K. Parsons, Human thermal environment: the effects of hot, moderate and cold environments on human health, comfort and performance, 2003.

S. Robinson and H. Robinson, Chemical composition of sweat, Physiological Reviews, pp.34-202, 1954.

M. N. Sawka and S. J. Montain, Fluid and electrolyte supplementation for exercise heat stress, American Journal of Clinical Nutrition, pp.72-564, 2000.

. Zachwieja, The sweating response of elite professional soccer players to training in the heat, International Journal of Sports Medicine, vol.26, pp.90-95, 2005.

E. H. Fisberg and W. Bierman, Acid-base balance in sweat, Journal of Biological Chemistry, pp.97-443, 1932.

O. Mickelsen and A. Keys, The composition of sweat with special reference to the vitamins, Journal of Biological Chemistry, vol.149, pp.479-490, 1947.

D. Czarnowki and J. Gorski, Sweat ammonia excretion during submaximal cycling exercise, Journal of Applied Physiology, vol.70, pp.371-374, 1991.

W. A. Latzka and S. J. Montain, WATER AND ELECTROLYTE REQUIREMENTS FOR EXERCISE, Clinics in Sports Medicine, vol.18, issue.3, pp.513-524, 1999.
DOI : 10.1016/S0278-5919(05)70165-4

C. T. Huang, M. L. Chen, L. L. Huang, and I. F. Mao, Uric acid and urea in human sweat, Chinese Journal of Physiology, pp.45-109, 2002.

M. Saat, Y. Tochihara, N. Haschiguchi, R. G. Sirinsinghe, M. Fujita et al., Effects of Exercise in the Heat on Thermoregulation of Japanese and Malaysian Males, Journal of PHYSIOLOGICAL ANTHROPOLOGY and Applied Human Science, vol.24, issue.4, pp.24-267, 2005.
DOI : 10.2114/jpa.24.267

F. Meyer, O. Laitano, O. Bar-or, D. Mcdougall, and G. J. Heigenhauser, Effect of age and gender on sweat lactate and ammonia concentrations during exercise in the heat, Brazilian Journal of Medical and Biological Research, vol.40, issue.1, pp.40-135, 2007.
DOI : 10.1590/S0100-879X2007000100017

R. J. Maughan, Fluid and electrolyte loss and replacement in exercise*, Journal of Sports Sciences, vol.40, issue.1, pp.117-142, 1991.
DOI : 10.1080/02640419108729870

S. M. Shirreffs and R. J. Maughan, Whole body sweat collection in humans: an improved method with preliminary data on electrolyte content, Journal of Applied Physiology, pp.82-336, 1997.

S. J. Montain, S. N. Cheuvront, and H. C. Lukaski, Sweat mineral-element responses during 7h of exercise heat stress, International Journal of Sport Nutrition and exercise metabolism, pp.17-574, 2007.

A. K. Shamsuddin, S. Yanagimoto, T. Kuwahara, Y. Zhang, C. Nomura et al., Changes in the index of sweat ion concentration with increasing sweat during passive heat stress in humans, European Journal of Applied Physiology, vol.37, issue.3, pp.94-292, 2005.
DOI : 10.1007/s00421-005-1314-7

Z. M. Baccar, N. Jaffrezic-renault, C. Martelet, H. Jaffrezic, G. Marest et al., Sodium microsensors based on ISFET/REFET prepared through an ion-implantation process fully compatible with a standard silicon technology, Sensors and Actuators B: Chemical, vol.32, issue.2, p.32, 1996.
DOI : 10.1016/0925-4005(96)80117-1

P. K. Shin and T. Mikolajick, H + , Na + and K + ion sensing properties of sodium and aluminium co-implanted LPCVD silicon oxynitride thin films, Applied Surface Science, p.207, 2003.

U. Oesch, D. Amman, and W. Simon, Ion-selective membrane electrodes for clinical use, Clinical Chemistry, vol.32, issue.8, pp.1448-1459, 1986.

N. Abramova and A. Bratov, Photocurable Polymers for Ion Selective Field Effect Transistors. 20 Years of Applications, Sensors, vol.9, issue.9, pp.7097-7110, 2009.
DOI : 10.3390/s90907097

U. Oesch, S. Caras, and J. Janata, Field effect transistors sensitive to sodium and ammonium ions, Analytical Chemistry, vol.53, issue.13, pp.53-1983, 1981.
DOI : 10.1021/ac00236a008

J. A. Brunink, J. R. Haak, J. G. Bomer, and D. Reinhoudt, Chemically modified field-effect transistors; a sodium ion selective sensor based on calix[4]arene receptor molecules, Analytica Chimica Acta, vol.254, issue.1-2, pp.254-75, 1991.
DOI : 10.1016/0003-2670(91)90011-S

Y. Tsujimura, M. Yokohama, and K. Kimura, Comparison between silicone rubber membranes and plasticized poly(vinyl chloride) membranes containing calix[4]arene ionophores for sodium-selective field-effect transistors in applicability to sodium assay in human body fluids, Sensors and Actuators B, pp.22-195, 1994.

D. G. Pijanowska, E. Luboch, J. F. Biernat, M. Dawgul, and W. Torbicz, Na+-selective ChemFETs based on a novel ionophore: bis(phenylbenzo)-13-azocrown-5, Sensors and Actuators B: Chemical, vol.58, issue.1-3, pp.58-384, 1999.
DOI : 10.1016/S0925-4005(99)00101-X

M. Chudy, W. Wroblewski, A. Dybko, and Z. Brzozka, Multi-ion analysis based on versatile sensor head, Sensors and Actuators B: Chemical, vol.78, issue.1-3, pp.78-320, 2001.
DOI : 10.1016/S0925-4005(01)00833-4

J. Muñoz, C. Jimenez, A. Bratov, J. Bartroli, S. Alegret et al., Photosensitive polyurethanes applied to the development of ChemFET and EnFET devices for biomedical sensing, Biosensors and Bioelectronics, pp.12-577, 1997.

