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Serotonin (5-HT) transporter (SERT) regulates the level of 5-HT in
placenta. Initially, we found that in gestational diabetes mellitus
(GDM), while free plasma 5-HT levels were elevated, the 5-HT
uptake rates of trophoblast were significantly down-regulated,
due to impairment in the translocation of SERT molecules to
the cell surface. We sought to determine the factors mediating
the down-regulation of SERT in GDM-trophoblast. We previously
reported that an endoplasmic reticulum chaperone, ERp44, binds
to Cys200 and Cys209 residues of SERT to build a disulfide bond.
Following this post-translational modification, before trafficking
to the plasma membrane, SERT must be dissociated from ERp44;
and this process is facilitated by insulin signaling and reversed
by the insulin receptor blocker AGL2263. However, the GDM-
associated defect in insulin signaling hampers the dissociation of
ERp44 from SERT. Furthermore, while ERp44 constitutively occu-
pies Cys200/Cys209 residues, one of the SERT glycosylation sites,
Asp208 located between the two Cys residues, cannot undergo
proper glycosylation, which plays an important role in the uptake
efficiency of SERT. Herein, we show that the decrease in 5-HT
uptake rates of GDM-trophoblast is the consequence of defective
insulin signaling, which entraps SERT with ERp44 and impairs its
glycosylation. In this regard, restoring the normal expression of
SERT on the trophoblast surface may represent a novel approach
to alleviating some GDM-associated complications.

serotonin | serotonin | ERp44 | ERp44 | insulin

INTRODUCTION
Gestational diabetes mellitus (GDM) affects 3% to 10% of preg-
nancies in developed countries and continues to be amajor public
health problem (1). In pregnancies complicated by GDM, the
signaling of insulin is impaired so that glucose uptake or pro-
duction cannot be stimulated or suppressed. Like in other forms
of hyperglycemia, GDM affected maternal pancreatic β-cells
do not function sufficiently to provide the physiological insulin
requirement resulting in decreased insulin sensitivity (increased
insulin resistance) coupled with an inadequate insulin response
via impairment in the insulin signaling mechanism (2-7, 9). GDM
is associated with placental pathology and various maternal and
fetal complications during pregnancy, birth and later in life (2-
11). The diabetic intrauterine environment results in an increased
incidence of pediatric and adult complications including obesity,
diabetes, and cardiovascular disease (1-7). The factors mediating
these pathologies are unknown.

There is a dynamic relationship between pregnancy and sero-
tonin (5-HT) – a multifunctional signaling molecule that plays
extracerebral roles during development and throughout life. As
a mitogen, 5-HT promotes cell division and mitosis regulating
morphogenesis, cell proliferation, migration, differentiation and
acts as a developmental signal during early embryogenesis (12-
21). Preclinical studies with mouse embryos lacking the gene for
tryptophan hydroxylase1 (TPH1), demonstrated the importance

of 5-HT in early embryonic development (15). The TPH-1 defi-
cient embryos develop cardio-pulmonary dysfunction later in life,
(15) as a function of the maternal genotype (21). Clinical studies
found that altered 5-HT genetics results in adult-onset mental
illnesses (22). Altering the levels of free 5-HT in extracellular
locations also affects the development of embryo. For example:
offspring of mothers who used 5-HT transporter, SERT blocker
(SSRI) in the first trimester showed approximately a 2-fold higher
risk for cardiac abnormalities and a 1.8-fold increased risk for
other congenital malformations compared to the entire national
registry population (23). Furthermore, mice lacking the gene for
SERT (SERT-/-) develop obesity, cardiovascular and neurological
complications and their embryos show various developmental
defects (21). Altogether, these studies emphasize the significance
of normal 5-HT levels in development and pregnancy.

5-HT, a potent vasoconstrictor (24), plays a critical role in
placentogenesis and embryogenesis (25-26, 28). Normal zygotic
implantation involves trophoblastic invasion and colonization of
the uterine spiral arteries. The resultant trophoblast-mediated
remodeled vessels are converted to high capacitance slow flow
channels ensuring unrestricted low pressure blood flow to the
developing placenta and thus the embryo (29). Local placental
elevation in plasma (free) 5-HT may cause pre-placental vaso-
constriction elevating vascular resistance and increasing the local
blood pressure to the placenta (26, 28). Furthermore, the impact
of vasoconstriction and resultant increase in blood pressure can
be lethal to the developing embryo (29). Pathologies of placental
perfusion are associated with perinatal morbidity and mortality

Significance

Our findings provide insight on the molecular mechanism in
which insulin regulates the dissociation of ERp44, an endoplas-
mic reticulum chaperon, from the serotonin (5-HT) transporter
(SERT) following the completion of disulfide bond forma-
tion. Furthermore, our data show that gestational diabetes
mellitus-associated defects in insulin signaling tethers SERT
with ERp44, at the intracellular compartment which down-
regulates 5-HT uptake rates of the placental trophoblast. All
the trophoblast used in these studies were isolated and puri-
fied directly from healthy or GDM placentas in our laboratories
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Table 1.

TABLE 1 Parameters of normal and GDM subjects

BMI Weight
gain (lb)

Blood Glucose
level (mg/dl)

Plasma 5-HT level
(ng/ml blood)

Normal
(n=5)

28.9 ±
3.7

24 ± 5.43 100 ± 13.44 0.59 ± 0.07

GDM
(n=5)

37.5 ±
12

35.7 ± 6.7160 ± 17.00 0.78 ± 0.04

The GDM subjects were overweight (BMI 25–29.9 kg/m2) or obese
(BMI >30 kg/m2) compared with non-GDM subjects with normal
weight (BMI 18.5–24.9 kg/m2)

Fig. 1. Isolation of trophoblast cells. The immunopurification trophoblast
was documented by CK-7 (41). (A) and trophoblast protein (NDGO1) (44).

