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Abstract

Shape descriptors and feature-based representation§ e o
mary interests in the area of solid modeling. They allow us fo
easier storage, recognition and general treatments ottsbje
Axial structures such as skeletons are popular shape pessri
which have been widely studied. Most of the studies focus on
a particular type of skeleton called the Medial Axis. Medial
Axes can be extracted from discrete volumetric data as well a
boundary-based representations. In the later case, howeve
algorithm is known to perform well and accurately. We pro-
pose a new paradigm for constructing one dimensional axial
structures associated with a polyhedral object. Thesetahes,
called the level set diagrams, are associated with scatar fu
tions defined over the set of vertices of a polyhedron. Weystud
in details the level set diagram associated with the shiqugh
distance to a source point. This particular associatiomiftsly

into a theoretical framework and presents interesting gnttgs

for the purpose of shape description.

Keywords: skeleton, cylindrical decomposition, Euler For-
mula, Dijkstra’s algorithm.

1 Introduction

We present a new paradigm for constructing one dimensional
axial structures, the level set diagrams (LSDs for shogjpa
ciated with a polyhedral object. These diagrams capture the
overall shape as well as the topology of an object. They can be
used for deforming or animating an object.

This construction is radically different from the classibée-
dial Axis [5, 14] which does not necessarily produces a one
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dimensional structure. Formally, the Medial Axis is the ekt
the centers of maximal spheres contained in a given objdet. A
gorithms that construct the Medial Axis of a polyhedral anef

are generally complex. They start with adding points on the o
ject boundary and computing their Delaunay triangulati@jn [
Generally, the resulting Medial Axis needs to be pruned as it
may contains numerous small branches [1]. Also, the Medial
Axis can be composed of pieces of curves as well as pieces
of surfaces. By construction, however, LSDs are simple one
dimensional graphs. They relate to the level sets of scatar-f
tions defined over the vertices of a polyhedral surface. More
precisely, the points of an LSD correspond to “average pbint
associated with the connected components of the level §ets o
a given scalar function. Figure 1 shows an LSD of a three-
fingered shape.

\Va

Figure 1: An LSD (bold lines) of a an object is defined by
the centers of the connected components of the level séts (th
lines) of a given function. The dashed bold lines indicatetf
between LSD branches.

Shinagawa et al. [19, 20] have introduced a similar diagram i
the context of medical and geographical applications. Tadly
their diagram thdReeb graphn reference to a classical topo-
logical graph associated with level sets of a Morse funétion
f, defined on a smooth surface [15, 10]. The vertices of the
Reeb graph correspond to critical points of the functfothat

is points where the gradient gfis null.

Shinagawa et al. are mainly interested in encoding the tgjpol
cal structure of a terrain while the LSD is a geometrical staei

1A Morse function, on a surface, is a twice differentiable diion
whose Hessian - the Jacobian of the gradient in a suitablelicate
system - has a non-zero determinant everywhere its gracheighes.



that describes both the topology and the geometry of an bbjec

LSDs depend on the particular function chosen to compute the
level sets. Shinagawa et al. use the height function (the z-

coordinate), relatively to a given orientation of the obj&x
define their diagram. This is particularly meaningful for-te
rain data as critical points correspond to peaks, pits csgzasf
the terrain. We show that in our case #ftertest path distance
to a source points often a better choice of function especially
for describing the geometry of tubular and branching okject

The two major components of our approach are the study of

Definition 1 An edge(v;,v;) is said to be across-edgeela-
tively to a level if

flvi) <1< f(vg).

Similarly, a face(v;, v;, v ) is said to be aross-faceelatively
to a levell if the three values of its vertices encompadhat is

flo) <1< f(vj) < fuk), or
flo) < flvy) <1< f(uk).

the level sets of a function defined on a polyhedron and the use Remark that a cross-face has exactly two cross-edges.
of the shortest path distance to a source point to define such a

function. de Berg et van Kreveld [7] studied the structuréhef
level sets of the height function on a polyhedral terrain.if\s
[19, 20], the structure of the level sets is recorded intoea tr
analogous to the Reeb graph. In [7], it is shown that this tree
called thecontour treg can be constructed i?(n log n) time.
In[22], a simpler construction of the contour tree is preddor
general functions (not only height functions) defined onegeh
polyhedra (not only terrains).

