 (

dB
)

Bayesian Cramér−Rao Bounds Versus SNR 

BCRB
ABCRB
MCRB K=1
MCRB K =20
CRB Low−SNR Asymptote

σ
w
2  =  0.16  rad2

σ
w
2  =  0.01  rad2

K=1

K=20

Fig. 2. Comparison between Bayesian CRBs and Asymptote-based CRBs
for two different phase noise variances σ2

w = 0.01 rad2 and σ2
w = 0.16 rad2.

is why the bounds converge to the well-known MCRB for
any variance σ2

w. As the a priori distribution of θ has no
influence, the Bayesian problem tends to a deterministic
phase estimation problem where we estimate K indepen-
dent phases θk with K independent observations.

• In mid-range SNR, when the phase variance σ2
w de-

creases, the BCRB gets closer to the deterministic MCRB
evaluated for K = 20 observations. This is because in
the limiting case for which the phase variance tends to
zero, the time-varying phase estimation problem can be
simplified to a deterministic constant-phase estimation
problem. The MCRB is then a lower bound of the BCRBs
for the same number of observations K = 20.

• At low SNR, the BCRB and the ABCRB coincide. In
this SNR-range, the observation noise masks the a priori
dynamic phase evolution. The Bayesian bound tends to

the deterministic asymptote 1
K JDl

= 4
K

(
Es

N0

)−1

given
by [22]. One can note that the phase evolution is not
stationary i.e., var (θk) = var (θk−1) + σ2

w, and conse-
quently that uncertainty over the phase offset grows with
time. Moreover as the phase model (2) is not restricted to
a finite horizon, the MSE is not upper bounded. This is
why there is no observed saturation as one could expect
with a traditional Bayesian bound.

VIII. CONCLUSION

In this contribution, we have derived an analytical expres-
sion of a Bayesian Cramér-Rao Bound for the estimation
of a realistic dynamical phase. We provide a closed-form
expression in the case of a BPSK transmission disturbed by
AWGN in a NDA context. The reasoning can be extended
to any M-ary Phase Shift Keying transmissions. Furthermore,
we can readily predict the bound behavior from its low and
high-SNR asymptotes. We combine these asymptotes and we
give a new Bayesian bound which is easy to evaluate at the
price of being slightly lower than the BCRB. These bounds
are useful when analyzing the performance of actual phase-
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tracking estimators in stressing environments for both the off-
line and on-line scenarios.

APPENDIX I
EXPRESSION OF DIAGONAL ELEMENTS OF THE BCRB

In this appendix, we detail the calculus to obtain the
diagonal elements (21) of the inverse of the BIM (20). We
first use the classical matrix-inversion formula

[B−1
K ]k,k =

Ck,k

|BK | , (45)

where Ck,k is the cofactor of the element [BK ]k,k and |BK |
is the determinant of matrix BK . In the sequel, we focus on
the derivation of particular expressions of Ck,k and |BK |.
We first present some preliminary calculus (sections I-A to
I-C) aiming at simplifying the expansion of |BK | and Ck,k.
Then, in section I-D, we derive a closed-form expression of
the diagonal elements of B−1

K .

A. Preliminary calculus : Determinant dk

In this subsection, we derive an analytical expression of the
determinant dk of a k × k matrix Dk defined as

Dk = b




A 1
1 A 1

. . . . . . . . .
1 A 1

1 A




(46)

Expanding dk along the first and the second column, one
obtains the recursive equation

dk = Abdk−1 − b2dk−2 with d0 = 1 and d1 = bA. (47)

{dk}∞k=0 is thus a linear recurrent sequence and its character-
istic polynomial p (x) = x2 −Abx + b2 has real roots r1 and
r2. Then, using the initial terms, an analytical expression of
dk is given by

dk = ρ1 (r1)
k + ρ2 (r2)

k for k ∈ N, (48)

where

r1 =
b

2

(
A +

√
A2 − 4

)
, ρ1 =

√
A2 − 4 + A

2
√

A2 − 4
,

r2 =
b

2

(
A−

√
A2 − 4

)
, ρ2 =

√
A2 − 4−A

2
√

A2 − 4
.

