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Abstract

The paper presents a numerical method to simulate single- and multi-component
fluid flows around moving/deformable solid boundaries, based on the coupling
of Immersed Boundary (IB) and Lattice Boltzmann (LB) methods. The fluid
domain is simulated with LB method using the single relaxation time BGK
model, in which an interparticle potential model is applied for multi-component
fluid flows. The IB-related force is directly calculated with the interpolated
definition of the fluid macroscopic velocity on the Lagrangian points that define
the immersed solid boundary. The present IB-LB method can better ensure the
no-slip solid boundary condition, thanks to an improved spreading operator.
The proposed method is validated through several 2D/3D single- and multi-
component fluid test cases with a particular emphasis on wetting conditions on
solid wall. Finally, a 3D two-fluid application case is given to show the feasibility
of modeling the fluid transport via a cluster of beating cilia.

Keywords: Immersed boundary method, Lattice Boltzmann method,
Multi-component fluid flow, Wetting conditions

1. Introduction

The numerical simulation of phenomena involving moving/deformable bound-
aries in multi-component flows is attracting more and more the interest of physi-
cists and engineers, especially in recent biofluidic applications. In this context,
the scope of this work is to develop a numerical tool to simulate the beating of
epithelial cilia to transport the mucus in airways [1]. Epithelial cells have whip-
like appendages extending from their surface, designed to move the surrounding
fluid. The numerical challenges thus include the simulation of slender flexible
structures in large deformations, in a two-component fluid flow environment:
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the periciliary fluid whose properties are close to those of water and the mu-
cus [2]. Note that although this work mainly aims at simulating the transport
of mucus by ciliary motion, a wide spectrum of applications can be found in
biomechanics (inner ear, sperm cells), aerodynamics (control of boundary layers
around airfoils [3]), or animal propulsion studies [4].

In the present work, the numerical simulation involving mucus and pericil-
iary fluid is tackled via an interparticle potential Multi-Component Multi-Phase
(MCMP) Lattice Boltzmann (LB) model [5]. Based on the original Shan-Chen’s
model [6, 7], this MCMP scheme applies an Explicit-Forcing (EF) scheme [8]
in order to take into account external force effects, instead of modifying the
equilibrium velocity as in [6, 7]. As shown in the work of Porter et al. [5], the
EF interparticle potential LB model adopted in the present paper can allow one
to reduce the magnitude of spurious currents near the fluid-fluid interface, as
well as to increase the density or viscosity ratio, compared to the original SC
model. More details about the thermodynamic consistency of different forcing
schemes can be found in the works of Huang et al. [9] and Li et al. [10].

As an alternative to conventional numerical methods, LB method has been
widely applied for simulating fluid flow problems with diverse physical phe-
nomena, because of its inherent advantages, such as the microkinetic level for
dealing with the fluid properties and the simplicity for parallel implementation,
etc. Besides, one important feature of LB method is that it can fully recover
the Navier-Stokes (NS) equations at the macroscopic scale [11, 12].

To incorporate moving solid boundaries in the fluid domain, we choose to
couple the LB method with an Immersed Boundary (IB) method. Originally
introduced by Peskin [13] for simulating blood flow in the heart, IB method is
now widely used and several variants have been proposed within the framework
of NS solvers [4, 14, 15, 16]. Using IB method allows one to easily introduce
moving solid boundaries in fluid flows simulated on a fixed Cartesian grid, which
is the case for the present LB solver.

When considering body force term in the fluid domain, one should redefine
or correct the macroscopic velocity in the framework of LB method for both
single- and multi-component fluid cases in order to fully recover NS equations
[7, 17]. In such case, the macroscopic fluid velocity is calculated as the sum
of two terms: one is related to the distribution functions of LB model, and
the other is the body force-related term. The main idea of IB method is to
calculate an appropriate body force-related term so that the fluid can have a
desired macroscopic velocity on the Lagrangian points defining the solid wall.
Hence, a straightforward method is to first calculate the IB-related force at these
Lagrangian points, based on the definition of the macroscopic fluid velocity,
and then distribute it onto the neighboring Eulerian nodes with the spreading
operator, following Peskin [13, 18]. Such kind of IB-LB method, like the one
of Chen et al. [19], can be categorized as explicit IB-LB algorithm, which is
now known to have issues in ensuring the no-slip solid boundary condition [20].
To overcome this drawback, Wu and Shu [20] proposed an implicit velocity-
correction IB-LB method, which relies on resolving a system of equations at
each time-step in order to calculate the IB-related force that ensures the no-slip
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boundary condition.
In the present paper, an IB-LB method is proposed to simulate single- and

multi-component fluid flows in the presence of fixed or moving solid bound-
aries. The macroscopic fluid velocity is split into two parts, and the IB-related
force is directly obtained from the definition of the macroscopic fluid velocity
at the Lagrangian points. However, we follow the method proposed by Pinelli
et al. [16] to amend the spreading operator in order to improve the reciprocity
of interpolation-spreading operations. As a consequence, with such spreading
operator, the no-slip solid boundary condition can be better ensured, compar-
ing to the ordinary explicit IB-LB coupling approach. Similar to the method
proposed by Wu and Shu [20], the resolution of a linear system of equations is
also required, but only when the positions of the Lagrangian points change with
time. It means that in the case of static solid boundary cases the resolution
of the system will be carried out only once at the beginning of the simulation,
which turns out to be an advantage of the present method. In addition, it may
be worth noting that the present IB-LB method appears to be formally faster
than the one proposed by Favier et al. [21], since only one LB calculation is
required within one time-step, avoiding the need of an extra prediction step.