A. Ipatov, N. Abramova, A. Bratov, and C. Dominguez, Integrated multisensor chip with sequential injection technique as a base for ???electronic tongue??? devices, Sensors and Actuators B: Chemical, vol.131, issue.1, pp.131-179, 2008.
DOI : 10.1016/j.snb.2007.12.028

I. A. Marques-de-oliveira, D. Risco, F. Vocanson, E. Crespo, F. Teixidor et al., Sodium ion sensitive microelectrode based on a p-tert- butylcalix[4]arene ethyl ester, Sensors and Actuators B, vol.130, pp.295-299, 2008.
URL : https://hal.archives-ouvertes.fr/ujm-00356865

S. J. Harris, Chemically modified field effect transistors; a sodium ion selective sensor based on calix[4]arene receptor molecules, Analytica Chimica Acta, pp.254-75, 1991.

J. A. Brunink, The design of durable Na+-selective CHEMFETs based on polysiloxane membranes, Journal of Electroanalytical Chemistry, vol.378, issue.1-2, pp.185-200, 1994.
DOI : 10.1016/0022-0728(94)87071-3

R. N. Reinhoudt, Durable chemical sensors based on field-effect transistors, Sensors and Actuators B: Chemical, vol.24, issue.1-3, pp.24-25, 1995.
DOI : 10.1016/0925-4005(95)85042-2

G. Högg, O. Lutze, and K. Camman, Novel membrane material for ion-selective field-effect transistors with extended lifetime and improved selectivity, Analytica Chimica Acta, pp.335-103, 1996.

C. Dumschat, S. Alazard, S. Adam, M. Knoll, and K. Camman, Filled fluorosiloxane as matrix for ion-selective membranes, Analyst, pp.121-527, 1996.

A. Cazalé, W. Sant, J. Launay, F. Ginot, and P. Temple-boyer, Study of field effect transistors for the sodium ion detection using fluoropolysiloxane-based sensitive layers, Sensors and Actuators B: Chemical, vol.177, pp.177-515, 2013.
DOI : 10.1016/j.snb.2012.11.054

A. Bandodkar and J. Wang, Non-invasive wearable electrochemical sensors: a review, Trends in Biotechnology, vol.32, issue.7, pp.363-371, 2014.
DOI : 10.1016/j.tibtech.2014.04.005

C. Christophe, F. Sékli-belaïdi, J. Launay, P. Gros, E. Questel et al., Elaboration of integrated microelectrodes for the detection of antioxidant species, Sensors and Actuators B: Chemical, vol.177, pp.177-350, 2013.
DOI : 10.1016/j.snb.2012.11.032

URL : https://hal.archives-ouvertes.fr/hal-00783050

M. Gamella, S. Campuzano, J. Manso, G. Gonzalez-de-rivera, F. Lopez-colino et al., A novel non-invasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat, Analytica Chimica Acta, vol.806, pp.806-807, 2014.
DOI : 10.1016/j.aca.2013.09.020

X. H. Huang, Y. Liu, K. Chen, W. J. Shin, C. J. Lu et al., Stretchable, Wireless Sensors and Functional Substrates for Epidermal Characterization of Sweat, Small, vol.90, issue.15, pp.10-3083, 2014.
DOI : 10.1002/smll.201400483

. Wang, Electrochemical sensing on printable temporary transfer tattoos, Chemical Communications, vol.48, pp.6794-6796, 2012.

W. Jia, A. J. Bandodkar, G. Valdés-ramirez, J. R. Windmiller, Z. Yang et al., Electrochemical tattoo biosensors for real-time non-invasive lactate monitoring in human perspiration, Analytical Chemistry, pp.85-6553, 2013.

G. Ramirez, K. Chan, J. German, and . Wang, Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring, Analyst, pp.138-123, 2013.

A. J. Bandodkar, D. Molinnus, O. Mirza, T. Guinovart, J. R. Windmiller et al., Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring, Biosensors and Bioelectronics, vol.54, pp.54-603, 2014.
DOI : 10.1016/j.bios.2013.11.039

C. Luprano, T. Chuzel, F. Lanier, S. Revol-cavalier, V. Schoumacker et al., BIOTEX ? Biosensing textiles for personalised healthcare management, IEEE transactions on Information Technology in Biomedecine, pp.14-364, 2010.

B. Schazmann, D. Morris, C. Slater, S. Beirne, C. Fay et al., A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration, Analytical Methods, vol.13, issue.4, pp.342-348, 2010.
DOI : 10.1039/b9ay00184k

W. Sant, P. Temple-boyer, E. Chanié, J. Launay, and A. Martinez, On-line monitoring of urea using enzymatic field effect transistors, Sensors and Actuators B: Chemical, vol.160, issue.1, pp.160-59, 2011.
DOI : 10.1016/j.snb.2011.07.012

URL : https://hal.archives-ouvertes.fr/hal-01511364

J. C. Launay, Y. Besnard, I. Sendowski, A. Guinet, A. M. Hanniquet et al., Anthropological and thermoregulatory changes induced by a survical sojourn in a tropical climate, Wilderness Environmental Medecine, pp.13-18, 2002.

G. R. Brisson, P. Boisvert, F. Péronnet, H. Perrault, D. Boisvert et al., A simple and disposable sweat collector, European Journal of Applied Physiology and Occupational