Fig. 2. Purification of trophoblast cells. Both normal and GDM trophoblast
were stained with these Abs followed by Alexa Fluor 488 anti-mouse as
secondary Ab. Negative control represents trophoblast without CK-7 stain.
In normal placenta the trophoblast of 82 ± 0.91% appeared as positive and
in GDM placenta 86.55 ± 5.07% of trophoblast were stained with CK7. The
cell lines stained with NDOG1 appeared as 56.2 ± 1.03% positive stain and
49.7 ± 2.37% pure for GDM trophoblast.

(28). Therefore, trophoblastic SERT plays an important role by
regulating the plasma (free) 5-HT levels in uteroplacental blood
during pregnancy, which may prevent vasoconstriction to the

Fig. 3. Characterization of trophoblast cells for the 5-HT uptake rates.
Trophoblast cells were isolated and purified from normal and GDM placentas
(all groups, n=5). The [3H]-5HT uptake rates were measured in intact cells (2.3
X 105 per assay) (37, 39, 45).Rate of uptake is expressed as the means and SD
values of triplicate determinations from three independent samples in each
group. The (*) represents the results of a two-tailed Student's t-test with p <
0.001, (compared with normal trophoblast uptake rates).

Fig. 4. Comparison of PM SERT expression on freshly isolated trophoblast
from normal and GDM placentas. (A) Trophoblast were prepared from nor-
mal (N) and GDM placentas. PM expression of SERT was determined by flow
cytometry (75, 76). Mean fluorescence intensity of SERT expression in tro-
phoblast (5 X 104 per assay) isolated from normal placentas (red histogram)
was higher than in trophoblast from GDM placentas (blue histogram), black
histogram represents negative control. Flow cytometry revealed a decrease
of 51% in the expression levels of SERT in trophoblast of GDM placentas. *
statistical difference between normal and GDM trophoblast. (B) For quan-
tification of SERT on the PM, trophoblast (1.5 X 106 per biotinylation assay)
cells were treated with sulfo-NHS-SS-biotin as described (37, 39, 68). The WB
analysis of the biotin labeled PM proteins was performed with anti-SERT or
Na+/K+-ATPase Abs (locates PM proteins). All lanes contain protein recovered
from the same number of cells (1.5 X 106 per assay). The band densities were
calculated as the ratio of each band to the level of actin. Averaged data
from three independent experiments are presented ± S.E. The values are
statistically different (P<0.001, Student’s t test).

placenta thereby securing a stable blood flow to the developing
embryo (25-26, 28).

Our initial experiments show that plasma free 5-HT levels
in GDM associated pregnancies are higher than their levels in
normal pregnancies. Furthermore, the 5-HT uptake rates of tro-
phoblast isolated from the placentas of GDM-associated preg-
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Submission PDFFig. 5. . WB analysis of SERT expression in whole trophoblast cells. The
whole cell expression of SERT was analyzed in trophoblast cells (1.5 X 106

per assay) isolated from normal (N) and GDM (G) placentas. SERT proteins
in trophoblast cells from normal placenta appeared in one major band at
80 kD confirming the reported studies (37, 45) while it appeared from GDM
placenta as two bands at 80 and 55 kD. The band densities were calculated as
the ratio of each band to the level of actin. Relative SERT levels are expressed
at 80 and 55 kD as the means and SD values of triplicate determinations
from 4 independent experiments. All lanes contain protein recovered from
the same number of trophoblast(1.5 X 106 per assay). The (*) represents the
results of a two-tailed Student's t-test with both p < 0.001, (compared with
80 kD band of normal trophoblast).

nancies are significantly lower than the rates of control placentas.
The biochemical analyses determine that the down-regulation of
5-HT uptake rates is a consequence of the decreased number
of SERT molecules on the surface of trophoblast cells in GDM-
placentas. Further studies find SERT bound to ERp44, an endo-
plasmic reticulum (ER) protein (30-32), in GDM trophoblast and
that their association keeps SERT away from the PM, retaining it
in the intracellular compartment.

Like other members of the Na+- and Cl-- dependent
monoamine transporter family, SERT has two sites for N-linked
glycosylation (Asp208 and Asp217) (33-37) and two cysteine
(Cys200 and Cys209) residues (38, 39) connected by a disul-
fide bond on the second extracellular loop. ERp44 binds to
Cys200/Cys209 and facilitates the disulfide bridge formation (39).
Interestingly, in the healthy placenta, insulin signaling assists
the dissociation of SERT from ERp44 allowing the transporter
proteins to be translocated to the PM. However, in GDM, due
to defective insulin signaling, ERp44 cannot dissociate from
Cys200/Cys209 on SERT. Consequently, in GDM-trophoblast,
the glycolytic enzymes cannot modify the N-glycosylation sites,
Asp208, which is buried between the occupied Cys200 andCys209
on SERT. Based on these findings, we propose that in GDM, due
to defective insulin signaling, SERT cannot perform proper the
post-translational modifications neither can move to the PM of
the trophoblasts.