Besides, another novelty of the present work lies in the extension of the
proposed IB-LB method to multi-component fluid cases. The key point is to
calculate the IB-related force by means of the definition of the macroscopic
velocity for each fluid component. Once these forces are obtained, the spreading
procedure is the same as in the single-component fluid case. Furthermore, with
the proposed IB-LB coupling method one can take into account different wetting
properties of solid wall, by adding the IB-related force after considering the fluid-
solid adhesion force model proposed by Martys and Chen [22]. For the sake of
clarity, we summarize the advantages of the proposed IB-LB coupling method
as follows:

• Moving and curved solid boundary condition can be easily incorporated
into the fluid simulation. The extension to multi-component cases is
straightforward and different wetting conditions can be imposed on curved
walls, which is relatively difficult to handle using the classical bounce-back
method

• IB-related force is incorporated by means of the definition of macroscopic
velocity, in such a way that no extra prediction sub-step is required at
each time-step

• The no-slip solid boundary condition can be enhanced with an improved
spreading operator. For static IB condition, the resolution of a linear
system of equations is required only once at the beginning of numerical
simulation, because of the explicit feature of the proposed method

To our knowledge, the only attempt to combine multi-phase flow and im-
mersed boundary was done by Shao et al. [23]. One of the interest of this article
is the development of a method to implement Neumann boundary condition in
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the frame of immersed boundary method. Then they apply this boundary con-
dition to the contact line of a droplet on a wall. We successfully reproduce the
contact line dynamics, as Shao et al. [23] did, but using a different interparticle
potential MCMP model, a different IB method implementation, and more im-
portantly, Dirichlet boundary conditions appear to be sufficient in our numerical
framework.

The article is organized as follows. Section 2 first gives the basic equations of
the LB method for single- and multi-component models. Then the main idea of
the proposed IB-LB method is shown in the second part of this section, followed
by a brief introduction of the approach to define the spreading operator. In
Section 3, several 2D/3D numerical test cases are shown to validate the proposed
IB-LB method. A 3D two-fluid case on the fluid transport by a cluster of beating
cilia is presented in Section 4 in order to show the feasibility of simulating mucus
flows in airways. Finally, the conclusions are drawn in Section 5.

2. Mathematical formulations and numerical methods

2.1. Lattice Boltzmann method for multi-component fluid flow

2.1.1. Basic equations of lattice Boltzmann method (single-component)

In LB method, the fluid status is calculated or updated in time by resolving
the discrete LB equation given by [24]:

fi(x + ei∆t, t+∆t) = fi(x, t)−
∆t

τ

[

fi(x, t)− f
(eq)
i (x, t)

]

(1)

where fi(x, t) denotes the distribution function at the site x and the time t,
in the ith direction of the used D2Q9 lattice for 2D cases or D3Q19 lattice for
3D cases, as shown in Figure 1, and ei is the ith discrete velocity vector. For
example, the set of discrete velocity vectors of D2Q9 lattice can be obtained in
the following way:

















e0
...
ei
...
e8

















=
∆x

∆t

[

0 +1 0 −1 0 +1 −1 −1 +1
0 0 +1 0 −1 +1 +1 −1 −1

]⊤ [

ex
ey

]

(2)

where ∆x is the lattice spacing and ∆t is the time step, ex and ey are two unit
vectors in x- and y-directions, respectively.

Equation (1) allows one to calculate the distribution function fi(x, t+∆t) at
the next time step, so that one can update the macroscopic state of the single-
component fluid: the density ρ (mass per unit volume) and the velocity vector
u:















ρ =
∑

i

fi

ρu =
∑

i

eifi
(3)
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In addition, the single relaxation time Bhatnagar-Gross-Krook (BGK) [25]
collision model is adopted in Equation (1). τ is the relaxation time, which is
related to the kinetic viscosity ν by ν = c2s(τ −0.5∆t) with cs = 1/

√
3 being the

speed of sound. In the present work, the isothermal LB model is applied, which
gives the fluid pressure as p = c2sρ. Here we adopt the classical normalization
so that ∆x = 1,∆t = 1 in the LB calculation.
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Figure 1: The two lattices used in the present work: (a) D2Q9 for 2D cases; (b) D3Q19 for
3D cases.

In Equation (1), f
(eq)
i (x, t) is called the discrete equilibrium distribution

function which can be obtained by Hermite series expansion of the Maxwell-
Boltzmann equilibrium distribution [24]:

f
(eq)
i = ρωi

[

1 +
ei · u
c2s

+
(ei · u)2

2c4s
− u2

2c2s

]

(4)

where the weight coefficients ωi are ω0 = 4/9, ω1−4 = 1/9 and ω5−8 = 1/36 for
D2Q9 lattice, and ω0 = 1/3, ω1−6 = 1/18 and ω7−18 = 1/36 for D3Q19 lattice
[12].

When considering the body force effects in the fluid system, one has to
modify the discrete LB equation (1) by adding a body force term [17]:

fi(x+ ei∆t, t+∆t) = fi(x, t)−
∆t

τ

[

fi(x, t)− f
(eq)
i (x, t)

]

+∆tFi(x, t) (5)

where the discrete force term Fi is given as:

Fi =

(

1− ∆t

2τ

)

ωi

[

ei − u

c2s
+

ei · u
c4s

ei

]

· F (6)

in which F denotes the body force per unit volume. The definition of the
macroscopic velocity has to be accordingly changed so that the numerical model
can recover the Navier-Stokes equations [17]:

ρu =
∑

i

eifi +
∆t

2
F (7)
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It is worth noting that Equation (7) offers a relation between the macroscopic
fluid velocity and the body force at any time. The proposed IB-LB method is
based on calculating the force related to the immersed body with the help of
relation (7). If no other body force is considered, then we have F = FIB. More
details about the IB-LB coupling algorithm will be given subsequently.