An LSD is a geometric embedding of the contour tree where
each point of the contour tree is mapped to the isobarycefter
the corresponding level set contour.

In [12], we used the shortest path distance to a source mint t
define a function on the vertices of a polyhedron. The same
function is used by Axen and Edelsbrunner [2] in a very differ
ent context. In this work, the topology of surfaces is exgtbioy

a wave traversal to produce sounds in relation with the tapol

of the surface. The waves precisely correspond to levelafets
the shortest path distance to a source point. Note, howtar,
Axen and Edelsbrunner consider topological distances eedg
have unit length - rather than Euclidean distances.

Section 2 presents some basic definitions and propertidseof t
level sets of a function defined on a triangulated polyhedron

In Section 3, we describe the evolution of a the level-sets as

the level is varied. This description is based upon the natio
index of a vertex. Section 4 studies the level sets of thetssior

path distance to a source point. This study is used in Section f(v1), ...

5 to define efficient algorithms that construct the LSD. Rissul
are commented in Section 6. Finally, we discuss future works
and conclude in Section 7.

2 Level Sets of Functions

This section provides some definitions and notation thainare
portant to the construction and properties of the LSD. In the
following, we only consider LSDs of triangulated polyhedra

For a given triangulated polyhedroR, we consider a function,
f, defined over its vertices, . . ., v, SO that two adjacent ver-
tices are given two different values. Actually, as notiaef20],
all that is required is to tell which of any two adjacent vest
gets the smaller value. In practice, we can order arbiyrénid

Definition 2 Thedual graphof P is the graph whose vertices
are the faces oP and whose edges correspond to pairs of inci-
dent faces.

The preceding remark shows that a cross-face (relatively to
levell) is adjacent to exactly two cross-faces in the dual graph
(see Figure 2).

Figure 2: A triangulation with its cross-adjacency grapbldb
lines) for a given level. Vertices with values greater (smaller)
than! are marked with a “+” (a “-").

Property 1 For any level [, distinct from the values
, f(vy), the set of cross-faces constitutes a set of dis-

joint cycles in the dual graph.

This property is to be compared with the fact that a level fat o
Morse function defined on a closed smooth surface is composed
of disjoint closed curves, if that level set contains noicait
point.

These cycles of cross-faces define closed polygonal cantour
the polyhedrorP. For this, we associate with each cross-edge
(vi, v;) the point

I — f(vi) i flu) =1 v
floj) = flui) " flo) — flui) 7

If (vi,v;,vr) is a cross-face, we can draw the ling()pix (1)
as on Figure 3.

pij () =

Definition 3 The geometricrealizationof a level set is the
set of polygonal contours obtained by drawing the lines

vertices having the same value so that the above requirement(p;; (I)pix(l)) in every cross-faces. We will not&!) the re-

can be alleviated.

alization of the level set of levél
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Figure 3: Segmer(ip;; (1)p:ix (1)) is the geometric realization of
the cross-facév;, vj, vi).

These polygonal contours are not necessarily planar. Tliey w
be further “averaged” in order to construct the LSD.

If I; < I are two levels, such that no vertexverifiesl; <
f(v) < 12, then the two corresponding level sets are traversed
by the same cross-faces. It follows tligf;) can be deformed
continuously intaC(l,) and vice versa. In other word§(l,)
andC(l2) arehomotopic In particular, they have the same num-
ber of contours.

This result will be strengthen in the next section. As we will
see, the contours are still homotopic when the ldvpasses
through a valuef (v), as long ag is aregular vertex.

3 Vertex Index and Euler Formula

The LSD encodes the set of contodrg) as! evolves. Branch-
ing of the LSD can only occur whef\1) changes of homotopy
type. Itis thus important to know for which valueiahe topol-
ogy of the polygonal contouid(l) is modified. As we just saw,
this can only happen whdnequalsf(v) for some vertex of
the polyhedrorP.