RESULTS
The blood glucose, free plasma 5-HT levels, along with the other
parameters as listed in Table 1 were measured in GDM and nor-
mal subjects. Following published methods (40-44), trophoblast
from gestational age matched normal and GDM placentas were
isolated (Fig. 1) and purified (Fig. 2). 5-HT uptake rates of
trophoblast were measured in 2.3 X 105 cells per group (Fig. 3).

Under GDM conditions uptake rates of trophoblast were 33%
lower than the trophoblast of normal placenta (P<0.01).

The 5-HT uptake rates of GDM trophoblast cells are lower as
a result of reduced surface SERT molecules. Using flow cytometry
and biotinylation of surface proteins followed byWB analysis, the
density of SERT molecules on the PM was determined in tro-
phoblast cells isolated from normal and GDM placentas (Fig. 4A
and B). Flow cytometry revealed a 50% decrease in SERT density
(Fig. 4A) which closely mirrored the 42%decrease determined by
the surface biotinylation assay (Fig. 4B). These findings indicate
that the decrease in 5-HT uptake rates of GDM trophoblast is
the result of a decrease in the surface density of SERTmolecules.
The Na+/K+-ATPase and actin were measured at a similar level
in both trophoblast cells, normal and GDM (Fig 4).

The total SERT expression in whole cells was analyzed to
investigate the cause of down-regulation of SERT on the PM
of GDM-trophoblast. WB analyses for total trophoblastic SERT
were similar between normal and GDM placentas (Fig. 5). How-
ever, the pattern of the SERT proteins on the SDS-PAGE ap-
peared different. Normal trophoblast SERT proteins were identi-
fied as one major band at 80 kD; while in GDM-trophoblast they
appeared as two major bands at 80 kD and 55 kD (Fig. 5).

In an earlier study, glycosylation sites deleted, unglycosy-
lated SERT protein was identified in the JAR cell line (human
choriocarcinoma cells) at around 55 kD (37, 45). Therefore,
our identified lower band of SERT was analyzed to determine
if it was unglycosylated or in a differentially glycosylated form.
The trophoblast cells from normal and GDM placentas were
pretreated with specific glycosidase inhibitors: PNGaseF, EndoH,
Tunicamycin, Castanospermin and Swainsonine (Table 2). Each
inhibitor acts at a different step in glycolytic pathway. The 5-HT
uptake rates of the trophoblast of a normal placenta were ana-
lyzed following the treatment of these inhibitors, individually at a
range of concentrations (Fig. 6). Pretreatment with Tunicamycin
at 10 – 100 μg/ml significantly reduced the 5-HT uptake rate of
trophoblast to 32 – 72% of the untreated group. The effects of
castanospermin and swainsonine reduced the 5-HT uptake rates
of trophoblast at the highest concentrations, 500 μg/ml and 1
μg/ml, respectively. The difference in the 5-HT uptake rates of
GDMand normal trophoblast was 33%, which is close to the rates
of healthy trophoblast cells treated with 10 μg/ml of tunicamycin.
Therefore, we compared the effect of tunicamycin on the 5-HT
uptake rates of trophoblast from normal and GDM-placentas
following tunicamycin pretreatment (Fig. 7). At 10 μg/ml tuni-
camycin, the 5-HT uptake rate of trophoblast from both normal
and GDM placentas was down-regulated significantly; moreover
the 5-HT uptake rate of tunicamycin treated trophoblast from
the normal placenta was decreased by 30% nearly to the rate
of untreated trophoblast from the GDM-placenta. Tunicamycin
prevents glycosyl modification at the initial step leaving a nascent
polypeptide chain (46). Overall, these findings suggest that at
least one of the two N-link glycosylation sites is not fully glyco-
sylated in GDM trophoblast.

The WB analysis of inhibitor-treated trophoblast was per-
formed with SERT Ab (Fig. 8). The higher bands in both normal
and GDM trophoblast were shifted to 55KDa after inhibitor
treatment (37), indicating that the formation of the lower band
in GDM is relatively close to unglycosylated SERT. Overall, the
results of WB analysis suggest that the lower molecular weight
band of SERT in GDM trophoblast is similar to the PNGase
F-treated normal trophoblast samples suggesting that in GDM,
SERT does not complete the glycosyl modification Which is
important for its correct folding and translocation to the PM (37,
39).

ERp44 enhances its coupling with SERT in GDM at the intracel-
lular level. Recently, we reported that ERp44 binds to SERT on
Cys200 and Cys209 (39) to build a disulfide bond between these
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Table 2.

TABLE 2. Glycosylation Inhibitors

Inhibitor and effective sites Expected structure Percent decrease in 5-HT uptake
rates of trophoblasts

PNGase F cleaves between the
innermost GlcNAc and
asparagine residues from
N-linked glycoproteins

Nascent SERT (No
glycosylation)

Endoglycosidase H cleaves the
bond between two GlcNAc
subunits, N-acetylglucosamine
residue remaining on the
asparagine (46).

GlcNAc- SERT

Tunicamycin, a competitive
inhibition of UDP-GlcNAc,
prevents the glycosyl
modification at initial step (46).

Nascent SERT (No
glycosylation)

35-72.3% Significant (P value
<0.001)

Castanospermine, α-glucosidase
inhibitor, prevents removal of
the glucose residues (46).

Glc3Man9GlcNAc2-SERT 28.7% Not Significant (P
value=0.02)

Swainsonine inhibitor of Golgi
mannosidase II (46).