2.1.2. Explicit forcing interparticle potential multi-component LB model

In the adopted multi-component LB model [5], each fluid component obeys
the discrete LB equation written as:

fσ
i (x+ ei∆t, t+∆t) = fσ

i (x, t)−
∆t

τσ

[

fσ
i (x, t)− f

σ(eq)
i (x, t)

]

+∆tF σ
i (x, t) (8)

where fσ
i (x, t) denotes the distribution function for the σth component, and τσ

is the relaxation time of the single relaxation time BGK model. The equilibrium

distribution function f
σ(eq)
i is calculated as:

f
σ(eq)
i = ρσωi

[

1 +
ei · ueq

σ

c2s
+

(ei · ueq
σ )2

2c4s
− ueq

σ · ueq
σ

2c2s

]

(9)

in which ρσ denotes the density of the σth component. The equilibrium veloc-
ity ueq

σ is the same for each component and equal to the common velocity u′

designed to ensure the conservation of total momentum [5]:

ueq
σ = u′ =

∑

σ

∑

i

eif
σ
i /τσ

∑

σ

∑

i

fσ
i /τσ

(10)

Furthermore, in Equation (8), F σ
i is the explicit forcing term related to the

total body force Fσ per unit volume exerted on the σth component, which is
calculated by [5]:

F σ
i =

(

1− ∆t

τσ

)

Fσ · (ei − ueq
σ )

ρσc2s
f
σ(eq)
i (11)

Based on the methodology of Martys and Chen [22], we propose an IB-LB
coupling algorithm which relies on adding an extra IB-related force in the total
body force vector Fσ in Equation (11), in such a way that, at the sites near
the solid wall, Fσ will include, if no other body forces are considered, the Shan-
Chen-type fluid-fluid cohesion force FSC

σ , the solid-fluid adhesion force FAD
σ and

the IB-related force FIB
σ , i.e. Fσ = FSC

σ + FAD
σ + FIB

σ .
As given in [22] and [26], the fluid-fluid cohesion force acting on the σth fluid

can be calculated by:

FSC
σ (x, t) = −Gcohρσ(x, t)

∑

i

ωiρσ′ (x+ ei∆t, t)ei (12)
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where Gcoh is the parameter that controls the strength of the cohesion force, σ′

represents another fluid component different from σ, and i denotes the indice
of lattice velocities for the local site x. Notice that Equation (12) takes into
account only the ith direction whose neighbouring node x + ei∆t is located
inside the fluid domain.

Similarly, the solid-fluid adhesion force acting on the σth fluid is calculated
by:

FAD
σ (x, t) = −Gσ

adhρσ(x, t)
∑

i

ωis(x+ ei∆t, t)ei (13)

where s(x + ei∆t, t) represents an indicator function that equals 1 or 0 for a
solid or a fluid neighbouring node, respectively. By changing the parameter
Gσ

adh, one can adjust the strength of the interaction force between the solid wall
and each fluid component. As presented in [22] and [26], for the solid wall, a
positive Gσ

adh simulates a non-wetting fluid and Gσ
adh should be negative for a

wetting fluid.
At last, the IB-related force FIB

σ will be calculated with the proposed IB-LB
method so that the macroscopic velocity of each fluid component can have the
desired value on the Lagrangian points where the immersed boundary condition
is imposed. The definition of the macroscopic velocity uσ of each component is
given as follows [5]:

ρσuσ =
∑

i

eif
σ
i +

∆t

2
Fσ (14)

where ρσ =
∑

i f
σ
i denotes the density of the σth fluid component.

2.2. The proposed immersed boundary method

In the present work, the Immersed Boundary (IB) method [13, 18] is applied
to impose solid boundary conditions in single- and multi-component fluid flows
simulated by LB method.

Mostly, the idea of IB method is to add an extra body force FIB in the fluid
equations so that the macroscopic fluid velocity can be approximately equal to
the velocity of the immersed solid boundary. In addition, a fixed Eulerian mesh
is often adopted for the fluid domain, whereas the solid boundary is usually
presented by a set of Lagrangian points, which can move in space, as shown in
Figure 2.

Like the conventional IB method, the present approach proceeds in two main
steps:

• Interpolation – Interpolate the fluid information from the Eulerian nodes
to the Lagrangian points and then calculate the IB-related body force at
the Lagrangian points;

• Spreading – Spread the obtained force from the Lagrangian points to the
neighbouring Eulerian nodes and accomplish the resolution of the fluid
equations at the Eulerian nodes with the IB-related body force.
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Eulerian node

Lagrangian point

Immersed boundary

Kernel support

Figure 2: A solid boundary immersed in the fluid domain.

2.2.1. Interpolation stage

As presented previously, in single- and multi-component LB models, the
definition of macroscopic velocity, Equations (7) and (14), provide a relation
between the fluid velocity and the body force. The key point of the proposed
method is to calculate the IB-related body force vector by ensuring this defini-
tion or relation at the Lagrangian points, as shown in Figure 2.

For instance in single-component case, at the Lagrangian points (see Figure
2), the velocity-force relation can be written as:

I [ρ]s us = I
[

∑

i

eifi

]

s

+
∆t

2
Fs (15)

where us denotes the fluid velocity at the sth Lagrangian point, which equals
the velocity of solid boundary in order to satisfy the no-slip condition, e.g. for a
stationary solid boundary, we have us = 0. In addition, Fs is the body force per
unit volume at this Lagrangian point, and if no other body force is considered,
Fs = FIB

s . Finally, I [•]s represents the interpolation operator defined as:

φ(xs, t) = I [φ(x, t)]s =

∫

φ(x, t)δ(x − xs) dx

≃
∑

j∈Ds

φ(xj , t)δ̃(xj − xs)(∆x)d
(16)

which provides the interpolated value of a certain variable φ(x, t) at the La-
grangian point xs = x(Xs, t) with Xs being its time-independent Lagrangian
label. Notice that this interpolation operator makes use of the sampling prop-
erty of the Dirac delta function δ(x). In Equation (16), φ(xj , t) is the variable’s
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value at the jth Eulerian node located inside the support domain Ds of the La-
grangian point xs, ∆x is the spacing of the used uniform lattice and d denotes
the number of dimensions of the investigated problem. Finally δ̃(xj − xs) is a
mollifier or a smooth approximation to the Dirac delta function. In the present
work, we adopt the mollifier proposed by Roma et al. [27], for instance in 2D
case:

δ̃(xj − xs) =
1

∆x
δ̃x(

|xj − xs|
∆x

)
1

∆y
δ̃y(

|yj − ys|
∆y

) (17)

with:

δ̃x(r) = δ̃y(r) =























1

3

(

1 +
√

−3r2 + 1
)

0 ≤ r ≤ 0.5

1

6

[

5− 3r −
√

−3(1− r)2 + 1
]

0.5 ≤ r ≤ 1.5

0 otherwise

(18)

where r denotes the non-dimensional distance between the Lagrangian point and
the Eulerian node in each direction, i.e. r = |xs − xj |/∆x or r = |ys − yj|/∆y.