In order to describe the topological change at a vettaxe
introduce theindex of a vertexv. Let wi,ws,...,w; be
the k neighbors ofv enumerated counterclockwise around
As Takahashi et al. [20], we consider the number of sign
changesSgcs(v), in the sequencéf(wi) — f(v), f(wz2) —
f),..., flwr) — f(v), f(w1) — f(v)). The index ofv is

defined as
Sgcy(v)

Indf(v) =1

Figure 4 shows a vertex with index1. This index tells howf

+

Figure 4. A “+” (a “-") indicates av neighbor,w, such that
f(w) is greater (smaller) tharf(v). The number of sign
changesSgcy(v) counts the number of “+” and “-” sequences.

is changing around. It actually records part of the topology of
P itself. By summing the indices over all the vertices, we get
the very nice formula

Property 2

> Inds(v) = x(P)

vEP

wherex(P) = nv — ng + nr is the Euler characteristic of
P andny, ng andnr are respectively the number of vertices,
edges and faces d1.

proof: Sgcy(v) counts the number of trianglés;, v, v;) in-
cident tov such thatf(v) is betweenf(v;) and f(v;). Since
every triangle has exactly one vertex for which this ocches t
sum of theSgc; (v) for all the vertices counts the total number
of triangles:

Z Sgcy(v) =nr,

vEP
so that 1
Zlndf(v) =nv = onr.

vEP

As P is a triangulation, we havBnr = 2ng or equivalently
nr = 2(ng — nr). Itfollows that

ZIndf(v) =ny —ng +nr =x(P) O
veP

The same formula can be found in [3] and [11] in a slightly
different context. Takahashi et al. [20] implicitly refera sim-
ilar formula but they only consider vertices for whistyc s (v)
equals 0 or 4. In fact, Takahashi et al. directly refer to Mors
theory. In this theory a critical point may only get threefelif
ent index values, two of which corresponding to local exaem
Another effective analogy is provided with the notionidex

of a critical point of a gradient vector fieldA critical point

of a vector field is a (isolated) point where the vector field is
null. Very roughly speaking the index of a critical point et
number of revolutions made by the vector field while turning
around that point [11]. In order to show the analogy with our
notion of index, we first orient the edges according to fhe
values of their endpoints. This orientation correspondgéo
gradientof f along the edges. Note that a triangle cannot have
its edges oriented clockwise nor counterclockwise as shown
Figure 5. Then, in each triangle @t we draw a continuous
vector field, as sketched on Figure 5, so that the directigheof
vector field on the triangle boundary agrees with the ortéma

of its edges. Now, the vertices ®fare the critical points of this
vector field and it can be shown that their index, relativelthie
vector field, coincides with our notion of index. The above Eu
ler formula thus corresponds to a classical summation famu
over the index of the critical points of a continuous vecteldi
[11].

The index of a vertex describes how the level set realization
C(1) is modified around, as the level is raised fromf (v) — e
to f(v) + ¢, for a sufficiently smalk.
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Figure 5: On the left: Orientation of the edges of a triangle
induced byf (f(vi) < f(vj) < f(vr)). On the right: The tan-

gent vectors to the oriented curves defines a vector field com-

patible with the edge orientation.

If Ind;(v) is null, then thev neighbors are partitioned into
two connected setfv_|f(v—_) < f(v)} and{v4|f(v4+) >
f(v)} as shown in Figure 6 on the leff( f(v) + ¢) is deduced

Figure 6: The neighborhood of a vertexn two different con-
figurations. a '+’ (*-’) indicates a neighbor,w, such thatf (w)

is greater (smaller) thafi(v). The level set realization is shown
for a level slightly belowf (v) (dotted curve) and slightly above
f(v) (plain curve). The index of is 0 on the left and -1 on the
right.

Figure 7: Two configurations of a vertex with indext. The
number of connected components of the level set increases on
the left while it decreases on the right as the level is augeten
from below f (v) (dotted curve) to abové(v) (plain curve).

from the vertex indices when considering the shortest piath d
tance to a source point on a genus-0 polyhedron.

4 The Shortest Path Distance to a
Source Point

Up to this point we have not considered any spedffids we
want the LSD to represent the object geometry, the defindfon
f should involve the geometry ¢?. Takahashi et al. use the
height function [20], so that any vertex is associated ita aw
coordinate in a suitable coordinate system. In this casdetiel
sets correspond to cross-sections betwemdzy-planes. As
noticed in the introduction this choice is relevant for &émrdata
as the critical vertices correspond to peaks, passes arfiile
terrain. However, for other classes of objects it may happan
the height function does not give an intuitive LSD in any atyor
nate system. Figure 13 shows a self-intersecting tubul@cob
whose “natural” axis could not be determined with any height
function. A better choice for the level sets is provided wifth

from C(f(v) — €) by substituting points on cross-edges of the Moving front of some flow emanating from a tip of the tube.
type (v, v_) to points on cross-edges of the type v ). The Such fronts correspond to the level sets of the geodesaruist
change reduces to a sweep and a chain substitution of cross{0 @ tip of the tube. The computation of the geodesic distance

edges so that(f(v) + €) is still homotopic toC(f(v) — ). to a source point on a polyhedron has been extensively stud-
ied (see [16]). We prefer to compute the shortest path distan