Man5GlcNAc2-SERT 7.8% Not Significant (P
value=1.54)

Fig. 6. Glycolytic enzymes inhibitors on the trophoblast cells isolated from
healthy placenta. The inhibitors, Tunicamycin, catanospermin and swainso-
nine (46), on the glycolytic enzyme were used individually to treat the normal
trophoblast followed by measuring [3H]-5HT (2.3 X 105 intact cells per assay)
(37, 39).Rate of uptake is expressed as the means and SD values of triplicate
experiments. The (*) represents the results of a two-tailed Student's t-test
with both p < 0.001, (compared with untreated trophoblast uptake rates).
The effective sites on these enzymes are listed in Table 2.

two Cys residues (38). ERp44 works as a quality control check
point for the immature proteins leaving from the ER (30-32). In
co-IP assays, the level of association between ERp44 and SERT
was tested in trophoblast from normal andGDMplacentas. Inter-
estingly, in GDM trophoblast, the amount of SERT precipitated
with ERp44-Ab was 55% higher than the trophoblast from the
normal placenta (Fig. 9). A similar percent level of precipitation
was found when the cellular proteins were precipitated on protein
A sepharose beads coated with SERT Ab and the proteins on the
beads were analyzed by WB with ERp44 Ab (Fig. 9, Panel A); or
vice versa (Fig. 9, Panel B).

Furthermore, the SERT Ab-depleted cell lysate was analyzed
for the expression levels of ERp44 in normal and GDM tro-

Fig. 7. . Impact of tunicamycin on the 5-HT uptake rates of trophoblast.
The 5-HT uptake rates of intact trophoblast cells were measured following
pretreatment with tunicamycin at various concentrations (44). [3H]-5HT up-
take rates were measured in intact cells (2.3 X 105 per assay) (37, 39).Rate
of uptake is expressed as the means and SD values of triplicate determi-
nations from three independent samples in each group. Asterisks indicate
statistical difference between normal- and GDM-trophoblast (*); treated and
untreated trophoblast (**). All assays were performed in triplicate (n = 5
group).

phoblast (Fig. 9C). The level of ERp44 appeared 53% higher in
SERT Ab-depleted lysate of normal trophoblast cells than GDM
trophoblast. This finding, in particular, completes the results of
the IP assays in Figure 5A and B, and confirms that the level of
ERp44 in depleted cell lysate is higher in trophoblasts of normal
placenta, than in GDM placental cells because the majority of
ERp44 was depleted by SERT Ab. Thus, SERT and ERp44
coupling is enhanced in GDM trophoblast compared with normal
trophoblast. Since ERp44 is highly regulated via insulin signaling,
we wanted to first verify if insulin signaling was damaged in GDM
trophoblast.
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Fig. 8. . Analysis of glycosylated vs unglycosylated SERT proteins. The source
of 55 kD band recognized by monoclonal SERT Ab in the trophoblast of
GDM placentas was evaluated for differences in the N-glycosylation of the
transporter protein (37, 39). Trophoblast (1.5 X 106 per assay) from normal (N)
and GDM placentas were treated with PNGase F and EndoH. The active site of
each inhibitor is listed in Table 2. PNGase F treatment brought the 80 kD band
in normal and GDM trophoblast cells to the 55 kD level (37). Immunoblot
analyses were done with horseradish peroxidase-conjugated streptavidin as
described under “Experimental Procedures.” The positions of molecular mass
standards run on the same gel are shown in kilodaltons. Averaged data from
three independent experiments are presented. Quantifications of the WB
analysis results were performed by densitometric scanning. Both treatments
produced bands lower than the one observed in GDM trophoblast. The
difference is indicated with red markers on the blots.

Fig. 9. The physical association between SERT and ERp44 in trophoblast.The
lysates of trophoblast (1.5 X 106 per assay) were prepared and subjected
to IP in the presence (+Ab) or absence (-Ab) of monoclonal SERT Ab (A)
or polyclonal ERp44 Ab (39) (B). The blots show the level of association
between SERT-ERp44 elevated in GDM trophoblast. To verify these findings
SERT Ab depleted lysates were analyzed for the level of unbound ERp44 in
both groups (C). The band densities were calculated as the ratio of each
band to the level of actin and the SERT levels are expressed as the means
and SD values of triplicate determinations from 3 independent experiments
All groups, n=5. Averaged data from three independent experiments are
presented ± S.E. The values are statistically different (p <0.001, Student’s t
test).

Insulin signaling is required for the dissociation of ERp44 from
SERT. The phosphorylation level of insulin receptor (IR) is re-
lated to its signaling ability (47-50). The trophoblast from nor-

Fig. 10. The Phosphorylation level of IR in trophoblast. Trophoblast (1.5
X 106 per assay) were isolated from normal (N) or GDM placentas. The cell
lysates were either analyzed by WB with IR or actin Abs, or prepared for IP
with IR Ab coated protein A beads. The following WB analysis of IR pulled
down proteins with monoclonal phosphotyrosin (pTy) Ab showed a decrease
in the level of phophorylated IR and the other phosphoproteins pulled down
by receptor Ab. The band densities were calculated as the ratio of each band
to the level of actin. Averaged data from three independent experiments
are presented ± S.E. The values are statistically different (p <0.001, Student’s
t test).