Consequently, we can calculate the IB-related body force FIB
s in Equation

(15), since us is equal to the velocity of solid boundary when the no-slip condi-
tion is applied.

Now, we can apply a similar procedure for multi-component fluid cases. Let’s
consider the macroscopic velocity definition (14) for the σth component at the
sth Lagrangian point:

I [ρσ]s uσ,s = I
[

∑

i

eif
σ
i

]

s

+ I
[

∆t

2
(FSC

σ + FAD
σ )

]

s

+
∆t

2
FIB

σ,s (19)

where uσ,s and FIB
σ,s denote the macroscopic velocity of the σth fluid component

and the IB-related force at the sth Lagrangian point, respectively.
At this interpolation stage of the proposed algorithm (see Sub-Section 2.3,

Algorithm 2, Step 7) for calculating the IB-related force FIB
σ,s at the instant

t = tn+1, all the distribution functions have already been updated to tn+1,
hence we have the density, fluid-fluid cohesion force, and fluid-solid adhesion
force fields at tn+1, so that we can calculate the three interpolation terms in
Equation (19). Meanwhile, uσ,s has the appropriate value required to impose
the no-slip condition. Here we impose that all fluid components have the same
velocity at the Lagrangian points, with which we can calculate the individual
IB-related force for each component by means of Equation (19).

2.2.2. Spreading stage

Once the IB-related body force FIB
σ,s is obtained, we can spread this force

from the Lagrangian points onto the jth Eulerian node by means of the classical
spreading operator S[•]j proposed by Peskin [18], for instance in the 2D multi-
component case:

FIB
σ (xj , t) = S

[

FIB
σ,s

]

j
=

∫

ΓIB

FIB
σ (xs, t)δ(xj − xs) ds ≃

∑

s∈Dj

FIB
σ,sδ̃js∆s (20)
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where ∆s denotes the arc length of the sth segment of the immersed boundary
ΓIB, of which the center is located at xs, inside the support domain Dj of the
jth Eulerian node. Notice that we apply the notations FIB

σ,s = FIB
σ (xs, t) and

δ̃js = δ̃(xj − xs) for the sake of simplicity.
Pinelli et al. [16] proposed to modify Equation (20) by introducing a char-

acteristic strip width ǫs = ǫ(xs, t) related to the local dilation coefficients of the
mollifier δ̃js = δ̃(xj −xs), in such a way that the new spreading operator S∗[•]j
gets:

FIB
σ (xj , t) = S∗

[

FIB
σ,s

]

j
≃

∑

s∈Dj

FIB
σ,sδ̃jsǫs∆s (21)

If the immersed boundary ΓIB is discretized into Ns segments, Ns equations
will be required to determine the correct value of the local strip width ǫs. More
details about the procedure to obtain ǫs can be found in the work of Pinelli
et al. [16] and Favier et al. [21]. Briefly, the main idea of the procedure is to
calculate ǫs such that the interpolation-spreading operations are reciprocal, i.e.

φ(xs, t) = I
[

S∗ [φ(xs, t)]j

]

s
, which provides one equation for the sth segment:

φs =
∑

j∈Ds

δ̃js(∆x)d
∑

s′∈Dj

φs′ δ̃js′ǫs′∆s′

=
∑

j∈Ds

δ̃js(∆x)d
Ns′
∑

s′

φs′ δ̃js′ǫs′∆s′
(22)

where δ̃js′ = δ̃(xj − xs′) and s′ is another solid segment indice different from s.
Regrouping all the Ns equations provides a system of equations in matrix

form:
Φ = Adiag(ǫ)Φ (23)

where Φ = [φ1, φ2, · · · , φNs
]⊤ and ǫ = [ǫ1, ǫ2, · · · , ǫNs

]⊤. The element of matrix
A at the kth row and the lth column is:

A(k, l) =
∑

j∈Dk

(∆x)dδ̃kj δ̃lj∆sl (24)

where k ∈ [1, Ns] and l ∈ [1, Ns] with Ns being the total number of solid
segments. Finally, as presented in [16] and [21], the value of each ǫs can be
obtained by resolving the system of equations:

Aǫ = 1 (25)

where 1 = [1, 1, · · · , 1]⊤.
Notice that such spreading procedure is the same for single- and multi-

component cases. Hence, once the IB-related body force FIB
s or FIB

σ,s is obtained
at the Lagrangian points, we will spread the force onto the Eulerian nodes with
this spreading procedure proposed by Pinelli et al. [16].
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2.3. Overview of the proposed IB-LB coupling algorithm

In this sub-section, an overview of the proposed IB-LB coupling algorithm
is given to show step by step how to couple the immersed boundary and the
lattice Boltzmann methods for the numerical simulation of fluid flows in the
presence of fixed or moving solid boundaries. Although the coupling procedures
are very similar for single- and multi-component cases, two separate algorithms
are provided for the sake of clarity.

First of all, let’s suppose that all the variables are already known at the
current moment t, such as the densities ρ(x, t) or ρσ(x, t), the fluid velocity
vector u(x, t), all the distribution functions fi(x, t) or fσ

i (x, t) and the force
vectors F(x, t) or Fσ(x, t). Hence the objective is to update the fluid status
from the moment t to the next time step t+∆t.

Algorithms 1 and 2 show the time advancing procedures for single- and
multi-component fluid cases, respectively.