Several chain substitutions may occur at the same time when relatively to the graph induced by the edges of a polyhedron.

different non adjacent vertices get the same vel(16).

Definition 4 A vertex with a null index is said to lwegularand
critical otherwise. Similarly the valug(v) of a critical vertex
is called acritical value Any other value is said to lregular

Note that a positive index (+1) indicates a local extremum. A
critical vertex which is not an extremum is calledaddlever-
tex. When traversing a critical value the topology of theelev

It provides an approximation, sufficient for our purposethaf
geodesic distance. It further allows us to simplify and &ree
ate the computation and fits nicely into a theoretical fraoréw

In the following, we study the level sets of the shortest path
distance to a given source point. We will note the functign
instead off. For any vertex, ds(v) is the length of a shortest
path to a given source point (The choice ofs will be dis-
cussed in the results sectiond) can be computed efficiently
with a modified breadth-first search starting from the source

set is changing. The evolution of the level set depends on the and using the classical Dijkstra’s algorithm [6]. Dijkssral-

index of the corresponding critical vertex (see Figure 6he T

gorithm makes use of a priority queue to select the next xerte

precise topological change not only depends on the index but to be processed in the breadth-first search. Dijkstra’sriigo

also on the whole configuration of the level set. Figure 7 show

also returns for any vertex a pointerrm(v) to the preceding

two possible changes in the level sets that depend on the con-vertex on a shortest path linkingto the source. By iterating

figuration ofC(f(v) — €). As will be shown in the next section
the topological changes of the level sets can be deducectlgire

the 7 pointer we can follow a strictly decreasing path from any
vertex to the source.



ds presents interesting properties that allows for easy cempu The lines ofZ; (P) link critical vertices and correspond to cylin-
tation of the associated LSD. First of all, the source peiig drical parts ofP. Figure 9 shows a simple example.

the only local minimum ofl;. This means that from any ver-
tex we can draw a path of edges leading to the source point
with strictly decreasing vertex;-values. To obtain further nice
properties we will assume from now on that the polyhedfon
has a 0-genus, that B is topologically equivalent to a triangu-
lated sphere.

With this assumption, we get the following property thatlwil
provide a complete description of the topological changemwh
the level passes through a critical value.

Property 3 The set of cross-faces incident #ofor a level |
lower thand; (v) belong to a unique cycle.

proof: SinceP has a 0-genus, the realization of any level set
cycle splits? into two connected components. If such a cy-
cle contains a cross-face incidentdpthen one of these two ) . .
components must containsvhile the other contains the source ~ Figure 9: The LSD is an embedding of the tfB&P). On the
point. This is easily seen from the above decreasing pat-pro  left the LSD is computed from five level setsdf correspond-
erty (see also Figure 8). Now, any decreasing pdftom v to ing to the distances,, ..., ds.

In practice, we will use its tree structure to construct tiSbL

5 Algorithms

We present algorithms for computing the trégP) and the

LSD associated with the distandg. To clarify the presenta-

tion we assume that no two vertices Bfare at the same dis-

tance from the source. In case this would happen, we can still

arbitrarily order the vertices having the same distancehab t

Figure 8: The patlp : v — s meets the realization of any  we can compare any pair of adjacent vertices. In [2], this kin

level set cycle containing one or more cross-faces (shaded o of degeneracies is treated by first performing a barycesiitie

the Figure) incident te once and only once. division. However, this technique does not apply here as we
are not considering topological distances. Also, the beartrec
subdivision does not solve all the degeneracies (i.e. adjac

s should meet every cycle containing a cross-face incidentto  critical vertices with the same distance) and further aabjt

Sincep meets the whole level s€{(!) exactly once, there must  choices must be taken.