B. Determinant |BK |
In this subsection, we derive an expression of |BK | by using

the preliminary result derived Appendix I-A. In a first step,
expanding this determinant along the first column, we obtain
the sum of two cofactors only. Then, expanding in turn these
cofactors along the last column and using (47), we have

|BK | = (A + 2) b dK−1, (49)

or with (48),

|BK | = (A + 2) b
(
ρ1 (r1)

K−1 + ρ2 (r2)
K−1

)
. (50)

C. Cofactor Ck,k

In order to calculate the cofactor Ck,k, one has to delete
the kth row and the kth column of the matrix BK and one
obtains a two-block diagonal matrix. The upper (respectively
lower) block is noted UBK

(respectively LBK
). The cofactor

which is obtained from the determinant of the previous matrix
is thus the product of two determinants:

Ck,k = det(UBK
)det(LBK

) (51)
= (bdk−2 + dk−1) (bdK−k−1 + dK−k, ) , (52)

where dk is calculated in Appendix I-A.

D. Expression of the diagonal elements of B−1
K

An analytical expression of the diagonal elements of the
inverse of (20) is now derived. Then, the behavior of these
elements along their index k and the matrix size K × K is
studied.

Rewriting (45) and using (52), one has

[
B−1

K

]
k,k

=
(bdk−2 + dk−1) (bdK−k−1 + dK−k)

|BK | . (53)

Then, using (48),
[
B−1

K

]
k,k

can be expanded as follows

[
B−1

K

]
k,k

=
1

|BK |
[
ρ2
1 (b + r1)

2
rK−3
1 + ρ2

2(b + r2)2rK−3
2

− b2

A− 2
(rk−2

1 rK−k−1
2 + rK−k−1

1 rk−2
2 )

]
,

which is equivalent to (21).
For a fixed block length K from (21), note that

[
B−1

K

]
k,k

depends on the index k through the expression gK (k) where

gK (x) = rx−2
1 rK−x−1

2 + rK−x−1
1 rx−2

2 . (54)

After analyzing this function, by classically studying the
sign of dgK

dx , one readily finds that
• the symmetry of gK(x) with respect to K+1

2 implies that
[
B−1

K

]
k,k

=
[
B−1

K

]
l,l

with l = K + 1− k,

• the minimal diagonal element is the mid-coefficient[
B−1

K

]
K+1

2 , K+1
2

,

• the maximal diagonal elements are
[
B−1

K

]
1,1

and[
B−1

K

]
K,K

.

APPENDIX II
DERIVATION OF EXPRESSION (44)

Using (53),
[
B−1

K

]
K,K

can be written as follows:

[
B−1

K

]
K,K

=
A + 1

b (A + 2)
− 1

b2 (A + 2)
dK

dK−1
, (55)

where dK is defined in Appendix I-A. Since
[
B−1

K

]
K,K

is
only a function of dK

dK−1
, we consider the fixed points of a

sequence {un}∞n=0 defined as

un , dn

bdn−1
=

Aun−1 − 1
un−1

, (56)



8

with u1 = A. Clearly, this sequence is strictly increasing and
converges to u∞ = 1

2

(
A−√A2 − 4

)
. Combining this result

with (55), we have that

[
B−1

K

]
K,K

=
A + 1

b (A + 2)
− 1

b (A + 2)
uK , (57)

is a strictly decreasing sequence with the following limit:

lim
K→∞

[
B−1

K

]
K,K

=
A + 1

b (A + 2)
−

(
A−√A2 − 4

)

2b (A + 2)
. (58)

Using the definitions of A and b in subsection IV-C, one
obtains

lim
K→∞

[
B−1

K

]
K,K

=
−σ2

w +
√

σ4
w + 4σ2

w

JD

2
. (59)

APPENDIX III
HIGH-SNR ASYMPTOTE OF JD

Defining FH(θk) , Eyk|θk

[
2

σ2
n
<(xk)sign

(
<(xk)

)]
, (34)

becomes

JD ≈ Eθk
[FH(θ)] . (60)

Since the noise affecting the observation is circular, xk =
ak + ñk where ñk = nke−jθk is a circular Gaussian noise
with variance σ2

n, therefore, we find

FH(θk) = Eak,ñI
k|θk

[
2
σ2

n

(
ak + ñI

k

)
sign

((
ak + ñI

k

))]
,

where ñI
k , <{ñk}. Using first the definition of the expecta-

tion and then the definition of the error function erf(·)

FH(θk) =
∑

ak∈{−1,1}

1
σ2

n

∫ +∞

−∞

(
ak + ñI

k

)

× sign
(
ak + ñI

k

)
p(ñI

k)dñI
k

=
1
σ2

n

(
2

∫ +1

−1

p(ñI
k)dñI

k + 4
∫ +∞

1

ñI
kp(ñI

k)dñI
k

)
,

=
2

σn
√

π
e
− 1

σ2
n +

2
σ2

n

erf
(

1
σn

)
. (61)