Algorithm 1: IB-LB coupling algorithm for single-component fluid cases

Require: ρ(x, t), u(x, t) and F(x, t) from the previous time-step

1: Calculate f
(eq)
i (x, t) with Eq. (4)

2: Calculate Fi(x, t) with Eq. (6)
3: Collision step of LB method with Eq. (5)
4: Streaming step of LB method to obtain the distribution functions

fi(x, t+∆t) at the next time-step
5: Calculate the fluid mass density ρ(x, t+∆t) with Eq. (3)
6: Interpolation stage (15) of IB method to obtain FIB(xs, t+∆t) at the

Lagrangian points with the imposed solid velocity us(xs, t+∆t)
7: Spreading stage (21) of IB method to obtain FIB(xj , t+∆t) at the

Eulerian nodes
8: Calculate the fluid macroscopic velocity u(x, t+∆t) with Eq. (7)
9: Update the fluid status to the moment t+∆t and go to Step 1 for the

next time-step

3. Validation of the proposed IB-LB method

3.1. Stationary undeformable object: the wake behind a stationary circular cylin-
der at Re = 30

The capability of the present IB-LB coupling method is now evaluated by
simulating the wake behind a stationary circular cylinder of diameter D. The
Reynolds number defined by Re = U0D/ν, with U0 the inlet velocity, is fixed
at Re = 30, such that the wake is steady and symmetric with two large recir-
culation bubbles as shown in Figure 3.

Notice that Figure 3 presents only a rectangular zone around the fixed cylin-
der. The computational domain Ωf is discretized with a 1000 × 500 uniform
lattice. The center of the cylinder is placed at the centerline that is parallel
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Algorithm 2: IB-LB coupling algorithm for multi-component fluid cases

Require: ρσ(x, t), f
σ
i (x, t) and Fσ(x, t) from the previous time-step

1: Calculate the equilibrium velocity ueq
σ (x, t) with Eq. (10)

2: Calculate f
σ(eq)
i (x, t) with Eq. (9)

3: Collision step of LB method with Eq. (8)
4: Streaming step of LB method to obtain fσ

i (x, t+∆t)
5: Calculate ρσ(x, t+∆t) =

∑

i f
σ
i (x, t+∆t) for each component

6: Calculate FSC
σ (x, t+∆t) with Eq. (12) and FAD

σ (x, t+∆t) with
Eq. (13) using the newly updated density fields

7: Interpolation stage of IB method (19) to obtain FIB
σ (xs, t+∆t) at the

Lagrangian points
8: Spreading stage of IB method (21) to obtain FIB

σ (xj , t+∆t) at the
Eulerian nodes

9: Calculate the total body force Fσ(x, t+∆t) for the σth component
10: Calculate the macroscopic velocity uσ(x, t+∆t) with Eq. (14)
11: Update the fluid status of each component to the moment t+∆t and

go to Step 1 for the next time-step

Figure 3: Stationary wake flow behind a fixed circular cylinder at Re = 30: the velocity
magnitude field normalized by the inlet velocity U0.
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to x-direction, and at a distance of 8D from the inlet with D = 32∆x. The
cylinder is discretized with a certain number of IB segments, of which the length
is equal to the uniform lattice spacing, which means ∆s ≃ ∆x = ∆y. The inlet
velocity and the outlet density or pressure conditions are imposed by means of
the method presented by Zou and He [28]. At the top and bottom boundaries,
Neumann boundary conditions (zero-gradient condition) [29] are imposed in or-
der to have a free-slip condition as in [16]. Besides, the initial fluid field is given
as:

∀(x, y) ∈ Ωf











ux(x, y, 0) = U0

uy(x, y, 0) = 0

ρ(x, y, 0) = 1

(26)

The present results are compared to previous experimental and numerical
data available in the literature, as shown in Table 1. Lengths a and b are
the distance between the back of the cylinder and the vortex core and the
distance between the two vortex cores respectively, as shown in Figure 3. It is
known to be a very sensitive test case for numerical methods. The dimensionless
lengths a/D and b/D are particularly well predicted, in good agreement with
the experimental results of Coutanceau and Bouard [30].

Furthermore, the drag and lift coefficients are calculated with:















CD =
Ff→s · ex
0.5ρU2

0D

CL =
Ff→s · ey
0.5ρU2

0D

(27)

where ex and ey are two unit vectors in x- and y-directions, respectively, the
fluid density ρ = 1, and Ff→s denotes the fluid-induced force vector exerted on
the solid cylinder, which can be calculated by:

Ff→s = −
∑

s∈ΓIB

FIB
s ǫs∆s (28)

where ΓIB denotes the immersed circular boundary, FIB
s is the IB body force

vector per unit area at the sth segment of ΓIB. ǫs is the s
th solution of Equation

(25), which can be considered as the local thickness of the segment [16, 21], and
finally ∆s is the length of the segment.

In the converged state, the lift coefficient CL is −6.7× 10−4 confirming the
symmetric nature of the wake, and as presented in Table 1, the drag coefficient
CD has a value of 1.79 which agrees with the one obtained by Pinelli et al. [16]
using a Navier-Stokes solver coupled with an IB method.

As presented previously in the introduction, thanks to the spreading operator
S∗[•]j given by Equation (21), the present IB-LB method can better ensure
no-slip boundary condition, comparing to the ordinary explicit IB-LB method
using the spreading operator S[•]j given by Equation (20). Such improvement
is shown in Figure 4 by comparing the streamlines in the numerical simulations
carried out with the ordinary explicit and the present IB-LB methods. One can
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Table 1: Comparisons with previous results of the wake parameters and drag coefficient for
the stationary wake flow around a fixed circular cylinder at Re = 30 .

a/D b/D CD

Num.
Present method 0.59 0.55 1.79
Pinelli et al. [16] 0.56 0.52 1.80

Exp.
Coutanceau and Bouard [30] 0.54 0.54 -
Tritton [31] - - 1.74

observe that for the ordinary explicit IB-LB method, the streamlines cross the
cylinder, especially around the leading point, which means that a penetration
flow occurs at such place. In contrast, for the proposed IB-LB method, since no
streamline crosses the IB cylinder, there is no obvious penetration flow. Hence
the no-slip solid boundary condition can be better ensured with the present
IB-LB method than the ordinary explicit one.

(a) (b)

Figure 4: Streamlines in the simulation results of the fixed cylinder test case using: (a) the
ordinary explicit IB-LB method; (b) the proposed improved IB-LB method.