be only one such cycla

We also assume that the neighbors of a vertex, the incidess fa
From this property it is seen that the configuration of Figlire  to an edge, and the edges and vertices of a face can be accessed
on the right cannot occur. Also, if. () counts the number of  in constant timeJ(1). The winged-edge data structure [4, 25],
cycles ofC(1), then for any vertex, we have for instance, fulfills all these requirements.

ne(ds (V) + €) = nc(ds(v) —€) — Indg, (v), To construct the LSD, we need to sweep the level from zero to
its maximum valuanax d, and compute the “average” point of

since any chain of neighbors further tham from the source :
various level set cycles.

gives rise to a new cycle (see Figure 7 left).
The set of cross-faces contained in a level set changes wérene
the level passes trough a vertex value. The number of differe
level sets is thus equal to the number of vertices. Since ofost
the vertices have to be regular most of these level sets aik h

the same topology. Also, polyhedral objects may have hun-
dreds or thousands of vertices, and we do not need that many
level sets to construct the LSD. In practice, we fix the number
The tree structure of the LSD is recorded into a contour tree of levels (from 16 to 50 in our examples) and select the levels
[22] 7:(P) whose root, internal nodes and leaves are respec- uniformly in the rang€g0, maxd,]. For each selected levels,
tively the sources, the saddle vertices, and the local maxima. we must compute the corresponding level set realizatioms Th

Property 3 prevents the LSD from having loops. The vertex
with the highest distancé; on a loop would indeed have two
branches going down the source which would contradict prop-
erty 3. Since the LSD is connected (just follow a decreasing
path to the source from any vertex on a cycle), the LSD must be
atree.



requires finding a starting cross-edge in each cycle of el le
set. Then, from faces incident to these starting crosssedge
can walk the dual graph @? along the level set and determine
all the level set cycles.

These starting cross-edges play the role of what van Kreateld
al. [22] call a seed set. In our case there is no need to compute
such a seed set. The tree struct@téP) of the LSD actu-

ally provides an efficient tool to determine a starting edye i
each cycle of any level set. Precisely, we build the LSD while
traversing the lines of ;(P). For each ling(s;, s;) of 7, (P)

we can obtain a starting cross-edge in any cycle contained in
the associated cylindrical part. This is done with a deéngas
path starting a$; as shown in Figure 10.

The construction of7;(P) is directly inspired from the con-
tour tree algorithm in [22]. Starting from the root, we vitie
vertices of P until we encounter a singular vertex At this
point, we create a linés, v) of 7, (P). If v is a local maximum
the construction is stopped afig( P) reduces to the single line
(s,v). Otherwisey must be a saddle vertex, and we split the
priority queue intol — Indg, (v) subqueues corresponding to
the branches of;(P). In order to represent several branches
(i.e. subqueues) in the priority queue, we label every xerte

in the queue with a contour numbgw). Splitting a contour in
the queue amounts to replace the contour number of its gertic
by traversing each new contour. We also maintain a conteur ta
ble CT containing for every contourthe saddle verteg'T'[:]
that gave birth to this contour branch during the sweep.

The algorithm proceeds as follows

S

Figure 10: Ther pointer provided by the Dijkstra’s algorithm g
is used to find a starting cross-edgge =) of a cycle contained
in the cylindrical region betweesy andss.

As the construction algorithm is guided by the tree struectur 10

7:(P), we can assure that we do not miss any cycle in a level
set and that each cycle is computed only once.

The overall LSD construction algorithm is thus based on two
steps: in a first step, we build the trég(P), and in a second 15
step, we compute the LSD itself.

5.1 Computing 74(P) 20

The construction of; (P) is based on Dijkstra’s algorithm. It
is performed while traversing the adjacency grap®oDuring
this traversal, we compute the shortest path distalyoef the
visited vertices as well as thepointer to the preceding neigh-
bor on a shortest path. As for the classical Dijkstra’s atbo,
we maintain a priority queue with respect to the distancés Th
priority queue contains the vertices adjacent to the ajreésd
ited vertices, but whose distance have not yet been fixedeéby th 3¢
algorithm. Since in the Dijkstra’s algorithm vertices am®p
cessed in their order of distance, this traversal amoursiséep

a level set from distance zero to the maximum distance.