Fig. 11. Effect of insulin on 5-HT system in trophoblast cells. Tropphoblast
were treated with insulin at various concentrations (0 - 500 nM) for 24-hr. (A)
RT-PCR analyses were performed on insulin-treated trophoblast cells (2.3 X
105 per assay). SERT mRNA levels from trophoblast cells were not altered by
insulin-treatment. (B) 5-HT uptake rates of trophoblast (2.3 X 105 per assay)
were measured as a function of insulin treatment. (C) The level of SERT on
the PM of trophoblast (1.5 X 106 per assay) isolated from normal placen-
tas was determined by surface biotinylation technique as described under
Experimental Procedures. WB analysis of the biotin labeled PM proteins was
performed with anti-SERT. All lanes contain protein recovered from the same
number of trophoblast cells (1.5 X 106 per assay). The band densities were
calculated as the ratio of each band to the level of actin. Averaged data
from three independent experiments are presented ± S.E. The values are
statistically different (p <0.001, Student’s t test).

mal and GDM placentas were evaluated by WB analysis with
monoclonal phospho-tyrosine as primary Ab (Fig. 10). Although
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Fig. 12. Insulin signaling mediated coupling between ERp44 and SERT. The
impact of insulin signaling on dissociation of SERT from ERp44 was deter-
mined in trophoblast (1.5 X 106 per assay). The trophoblast of normal or GDM
placentas were treated with 100 nM insulin (I) in the absence or presence of 5
μM AGL2263 (52). At the end of 24 hr incubation, the cells were lysed and the
detergent soluble cellular proteins were IP on monoclonal SERT Ab coated
protein A sepharose beads. The SERT Ab bound proteins were analyzed by
WB with polyclonal ERp44 Ab. First, the level of actin in each corresponding
blot was normalized then the band densities were and calculated as a ratio
to the level of actin. The SERT levels are expressed as the means and SD values
of triplicate determinations from 3 independent experiments All groups,
n=5.Averaged data from three independent experiments are presented ±
S.E. The values are statistically different (p <0.001, Student’s t test). Asterisks
indicate statistical difference between normal- and GDM trophoblast (*);
insulin pretreated and untreated normal trophoblast (**).

Fig. 13. Insulin signaling upregulates 5-HT uptake rates of trophoblast
of normal placentas. Insulin treatment on ERp44-SERT dissociation was
followed by determining the 5-HT uptake rates of trophoblast following
a pretreatment with either 100 nM insulin or 5 μM AGL2263 or with both
insulin (100 nM) and AGL2263 (5 μM). Trophoblast cells were isolated and
purified from normal and GDM placentas (all groups, n=5). Then the [3H]-
5HT uptake rates were measured in intact cells (2.3 X 105 per assay). Rate of
uptake is expressed as the means and SD values of triplicate determinations
from three independent samples in each group. The values are statistically
different (p <0.001, Student’s t test). Asterisks indicate statistical difference
between normal- and GDM trophoblast (*); insulin pretreated and untreated
normal trophoblast (**).

the protein expression levels of IR appeared similar in both
groups, the level of phospho-tyrosine Ab binding was significantly

lower in GDM placental trophoblast than the normal placental
trophoblast. These findings are consistent with reported studies
that show lower insulin signaling in muscle cells of GDM (47) and
in the choriocarcinoma JAR cell line (45).

Insulin signaling elevates 5-HT uptake via releasing SERT
from ERp44 to the PM. As reported previously, insulin signal-
ing regulates the ERp44-mediated maturation of adiponectin in
adipocytes (51). The impact of insulin on the dissociation of
ERp44 from SERT was tested in the trophoblast from normal
placentas by treating them with various concentrations of insulin.

First, the experimental system for insulin treatment on tro-
phoblast was optimized by measuring the mRNA level of SERT,
the 5-HT uptake rates, and the level of SERT on the PM and
in trophoblast, pretreated with various amounts of insulin (0-500
nM) for 24-hr (Fig. 11A). We found that insulin pretreatment, at
any level, does not change total SERT expression at the mRNA
level in trophoblast cells prepared from normal placentas (n=5).

Next, the 5-HT uptake rates of insulin-pretreated trophoblast
cells were determined and we found a significant (P<0.001) step-
wise elevation in the rates compared to untreated cells (Fig. 11B).
These findings were confirmed with the measurement of SERT
levels on the PM of trophoblast cells following insulin treatment
(Fig. 11C). The uptake rates and the surface biotinylation assays
showed the most prominent effect of insulin on trophoblast’ 5-
HT system at 100 nM as around 2-fold compared to the untreated
group of cells.

Finally, the impact of insulin at 100 nM on the surface SERT
expression and 5-HT uptake rates of trophoblast was studied to
determine if the effect was due to the insulin treatment or through
the dissociation of SERT from ERp44, and whether it could also
be shown in the trophoblast of GDM placentas.

Trophoblast cells were prepared from normal or GDM pla-
centas (Fig. 12). They were incubated in the presence of stim-
ulants, insulin (100 nM) or both insulin and AGL2263 (AGL,
5 µM) IR blocker (52), together for 24-hr. At the end of the
incubation time, the cells were prepared for co-IP assays. The
soluble cellular proteins were precipitated on SERT Ab and then
eluted to analyze via WB assay using ERp44 Ab (Fig. 12). The
densities of the bands were normalized with the corresponding
levels of actin and plotted in a bar graph. Insulin treatment
decreased the level of ERp44 on SERT-Ab in Insulin-treated
normal trophoblast by 45%, while no coupling difference was
observed under GDM. In the meantime, blocking partially IR
reversed insulin-mediated SERT release in normal but not GDM,
suggesting the insulin signaling-dependent dissociation of ERp44
from SERT.

The co-IP data shows that insulin signaling elevates the disso-
ciation rate of SERT from ERp44 in trophoblast cells of normal
placentas. We confirmed that insulin treatment up-regulates 5-
HT uptake rates of trophoblast by reversing the increased uptake
with an IR blocker (Fig. 13). Furthermore, insulin treatment of
GDM trophoblast does not facilitate the dissociation of ERp44
from SERT nor does it elevate the PM level of SERT.