3.2. Moving undeformable object

3.2.1. Impulsively started 2D flat plate

We consider now the case of a two-dimensional infinitesimally thin flat and
undeformable plate of height h. The plate is suddenly accelerated from rest to
a constant velocity U0 in the direction normal to its surface in a fluid at rest, as
shown in Figure 5-a. The Reynolds number is fixed at Reh = U0h/ν = 1000 to
enable direct comparisons with three previous simulations: Koumoutsakos and
Shields [32] using a vortex-particle method, Mittal et al. [33] using a direct-
forcing method and recently Pinelli et al. [16], who developed a Navier-Stokes
solver coupled with an IB method.

In the present simulation, the computational domain Ωf of size 15h× 9h is
discretized with a 900∆x × 540∆y uniform grid (∆x = ∆y). This 2D plate is
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discretized with 60 segments (∆s = ∆x) and initially placed in the middle of the
domain Ωf of which the four boundaries are all treated with the Bounce-Back
rule.

Figure 5-a shows the snapshots of the vorticity magnitude field at three
moments: t∗ = tU0/h = 0.5, 1.0 and 2.0. One can observe that, while the
plate keeps moving from the left to the right of the domain, two vortices are
symmetrically generated near the two ends of the plate. Meanwhile, a recircu-
lation bubble appears and develops behind this 2D moving plate. To validate
the proposed method, we plot in Figure 5-b the evolution in time of the com-
puted non-dimensional bubble length s/h that is the ratio between the length
of the reverse flow region s measured on the centerline behind the plate and the
plate height h. A fairly close agreement is found with the previous results of
Koumoutsakos and Shields [32], Mittal et al. [33] and Pinelli et al. [16], which
shows the ability of this new forcing algorithm to handle infinitesimally thin
moving undeformable bodies.

3.2.2. Oscillating 2D plate

To examine the convergence order of the proposed IB-LB method, we carry
out a numerical test case where a 2D infinitely thin plate smoothly oscillates in
a square fluid domain (Figure 6). This fluid domain has four periodic bound-
aries of length L and is initially at rest, i.e. ρ(x, y, 0) = 1 and ux(x, y, 0) =
uy(x, y, 0) = 0. The length of the plate l = L/5 and M is its central point. To
have a sufficiently smooth fluid field [34], we impose a translational movement
(no rotation) for the plate with x(M) = Am cos(ωt) + x(O) where x(M) and
x(O) denote the x-direction coordinates of the points M and O, respectively. In
addition, the 2D plate oscillates with an amplitude Am = l/2 and a frequency
ω = 0.5πU0/Am with U0 being the characteristic velocity determined by the
definition of the Reynolds number Rel = U0l/ν.

In the present test case, we choose to keep the Reynolds number at Rel = 20
and the kinetic viscosity ν = 0.05 for the LB computation, while changing the
lattice resolution. A series of simulations have been carried out with different
discretization points for the square’s side L: N = 101, 201, 301, 401, 501, 601,
701, 801, 1001, 1601, from which we consider the solution using 1601 points as
the reference in order to calculate the L2-norm of the numerical error defined
as:

L2-Error =

√

1

N2
101

∑

(unum
x − uref

x )
2
+
(

unum
y − uref

y

)2
(29)

where N2
101 = 1012 represents the total number of the measurement points

possessing the same physical positions (at the coarsest lattice nodes) for all
the lattice resolutions. unum

x = unum
x (x, y, T ) and unum

y = unum
y (x, y, T ) are

the numerical velocity components in x- and y- directions at the time t = T
with T = 2π/ω being the period of the imposed oscillation. Finally, uref

x =
uref
x (x, y, T ) and uref

y = uref
y (x, y, T ) represent the reference velocity components

obtained by using the most refined lattice N2 = 16012.
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Figure 5: Impulsively started flat plate: (a) the vorticity magnitude fields at three different
instants (dashed lines are the contour lines for u · ex = U0); (b) the evolution in time of the
dimensionless recirculation bubble length s/h.
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Figure 6: Configuration of the test case: oscillating 2D infinitely thin plate.

Figure 7 shows the decreasing error while increasing the discretization points
N2. One can observe that the proposed IB-LB coupling scheme tends to be 2nd

order accurate when the physical lattice spacing becomes sufficiently small. This
means that the present IB-LB method does not decrease the order of accuracy
of LB method. Here one has to note that it is possible for the present method
to be 1st order accurate in some particular cases where the velocity field is not
sufficiently smooth, e.g. the first order spatial derivative of the fluid velocity is
not continuous across the IB [18, 34].

3.3. Wetting properties for a solid wall

It is possible for a solid wall to get in contact with a wetting or a non-wetting
fluid. When such two kinds of fluid come into contact with each other at a solid
wall, one will have a typical two fluids-solid wall interaction model in which
the contact angle is usually considered as the key parameter to characterize
different wetting properties. It is also challenging for numerical method to
predict it accurately.

To assess the capability of the present method to handle different wetting
conditions at a solid wall, three numerical test cases have been carried out
involving two fluids-solid wall interaction model.

3.3.1. 2D case: static contact angles under different wetting conditions

Based on the work of Martys and Chen [22], Huang et al. [26] proposed a
theoretical equation for calculating the static contact angle in the two fluids-
solid wall interaction model, which is given by:

cos θ1 =
G2

adh −G1
adh

Gcoh

ρ1 − ρ2
2

(30)

where θ1 denotes the contact angle defined in Figure 8, G1
adh and G2

adh are
the two adhesion force parameters in Equation (13) for fluid 1 and fluid 2,
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Figure 7: The order of accuracy of the present IB-LB coupling method for the oscillating 2D
plate.