0 (Initialize)
Q : a priority queue of vertices w.r.d
for each vertexw of P
Mark v as unprocessed.
ds(s) =0
m(s) = NULL
Q= {s}
Inserts as the root ofZ; (P)
CT[l]=s
ne = 1 (nc is the number of contours in the queue)
c(v) =1

1 (Main loop)

begin

1 while Q is not emptydo
begin

Extractv = head of@Q and dequeu€&)
Mark v as processed
for v; adjacent tav and marked unprocessdd
if v; isnotin@ then
begin
Setd, (v;) to ds(v) + ||[v — vi|
Setﬂ'(vi) tov
Sete(v;) to ¢(v)
Insertwv; into Q
end
else ifds(v;) > ds(v) + ||v — v;|| then
begin
Changels (v;) to ds (v) + ||v — ;|
Changer(v;) tov
Changec(v;) to ¢(v)
end
Compute the indexnd(v)
if Ind(v) =1 (v is alocal maximumjhen
Insert line(C'T[c(v)], v) into 75 (P) with v as a leaf
else ifInd(v) < 0 (v is a saddle pointhen
begin
Insert line(CT[c(v)],v) into T;(P)
Split contourc(v) into 1 — Ind(v) subcontours
corresponding to the cycles incidentito
of the level seC(ds(v) + ¢€)
Use the old contour numbe(v) and the new numbers
ne + 1,...ne — Ind(v) for the new contours
CT[e(v)] =wv
for 1 < j < —Ind(v)do
CTnc+j]l=v
ne = ne — Ind(v)



end
end
end

AnalysisIn the following we sketch some proof for correctness
of the algorithm and analyze its complexity.

Statement 1 Ind(v) can be correctly computed at line 18 of
the main loop.

In the classical Dijkstra’s algorithm vertices are dequkire
distance order [6]. This is still true in our case as we usé&-Dij
stra’s algorithm without changing the order of processifie
vertices.

When dequeuing a vertex (line 3), all the adjacent vertices
with a distance smaller thafy (v) have already been processed
while all the other adjacent vertices must lie in the queud wi
their distance set to a value greater thia(w). It follows that
Ind(v) can be correctly computed.

Statement 2 When( is dequeued (line 3 of the main loop), it
contains the extremity of all the cross-edges, relativelyhie
leveld,(v) — €, and these extremities are labelled according to
the connected components, or contours, of the level.ge) —

€.

When@ is dequeued in line 3, the origin of every cross-edge,
relatively to the leveld;(v) — ¢, obviously lies at a distance
smaller thand, (v) from the source. According to the order of
processing, all these origins must have been processadrearl
It follows that the extremity of these cross-edges have leeen
queued at line 11¢(is chosen so that no vertex other thahas

its distance in the intervadl; (v) — €, ds(v)]).

Until the first saddle vertex is processed, all the vertice® i
have the same label, 1, and we know that the current leved set i
composed of a single contour.

When a local maximum is encountered, the corresponding con-
tour simply disappears from the queue. When a saddle vertex
is encountered, the corresponding contefuw) can only split

into 1 — Ind(w) contours, according to Section 4. Lines 24-31
of the main loop precisely performs this split.

To do so, we walk along each cycle 6{d,(w) + ¢€) corre-
sponding to a chain of’s (see Figure 7 Right) and change the
labelc() of the extremity of the traversed cross-edges.

By construction() contains:

e either the vertices which had a label different frofw) just
beforew is dequeued,

e or the upper extremities of all the cross-edges relativethe
1 — Ind(w) contours of levell;(w) + € and these extremities
have been labelled according to their corresponding costou

Thenq is further dequeued and the statement follows by induc-
tion on the number of singular vertices.

Statement 3 The main loop correctly computes the t(EgP).

From statement 2 it is seen that each iteration of the majm loo
corresponds to the sweep of all the level set cycles witheasp
to the distancel; and it maintains the labelling of the vertices
according to the level set cycles already encountered.

When a singular vertex is dequeued, the branch containing
the contoure(w) (more precisely, the contour just bel@fw))
either splits or terminates. At this point, we must creatme |
in 7, (P). This line must havev as its extremity and the sad-
dle vertex that gave birth to this branch as its origin. By-con
struction this origin is preciself'T[c(w)] and the branch is
correctly taken into account at line 21 or 24 of the main loop.

From Dijkstra’s algorithm all the vertices & must be pro-
cessed so that the main loop visits the entire tree.