DISCUSSION
Peripheral 5-HT is synthesized by the intestinal enterochromaffin
cells and secreted into blood (53), where the free plasma level is
tightly regulated by a saturable re-uptake mechanism of SERT
on the PM of platelets and several tissues. SERT cDNA’s have
been cloned and sequenced from a number of sources, including
human placenta (54-56), platelets (57, 58), brain (59), pulmonary
endothelial cells (60), enterocytes (61), and liver (62). SERT is
encoded by a single copy gene (SLC6A4) for all tissues with tissue
specific alternative promoters (63). We investigate the control
of trophoblastic SERT on the PM of the maternal facing brush
border (54, 55), isolated from GDM and normal placentas and
how it may regulate free 5-HT in the placental blood.
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In platelets, the role of the SERT is to take up 5-HT from the
circulation and accumulate it inside; from there, 5-HT is taken
up by the dense granule-located vesicularmonoamine transporter
(VMAT) and packed in the dense granule. This effect is systemic.
In contrast, the role of SERT in the trophoblast has not yet been
established, despite the fact that this tissue expresses very high
levels of the transporter (54). We suggest that local control of 5-
HT levels in the placental vascular bed is critical during pregnancy
and that trophoblastic uptake of 5-HT by SERT is the critical
mechanism of its local (placental) regulation. 5-HT is a potent
vasoconstrictor and the placenta requires high capacitance, low
pressure perfusion. SERT regulation of local plasma 5-HT levels
in placental vessels has a protective role preventing 5-HT driven
vasoconstriction in the pre-placental vascular bed, thereby secur-
ing a stable blood flow to the fetus. Trophoblast line the uterine
spiral arteries in early implantation, remodeling the vessels to
high capacitance slow flow channels. This suggests that local
control of pre-placental blood flow is important. Evidence that 5-
HT levels play a role in regulation of maternal blood flow to the
placenta is found in the pathologic condition of pre-eclampsia. In
pre-eclampsia altered placental blood flow (local hypertension)
results in complications including fetal growth restriction due to
significant flow related placental pathology (infarcts, distal villous
hypoplasia, and abruption) (26-28) Elevation in free/unbound 5-
HT in blood plasma causes pre-placental vasoconstriction elevat-
ing vascular resistance and exacerbating the local blood pressure
to the placenta. Indeed 5-HT concentration in pre-eclamptic
pregnancy is significantly higher than in normal pregnant women
(28) suggesting that 5-HT regulation is altered in this pregnancy
specific pathology. Therefore, trophoblastic SERT clearance of 5-
HT may be a critical player in the maintenance of uteroplacental
blood flow during pregnancy (25). The fate of 5-HT after uptake
by the trophoblast cells is not well established. However, in
neuronal cells and platelets, free/unbound 5-HT in cytosol either
binds to the proteins (57), or is degraded by the monoaminoox-
idase (MAO) system (53), or is stored and then released to the
fetal circulation to provide the embryo with 5-HT needed in early
embryogenesis (12, 64, 65).

There is a dynamic relationship between pregnancy, 5-HT,
and glucose metabolism (18-20, 66). Clinical studies show that
the free 5-HT concentration in blood is significantly higher in
type 2 diabetes than healthy/control groups (20) and is elevated
by 15.6% in pregnancy (67). In an in vitro model of diabetes,
extracellular glucose levels were correlated with the 5-HT uptake
rates of the JAR cells (45). Our data showed an elevation in the
blood plasma, free 5-HT level in GDM.

Following the successful isolation and purification of tro-
phoblast cells from healthy (normal) and GDM-associated pla-
centas, the 5-HT uptake rates of trophoblast we show herein to
be 33% lower than in normal placentas. This finding was corre-
lated with lower SERT density on the PM of GDM-trophoblast:
FACS analysis together with surface biotinylation followed by
WB analysis showed that the density of SERT was 42% less on
the surface of GDM-trophoblast than normal-trophoblast. These
data imply that SERT molecules are held at intracellular com-
partments in GDM-trophoblast more than in normal trophoblast.
These findings suggest that SERT is arrested in the ER of GDM-
trophoblast. Earlier studies identified the association of SERT
with an ER protein, ERp44, during the disulfide bond forma-
tion between Cys200 and Cys209. In testing the binding ability
between SERT and ERp44, our co-IP data indicated an enhanced
association in GDM-trophoblast. Other studies have reported a
role for insulin signaling inERp44 dissociation (51). Interestingly,
surface SERT levels and 5-HT uptake rates by trophoblast cells
from normal placentas significantly rose as plasma insulin levels
increased. However, insulin signaling, as represented by the level

of IR phosphorylation, was 4-fold lower in GDM- than normal-
trophoblast.

In general, proper post-translational modifications are essen-
tial regulatory factors for membrane trafficking and the neuro-
transmitter uptake functions of SERT (37, 39, 68), NET (69)
and DAT (70, 71). A modification such as N-glycosylation has an
important role in the quality control pathway that ensures correct
folding and processing of membrane proteins (71, 72). Defects
in the glycosylation (37), oligomerization (68) or disulfide bond
formation (39) processes retain SERT in the ER, similarly to
other proteins (30-32, 73, 74). Despite a wealth of knowledge on
the protein mediators and quality control checkpoints in SERT
maturation there is limited information connecting this to human
diseases.