respectively. In addition, Gcoh is the fluid-fluid cohesion force parameter of
the Shan-Chen-type force model in Equation (12). In the droplet, ρ1 is the
equilibrium main density of fluid 1 and ρ2 is the associated dissolved density
of fluid 2 [26]. In the following numerical test cases, we choose Gcoh = 1.8,
ρ1 = 2.05, ρ2 = 0.05, and G1

adh = −G2
adh. The value of G1

adh or G2
adh varies

according to different wetting conditions.
It is worth mentioning that one should impose the values of G1

adh and G2
adh

not only for the Eulerian nodes above the IB interface ΓIB but also for the
ones under ΓIB. This is because one needs to solve the fluid equations under the
immersed boundary ΓIB in the framework of IB method, although ΓIB represents
the perimeter of a solid object. In this work, the fluid under ΓIB is set to be the
same as the ambient fluid, i.e. we have the fluid 2 under the IB solid wall, as
shown in Figure 8. Furthermore, we use G1

adh = G2
adh = 0 for the fluid nodes

under ΓIB, which corresponds to a neutral wetting condition.
Besides, in this two-dimensional stationary test case, one sets τ1 = τ2 = 1, as

also used by Huang et al. [26]. The whole fluid domain Ωf is a 160∆x× 100∆y
rectangle discretized with a uniform (∆x = ∆y) Eulerian lattice. The Bounce-
Back rule is applied at the top and the bottom of Ωf in order to ensure no-slip
boundary conditions. Meanwhile, the left and right boundaries are treated by
periodic conditions. The fluid-solid interface is represented by an immersed
boundary line ΓIB as shown in Figure 8, on which 160 Lagrangian points are
uniformly distributed. Hence one has ∆s = ∆x = ∆y. The initial form of this
droplet of fluid 1 is a semi-circle of diameter D = 50∆x with ρ1(x, y, 0) = 2.05
and ρ2(x, y, 0) = 0.05 inside the semi-circle surrounded by the ambient fluid 2
where ρ1(x, y, 0) = 0.05 and ρ2(x, y, 0) = 2.05. Figure 9 shows the results after
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fluid1

fluid2

fluid2

Figure 8: Configuration of the wetting of a droplet (fluid 1) over a wall ΓIB treated by IB
method. θ1 is the contact angle in this two fluids-solid wall interaction model.

Figure 9: Spreading of a droplet on an IB-solid wall under 5 different wetting properties
defined in Table 2.

100000 time steps of the fluid 1 droplet, which sticks to the solid wall under
5 different wetting conditions, according to 5 different groups of the values of
G1

adh and G2
adh given in Table 2.

Table 2: 5 different wetting conditions according to different values of G1

adh
and G2

adh
.

contact angle (θ1) 150◦ 120◦ 90◦ 60◦ 30◦

G1
adh 0.7794 0.45 0 -0.45 -0.7794

G2
adh -0.7794 -0.45 0 0.45 0.7794

To obtain the contact angle from the static density field, we adopt the
method used by Huang et al. [26], which is based on measuring the height
of droplet H and the length of contact area L, as shown in Figure 8. The
contact angle θ1 can be calculated by:















R =
4H2 + L2

8H

tan θ1 =
L

2(R−H)

(31)

where R represents the estimated radius of the static droplet.
However, when measuring H and L from the density field, one can not

exactly determine the contact area, due to the characteristic of the immersed
boundary method. Hence, we propose to measure the values of H and L, which
are formally written as H = H0 ± ∆H and L = L0 ± ∆L where H0 and L0

denote the measured values of H and L, respectively, and ∆H and ∆L their

19



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

C
on

ta
ct

 a
ng

le
 (

°)

G2
adh

Present method

Equation (30)
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= −G2

adh
) for the fluid nodes above the fluid-solid interface ΓIB.

estimated errors. In this case, we choose ∆H = ∆L ≃ 2∆x. Figure 10 shows
the comparison between the present numerical results and the ones obtained by
Equation (30) proposed by Huang et al. [26]. As one can observe in Figure 10,
the present results are in good agreement with the theoretical ones.

3.3.2. 2D case: contact line on stationary circular cylinders

This test case is performed in order to show the capability of the proposed
method to handle different wetting conditions on curved walls. It was used by
Shao et al. [23] to validate their immersed boundary-phase field LB coupling
method. In this test case, a circular cylinder of radius 40∆x is fixed at the center
of the fluid domain of size 200∆x × 200∆y (∆x = ∆y). Periodic boundary
conditions are applied at the left and right boundaries and neutral wetting
condition is used at the upper and lower walls. Initially, the fluid-fluid interface
is located at the horizontal middle line of fluid domain, for the fluid nodes
both inside and outside the circular cylinder. The lower region is set as fluid
1, and the initial densities are the same as in the previous test case. Notice
that the solid-fluid adhesion force needs to be zero for the fluid nodes inside the
cylinder, i.e. the adhesion coefficient G1

adh = G2
adh = 0 for the inner fluid nodes.

Whereas for the outer fluid nodes, three combinations of G1
adh and G2

adh are used
to impose three different wetting conditions, which are G1

adh = −G2
adh = −0.45

for θ1ref = 60◦, G1
adh = −G2

adh = 0 for θ1ref = 90◦ and G1
adh = −G2

adh = 0.45
for θ1ref = 120◦. Figure 11 shows the numerical results of the proposed method,
which appear to be in very good agreement with the desired contact angles θref .
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Circular cylinder Circular cylinder Circular cylinder

Figure 11: The contact lines under 3 different wetting conditions on stationary cylinder.

3.3.3. 3D case: breaking of a thin fluid film on a hydrophobic planar wall

The numerical solver has been extended to 3D to simulate the breaking of a
thin fluid film, with the same physical parameters as in the previous test cases.
At rest, two fluids with the same density and viscosity are stratified in a small
bounded box of size L×L×H as shown in Figure 12, which is discretized with a
regular (∆x = ∆y = ∆z) lattice with L = 200∆x = 200∆y andH = 24∆z. The
top and bottom are modeled as solid walls by means of the bounce-back (BB)
rule, and the four lateral surfaces are treated by periodic boundary conditions.
The IB-solid wall is a plane surface constituted of 200×200 elemental surfaces of
area ∆sx ×∆sy with ∆sx ≃ ∆x and ∆sy ≃ ∆y. Under zero-gravity condition,
fluid 1 is confined between fluid 2 and the IB-solid wall with a given height
h = 5∆z. The lower region is set as ambient fluid 2 and G1

adh = G2
adh = 0

for the fluid nodes under ΓIB. At the time t = 0, a small circular hole of
diameter D = 10∆x is set at the center of the fluid 1 film. This academic
flow configuration is well detailed in the monograph of De Gennes et al. [35].
Experimentally, as presented in [35], when t > 0, it is observed that the diameter
D of the hole increases with time t with a constant velocity VD. Besides, this
hole of the fluid 1 film is surrounded by a flanged edge that collects the fluid
from the center.