Since (61) does not depend on θk, we finally obtain

JD ≈ Eθk
[FH(θk)] =

2
σn
√

π
e
− 1

σ2
n +

2
σ2

n

erf
(

1
σn

)
. (62)

APPENDIX IV
PROOF THAT BCRB > ABCRB FOR JDl < JDh

To prove (40), we show that

JD − JDl < 0, (63)

Using the definition of JD and JDl, i.e., (14) and (38), we
have

JD − JDl =Eyk,θk

[
4
σ4

n

=2(xk) tanh2

(
2
σ2

n

<(xk)
)

(64)

+
2
σ2

n

<(xk)
(

tanh
( 2

σ2
n

<(xk)
)
− 2

σ2
n

<(xk)
)]

.

For the sake of conciseness, we use the following notations:
X , <(xk) and Y , =(xk). Taking then into account that
the expectation in (64) is independent of θk, we have

JD − JDl = EX,Y

[
4
σ4

n

Y 2 tanh2

(
2
σ2

n

X

)
(65)

+
2
σ2

n

X

(
tanh

( 2
σ2

n

X
)
− 2

σ2
n

X

)]
.

Since the noise affecting the observations is circular, X and Y
are independent. Moreover Y is a zero-mean random Gaussian
variable with variance σ2

n/2. Hence,

JD − JDl = EX [f(X)] , (66)

where f(X) , 2
σ2

n

[
X tanh

(
2

σ2
n
X

)
− 2

σ2
n
X2 + tanh2

(
2

σ2
n
X

)]

and where X is a random variable with the following
probability density function (pdf)

p(X) =
1

σn
√

π
e

(X−1)2

σ2
n p (a = +1) +

1
σn
√

π
e

(X+1)2

σ2
n p (a = −1) .

Then we rewrite (66) as

JD − JDl =
1
2

[
EX|a=+1 [f (X)] + EX|a=−1 [f (X)]

]
.

(67)

Noting that f(X) = f(−X), we deduce from a change of
variable (X = −X̃) that the two terms in the right-hand side
of (67) are equal. This equation thus becomes

JD − JDl = EX|a=+1 [f (X)] . (68)

We now prove that EX|a=+1 [f (X)] is negative. We use
Stein’s lemma [24]: suppose Z is a normally distributed
random variable with expectation µ and variance v. Further-
more suppose g is a function for which the two expectations
E[(Z − µ)g(Z)] and E[g′(Z)] both exist. Then

vEZ [g′(Z)] = EZ [(Z − µ)g(Z)] . (69)

Applying this lemma to the random variable X with expecta-
tion µ = 1 and variance σ2

n/2 and to g(X) = tanh
(

2
σ2

n
X

)
,

we obtain

σ2
n

2
EX|a=+1

[
2
σ2

n

(
1− tanh2

(
2
σ2

n

X

))]
(70)

= EX|a=+1

[
(X − 1) tanh

(
2
σ2

n

X

)]
.

Moreover, we directly have

EX|a=+1

[
4
σ4

n

X2

]
=

2
σ2

n

+
4
σ4

n

. (71)

Then, plugging equations (70) and (71) into equation (68)

JD − JDl = EX|a=+1

[
2
σ2

n

tanh
(

2
σ2

n

X

)]
− 4

σ4
n

. (72)

Considering that X is a Gaussian variable with expectation
µ = 1, we now show that EX|a=+1

[
tanh

(
2

σ2
n
X

)
− 2

σ2
n
X

]
<

0.
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Suppose Z is a normally distributed random variable with
expectation µ = 1 and variance v. Denoting its pdf by p(Z),
we have for any λ > 0

EZ [tanh (λZ)− λZ]

=
∫ ∞

−∞
[tanh (λZ)− λZ] p(Z)dZ (73)

=
∫ ∞

0

[tanh (λZ)− λZ] (p(Z)− p(−Z)) dZ. (74)

As p(Z) − p(−Z) > 0 for any Z > 0, and as
tanh(λZ) < λZ for any Z > 0 and λ > 0, we actually
have EZ [tanh (λZ)− λZ] < 0, so that

EZ [tanh (λZ)] < λ, λ > 0. (75)

As X is a normally distributed random variable with expec-
tation µ = 1, applying this result with λ = 2

σ2
n

, we obtain

EX|a=+1

[
2
σ2

n

tanh
(

2
σ2

n

X

)]
− 4

σ4
n

< 0, (76)

and finally from equations (72) and (76) we have proved
equation (63)

JD − JDl < 0, σn > 0. (77)
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