Our studies showed that free thiol at the 2nd external loop in
SERT protein structure is sufficient for the intracellular retention
of SERT, but SERT mutants without Cys residues on the second
extracellular loop are able to reach the PM despite the lack of
a disulfide bond (38). These studies suggest a quality control
mechanism involved in SERT maturation, which recognizes ex-
posed Cys in SERT molecules and retains them intracellularly.
The ability of Cys mutants of SERT to reach the PM further
implies the quality control mechanism does not recognize non-
native structures such as hydrophobic patches or immature gly-
cans, but rather, the retention of Cys mutants of SERT is entirely
thiol-dependent. SERT has twoN-glycosylation sites, Asn208 and
Asn217 but ERp44 binds to Cys200 and Cys209. One of the
glycosylation sites on SERT is between the two Cys residues
where ERp44 binds. Based on these findings, we propose that the
differential glycosylation of SERT in GDM-trophoblast could be
a result of ERp44-retained process; while the two Cys residues
are occupied by ERp44 the Asn208 site cannot be modified by
the glycolytic enzymes. ERp44-SERT coupling affects the glyco-
sylation pattern of SERT.

Therefore, the glycan patterns of SERT inGDM- and normal-
trophoblast were found to be significantly different; where in
GDM 37% of the expressed SERT is fully glycosylated and 63%
has immature glycans. These findings parallel the 5-HT uptake
rates and the surface density of SERT in GDM-trophoblast.
Furthermore, as reported earlier, in JAR cells the immature
glycosylated form of SERT appeared at the same level with
the lower molecular weight band of SERT in GDM-trophoblast.
SERT in GDM-trophoblast was modified with immature glycans,
and could not dissociate from ERp44. Thus, we hypothesize
that the maturation of SERT proteins and in turn the 5-HT re-
uptake/efflux function is hindered by impaired insulin signaling
conditions such as GDM-associated pregnancy. In fact, as re-
ported in in vitro system, if insulin was supplemented, the PM
level and the 5-HT uptake rates could be restored in JAR cells
pretreated with glucose at diabetic-like concentrations (45). The
new findings with normal- andGDM-trophoblast nicely complete
the earlier data by showing that insulin signaling plays a key role
in regulating the chaperone activity of ERp44 and its dissociation
from SERT; although, insulin signaling does not increase total
transcription or translation of SERT.

Methods
Subjects Placentas from subjects18 years old or older were recruited for this
study (Table 1). Our study was carried out after approval from University of
Arkansas for Medical Sciences (UAMS) IRB, which included these procedures,
and for which subjects had previously provided written informed consent.
The health conditions of subjects were followed by their physicians (Table
1). Inclusion and exclusion criteria were evaluated by review of medical
history, interviewing the subject, and/or results of routine tests performed
for the purpose of clinical care. We recruited term placentas from euglycemic
(normal) (n=5) or GDM (n=5) affected pregnancies.

Quantitative measurement of 5HT levels by enzyme-linked immunosor-
bent assay Using competitive enzyme-linked immunosorbent assay (ELISA),
by following the manufacturer's instructions (IBLImmuno-Biological Labora-
tories, Hamburg, Germany) (77). Samples are detected at 405 nM absorbance
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by using ELISA plate reader (Molecular Devices Union City, CA, USA). The 5-
HT (free) levels were measured in the plasma of maternal blood drawn from
healthy and GDM subjects (each group n=5) (Table 1).

Isolation and purification of Trophoblast cells The trophoblast cells from
the placentas were isolated and then purified by following the published
methods (40-44). Placentas were placed in sterile trays, maternal side facing
up. One cotyledon at a time was dissected using sharp, fine point scissors
and blunt forceps. First the basal plate tissue was removed, and 30-40 g of
villous tissue collected, avoiding fibrous tissue and vessels. After rinsing the
tissue several times with sterile 0.9% NaCl supplemented with 100 units/ml
penicillin, and 100 μg/ml streptomycin; all the blood clots were removed and
the tissue was minced finely with scissors.

Next, using buffers containing DNase, Dispase and Trypsin with the Pen-
Strp-Neomycin antibiotics in CMF Hank’s (Ca-Mg free Hank’s with 25mM
Hepes, Sigma 14185) the cells were dissociated in 3 stages. Following dissoci-
ation, cells were purified on Percoll gradients 70%-5% with centrifugation at
1,200 X g for 20 minutes. The layer of trophoblast cells appears at 40%-50%
gradient in 25-10ml volume with a density of 1.050-1.060g/ml. Tropohoblast
collections were incubated with fetal calf serum to avoid cell damage. The
cell viability was determined by trypan blue dye exclusion. Our average yield
was between 1.5 and 3X108 cells per 40g tissue at greater that 80% viability.

Next, for the immunopurification the cells were suspended in buffer
containing human HLA class I ABC antibody (Ab) W6/32 incubated with
Dynabeads previously coated with goat anti-mouse IgG. At the end of incu-
bation, the supernatant containing purified trophoblast was transferred to
tubes with supplemental cytotrophoblast culture medium and centrifuged.
The pellets were resuspended in the same medium. Purity of villous tro-
phoblast was determined by cytokeratin-7 (CK-7) Ab (Fig. 1) (43) and tro-
phoblast protein (NDGO1) (Fig. 2) (44).

Insulin and AGL2263 blocker treatment Human insulin solution is sup-
plied by sigma 19278 (10 mg/ml stock). Insulin concentration used in this
study ranged from 10nM to 500 nM, as previously published for JAR cells
(45). IR blocker AGL2263 obtained from Santa Cruz Biotech (Santa Cruz, CA)
was used at a concentration of 5µM as recommended (52).