In this test case, hydrophobic wetting condition is applied for the IB wall
surface with the coefficients of adhesion force G1

adh = 0.4 and G2
adh = −0.4.

For comparison, a calculation under the same numerical conditions have been
performed with a classical bounce-back approach for the bottom wall. The goal
is here twofold: to show the capability of the new solver to take into account
wetting conditions in the 3D case without using any particular boundary condi-
tion for the triple contact line and to link the values of the adhesion coefficients
to real wetting conditions for future numerical simulations.

Since the configuration of such test case is symmetric with respect to the
central axis in z-direction, the numerical results obtained with the proposed
IB-LB coupling method (left) and the classical bounce-back rule (right) are pre-

21



(a)

solid wall

solid wall

p
e
ri

o
d

ic

p
e
rio

d
ic

fluid2

fluid1

fluid2

fluid1

fluid2

(b)

Figure 12: Breaking of a 3D fluid film: (a) the general configuration of the numerical simula-
tion; (b) the section of the fluid domain sliced by the plane ABCD.

sented in Figure 13 in order to better illustrate the comparison between the two
numerical approaches. One can observe that this 3D film breaks progressively as
time goes on, because of the existence of the initial hole situated at the center. A
good agreement can be found between the results of the IB-LB coupling method
and the classical bounce-back rule, in terms of the hole’s growing diameter and
the shape of its flanged edge.

To estimate the growing diameter for the fluid 1 hole, we provide the evolu-
tion in time of the hole’s diameter of the present IB-LB method in Figure 14,
compared with the one obtained by means of the classical bounce-back rule. As
one can observe, the two results are in very good agreement.

4. Flow induced by a cluster of beating cilia

In the last application case, we apply the proposed IB-LB method to simulate
the transport of fluid by a cluster of beating cilia in order to show the feasibility
for the present method to handle moving solid boundary condition in a two-fluid
environment.

As shown in Figure 15, a cluster of 9 cilia are settled regularly at the center
of the bottom of the fluid domain including two immiscible fluids, which are
initially stratified in z-direction under a zero-gravity condition. No-slip and
free-slip boundary conditions are applied at the bottom and the top surfaces
of the fluid domain, respectively. The 4 lateral sides are treated with periodic
boundary conditions. The whole system is initially at rest, and the two fluids
have the following properties: ρmucus/ρwater = 1 and νmucus/νwater = 20.
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Figure 13: Numerical results of the breaking of a 3D fluid film on a hydrophobic wall (the sliced
plane ABCD in Figure 12), which are obtained with the proposed IB-LB coupling method
(left) and the classical bounce-back rule (right) at four instants in time: (a) t = 500∆t; (b)
t = 1000∆t; (c) t = 1500∆t; (d) t = 2000∆t (the black dashed line represents the IB-solid
wall, and the grey rectangular is the bounce-back wall).
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Figure 14: Evolution in time of the growing diameter of the hole under hydrophobic wetting
condition: G1
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= −0.4 and Gcoh = 1.8.
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Figure 15: Configuration of the application case “Flow induced by a cluster of beating cilia”.

To discretize the fluid domain of size 3l × 3l × 1.6l, we apply a uniform
lattice of 60∆x × 60∆y × 32∆z with ∆x = ∆y = ∆z. Each of the 9 cilia is
considered as an infinitely thin fiber of length l, which is discretized with 20
segments (∆s ≃ ∆x). All cilia move together in a synchronized way under the
beating-motion law governed by a 1D transport equation proposed by Chatelin
and Poncet [36]. As shown in Figure 16, there are two stroke phases for the
beating cilium, which are the recovery and effective stroke phases [37]. Such
two kinds of beating phases are imposed with a time-varying coefficient in the
1D transport equation of Chatelin and Poncet [36].

(a) (b)

Figure 16: Two stroke phases for the beating cilium: (a) recovery stroke phase; (b) effective
stroke phase.

As the cilia keep beating in the x-z plane, an oscillating fluid flow is in-
duced due to the no-slip solid boundary condition imposed by the proposed
IB-LB method. Figure 17 shows the periodically oscillating fluid velocities in
x-direction at the three points A, B and C as shown in Figure 15.

Because of the asymmetric beating motion of the cilia, a mean fluid flow is
generated in positive x-direction. To verify this, we calculate the mean velocities
in x-direction at the A, B and C points, based on the selected period as shown in
Figure 17, and finally we obtain the time-averaged velocities: uA

x = 2.2× 10−4,
uB
x = 2.8 × 10−4 and uC

x = 4.8 × 10−4. These positive values of velocities in
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Figure 17: Time history of the velocities in x-direction at the points A, B and C in Figure 15.

x-direction confirm that the mean flow is in the positive x-direction, which is
the direction of the effective stroke phase of the beating cilia.

5. Conclusions and perspectives

In the present work, an improved direct-forcing Immersed Boundary-Lattice
Boltzmann (IB-LB) coupling method has been proposed and validated on sev-
eral configurations involving moving objects, deforming geometries and multi-
component flows. An important feature of the present numerical framework is
that it can be applied for simulating single- and multi-component fluid flows
in the presence of fixed/moving solid boundaries. No-slip boundary conditions
on a fixed cylinder are better ensured with the present method, comparing to
the ordinary explicit one. Meanwhile, thanks to the one-step explicit time in-
tegration, an extra prediction step is not required. Moreover, for static solid
boundary, the resolution of a linear system of equations is needed only once at
the beginning of the simulation. The present method is found to be close to 2nd

order accurate by using a test case where the fluid velocity field is sufficiently
smooth. In addition, the proposed method has been adopted in several 2D and
3D multi-component fluid cases, where good agreements have been found with
the results published in the literature. Finally, the present numerical solver has
been successfully tested on a 3D configuration involving a cluster of beating cilia
in a two-fluid flow. This shows the capability of the present solver to simulate
the transport of mucus by cilia motion in airways.
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