The complexity of the algorithm reduces to the complexity of
the Dijkstra’s algorithm plus the time for splitting the quee
Using a Fibonacci heap for the priority queue, Dijkstragaal
rithm requires timeO(nlogn) for a polyhedron withn ver-
ticeg. A contourc(v) must be split each time a saddle vertex is
met. The total time spent for splitting the queue is thus ldean
by ns Amaz, Whereng counts the number of saddle vertices and
Amaz IS the largest number of cross-edges in a contour. Hence,
the computation of; (P) requires time)(nlog n+ns Amaz)-

ns and\ .. can be as large a(n) so that this analysis may
lead to an®(n?) complexity in the worst case. When all splits
are simple (i.e. the contour(v) can only split into two parts
c1 andez), van Kreveld et al. [22] propose to reduce the cost
for splitting by traversing the smaller ef andc. rather than
traversing both of them. This is done tgndem searchthat

is by traversing the two contours andc. in parallel until one
contour, say:, is entirely traversed. Then; is traversed again
and the label of its vertices are changed accordingly. Thig w
the cost for splitting:(v) is proportional to the size af; (the
smaller ofc; andez). This leads to a¥(nlog n) time algo-
rithm to compute the contour trég (P) (see [22] for a proof).
The same complexity can be obtained for non simple splits by
extracting all but the largest contour from the contofar) at a
branching node.

5.2 Computing the LSD

The LSD constitutes a geometric embeddingZofP). In
practice, we discretize the level internjal maxd;] into a set
{l1,12,...,1.} of r levels and compute the average point of
each cycle of the level set realizatia®d, ), ..., C(l,). The al-
gorithm proceeds by traversing the trE€P). For each line of
the tree we compute and average the cycles of level ., ..
contained in the corresponding cylindrical part.

(Main loop)
begin
1 for each ling(o, o) of 7,(P) do
begin
z =0
for each level; with ds (o) < I; < ds(o')

5 taken in decreasing orddo

2Dijkstra’s algorithm works with any connected graph in time
O(nlogn + p) if p is the number of edges.



(¢i,x) = processCycle(l;, )
Create a skeletal curve interpolating the points
end
end

procedureprocessCycle(l, z)

begin
1 y=z
z=n(y)
while ds(z) > [ do
begin
5 y==z
z=m(y)
end

Traverse the cycle of levélfrom cross-edgéy, z)
and obtain a polygonal contour realizatich

10 Compute: as the barycenter af'
return (c,y)

end Figure 11: A swan and its LSD. The swan is composed of 1728

faces. 20 level lines have been built frdith to 90% of the
) _ _ ~ maximal distance from the source point which is located @t th
Figure 10 summarizes the construction of a cycle in extremity of its beak (indicated by a white triangle on figure

processCycle. In line 10 of processCycle we compute the  12). The LSD was obtained in less than a second on a SGI
barycenter of the polygonal cuné rather than the barycenter |NDIGO2.

of its vertices. IfC' = (p1, p2, ..., px) then

b pj + D1 b algorithm to find a diameter of a tree. A diameter of a tree is
¢= Z Ipspj+ll 9 /Z llpipj+ll a pair of vertices separated by the largest possible distanc
j=1 j=1 the tree. Intuitively, the two vertices of a diameter areated at

the tip of a longest branch of the tree. The following procedu

This formula is independent of the discretization level and determines a tree diameter:

avoids the artifacts caused by non-uniform meshes.

Remark that in line 4 of the main loop we replaced the inequal- 1. pijck a vertex: at random in the tree,
itiesds (o) < l; < ds(c") involved in the definition of a cross-

edge by the inequalitied,(0) < I; < ds(co'). This avoids 2. Findy such thatl, (y) is maximal,

precision problems wheh equalsd;, (v) for some vertex. In . . .

such a case, th®pologyof the level set will be the same as 3. Findz such thatdy (=) is maximal.

the topology ofC(l; — ¢), though the embedding might have a

singular point at vertex. Itis relatively easy to show th4y, z) is a diameter. In our case

we keep the two first steps of the procedure to find a source
point s (= y) which corresponds to the tip of some long branch

of our polyhedral object. The source point was selected-auto
matically on Figures 11, 15, and 16.