5-HT uptake assay Trophoblast (2.3 X 105 cells per transport assay)
were initially washed with PBS solution containing 0.1 mM CaCl2 and 1mM
MgCl2. The intact cells were quickly incubated with 14.6 nM 3H-5-HT at
room temperature (RT) for 10 min. Whatman GF/B filters collected the cells
after incubation, and excess solution was filtrated through a funnel. The
uptake assay was stopped by washing twice with ice-cold PBS solution. The
sample containing filters were placed into scintillation vials for counting.
2β-carbomethoxy-3 trophane (β-CIT) (Chemical Synthesis Service, NIMH) was
used as negative control background (37).

Immunoprecipitation (IP) and Western blot (WB) analysis Trophoblast
(1.5 X 106 cells per IP assay) were lysed in IP buffer (55 mm triethylamine (pH
7.5), 111 mm NaCl, 2.2 mm EDTA, 0.44% SDS, 1% Triton X-100) supplemented
with 1 mM phenylmethylsulfonyl fluoride (PMSF), and protease inhibitor
mixture (PIM) as previously described (37, 39). Initially, cell lysate was incu-
bated with protein A sepharose beads to eliminate none-specific interaction
(preclear). Anti-SERT monoclonal (Mab technology,Stone Mountain, GA) Ab,
anti-ERp44 polyclonal Ab (cell signaling) or anti-IR Ab (Santa Cruze Biotech,
Santa Cruz, CA) was conjugated to protein A bead for 2 hours prior to
incubating together with pre-cleared cell lysate overnight at 4 degrees.

WB analysis was done the next day using anti-ERp44 polyclonal Ab
(Cell Signaling, Danvers, MA) (diluted 1:1000), monoclonal anti-SERT, or
monoclonal Phospho-tyrosine for primary Ab (eBioscience, S.Diego, CA).
Horseradish peroxidase (HRP) conjugated anti-rabbit or anti-mouse was used
as the secondary Ab. VersaDoc 1000 gel visualization and analysis system was
applied to analysis of densitometry of individual bands.

Glycolytic enzymes’ inhibitors treatment. Trophoblast (1.5 X 106 cells
for glycolytic enzyme inhibitors’ treatment) were first lysed in IP buffer

supplemented with PIM/PMSF (27). Protein concentration was determined
under nanodrop 2000 instrument (Thermo Scientific, Wilmington, DE). Gly-
coproteins were denatured at 100 C for 10mins first then combined with
10G7 buffers, NP-40 and 2,000U of PNGase F solution (New England Biolabs,
Ipswich, MA) for incubation at 37 C. The reaction mixture was separated by
SDS-PAGE, and WB analysis was performed using SERT Ab following the ECL
blotting system.

Cell surface biotinylation The trophoblast surface protein expression
(1.5 X 106 cells per biotinylation assay) was detected after treatment of the
cells with membrane-impermeant NHS-SS-biotin as described previously (37,
39). Briefly, upon the biotinylation reaction, the cells were treated with 100
mM glycine to quench unreacted NHS-SS-biotin and lysed in tris buffer 1%
SDS, 1% TX100, and PIM/PMSF. The biotinylated proteins were recovered
with an excess of streptavidin-agarose beads during overnight incubation.
Biotinylated proteins were eluted in sample buffer, resolved by SDS-PAGE
and transferred to nitrocellulose, and were detected with the SERT Ab as
described (37, 39).

Flow cytometry The level of SERT proteins on the PM of trophoblast (5
X 104 cells per assay) was determined using a specific Ab (76) designed by our
group and generated by Proteintech Group, Inc. (Chicago, IL) against a syn-
thetic peptide corresponding to the second extracellular loop of SERT. This
portion of the protein is not affected by the post-translational modifications

of SERT such as glycosylation, disulfide bond formation, and thus, should
recognize SERT in trophoblast isolated from normal and GDM placentas.

CK7 was applied to stain the intracellular compartment of purified
trophoblast cells. Briefly, cells were washed with PBS and fixed with 4%
formaldehyde for 20 mins, and then permeabilized with 0.1% Tx-100/PBS
for 15 min at RT. After washing, cells were blocked with 0.5% bovine
serum albumin for 1 hour. Then, they were then incubated with CK7 (Novus
Biological) primary monoclonal Ab for 1 hr and Alexa Fluor 488 goat anti-
mouse secondary Ab for additional hour at RT (75, 76).

Extracellular staining was performed to confirm trophoblast identity by
using NDOG1 (trophoblast cell protein) (ThermoFisher Scientific, Waltham,
MA). Cells were directly blocked with bovine serum albumin without a
permeabilizing step, then washed and incubated with NDOG1 polyclonal Ab
or SERT Ab on trophoblast PM for 1 hour and then incubated with secondary
Ab, FITC conjugated goat anti-rabbit IgG (41-44). All flow cytometry experi-
ments were performed in the UAMS Flow Cytometry Core Facility.

Data analysis Nonlinear regression fits of experimental and calculated
data were performed with Origin, which uses the Marquardt-Levenberg non-
linear least squares curve fitting algorithm. Each figure shows a representa-
tive experiment that was performed at least three times. Data with error
bars represent the means ± SD for triplicate samples. Data were analyzed
by ANOVA (analysis of variance) to compare data sets and two-sided t-tests
based on the ANOVA mean squared error.
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