In line 7 of the main loop we can use a simple polygonal curve

or a curve fitting algorithm [17, 8]. Note that our algorithm

provides a curve for each branch of the LSD but does not tell

how the branches are geometrically linked together. Thb-pro

lem is that the barycenter becomes discontinuous each time aThe shortest path distance is continuous with respect to the

cycle is split into several cycles. In other words, the posit source point since

of the barycenter of every new cycle changes abruptly fraenm th

position of its “parent” cycle. This branching informatimyet |ds () — dgr ()| < ds(s") = d(s,s).

important for animation and deformation purposes. Theegfo

we keep virtual links between the branches according taéieet ~ As a consequence, the LSD is stable with respect to the source

structure. In the Figures of the results Section branchinigs| point location, as illustrated in Figure 12. Note that thieel

are visualized with line segments. set coincides with the source point. In order to avoid smail d
viations due to the precise location of the source point wg on
draw part of the LSD. We actually remove a small percentage of

6 Results the LSD at each of its extremities. On Figure 13, on the right,
we can see the artifact caused by the selection of the source
point on the border of the bottom knot section (the two end-

We present and discuss the results of applying our LSD algo- sections are triangulated without any interior point).

fithm to & number of polyhedral objects. Self intersecting objects.Figure 13 shows that our LSD algo-

Source point location. In our current implementation the  rithm can handle self-intersecting objects. This would et
source point can be selected either automatically or iotera the case if we had chosen a height function instead of the-shor
tively. In the former case we apply a heuristic based on alsimp est path distance. The Medial Axis transform would also fail
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Figure 12: Left: the white and black arrows designate the two
source points used to compute the LSDs. Right: the two corre-
sponding LSDs are almost identical.

to extract the correct structure of a self intersecting abjéhe
reason is that shortest path distances only rely on edgescenn
tivity and lengths (the metric) as opposed to a proper enmihgdd
of the vertices.

Figure 14. The man (left) is composed of 14946 faces. The

source point was selected on the top of the man’s head. The
LSD (middle) was computed in 7.74 seconds on a SGI Indigo.

Details of the LSD is shown on the right.

for any kind of shape. If the object has no obvious tree struc-
ture, as for the case of a spherical object, the LSD algorithm
still produces a one dimensional structure. Depending en th
Figure 13: Left: front view of a self intersecting knot and it ~ application this may or may not be useful.

LSD. Middle: lateral shaded view of the knot. Left: the LSD Note that the LSD may lie outside the object. Consider a

seen from the same viewpoint. punched sphere, forming a bowl, with the source point on its
bottom (see Figure 17, left). The level sets are circlesggap

ing from the source point up to the rim of the bowl and further
shrinking down to the bottom on the interior surface of thebo
The LSD of this bowl is composed of a straight line going out-
side the bowl interior up to the rim level, and turning back to
the bottom. Although this might not correspond to the inteit
idea of a skeleton this LSD can be used for deforming the bowl

Extension to non triangulated objects. Notice that the swan
and the knot on Figures 11 and 13 are not triangulated. In [12]
an extension for extracting LSDs of non triangular meshes is
proposed. In a first step we add virtual edges to the polymmedro
graph so that the restriction of the new graph to any face is a
complete graph. The shortest path distance is computed with
this new graph. The definition of a cross edge is also modified
to take into account the fact that a face may have more than two
cross-edges (see [12] for more details).

The LSDs of the man, the dolphin and the hdrskFigures 14,
15 and 16 have branches. 16 level have been used for the horse,
31 for the dolphin and 50 for the man.

7 Discussions and Future Work

We have described an efficient algorithm for constructirg th
LSD associated to a genus-0 polyhedron whose vertices are
valued by the shortest path distance to a source point. This
algorithm is fast, robust, and easy to implement. It is nyainl

designed for tubular and branching objects although it work o
Figure 15: The dolphin is composed of 563 faces and the LSD

3Copyright 1988, Rhythm & Hues Studios, Inc. was computed in 0.25 seconds on a SGI Indigo.




done by considering as many decreasing paths as there are se-
qguences of “-” in the cycle of neighbors of the saddle vertex
(see Figure 7 on the left).

Finally, when applied to scattered point sets, couplingteai-
nigue with the feature-based surface generation develbped
Takahashi et al. [21] would provide an efficient reconstorct
tool.
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