
HAL Id: hal-01224920
https://inria.hal.science/hal-01224920

Submitted on 5 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Level set diagrams of polyhedral objects
Francis Lazarus, Anne Verroust

To cite this version:
Francis Lazarus, Anne Verroust. Level set diagrams of polyhedral objects. SMA’99 Proceedings of
the fifth ACM symposium on Solid modeling and applications, ACM, Jun 1999, Ann Arbor, United
States. �10.1145/304012.304025�. �hal-01224920�

https://inria.hal.science/hal-01224920
https://hal.archives-ouvertes.fr


Level Set Diagrams of Polyhedral Objects

Francis Lazarus�
lazarus@sic.univ-poitiers.fr

Anne Verrousty
Anne.Verroust@inria.fr

Abstract

Shape descriptors and feature-based representations are of pri-
mary interests in the area of solid modeling. They allow us for
easier storage, recognition and general treatments of objects.
Axial structures such as skeletons are popular shape descriptors
which have been widely studied. Most of the studies focus on
a particular type of skeleton called the Medial Axis. Medial
Axes can be extracted from discrete volumetric data as well as
boundary-based representations. In the later case, however, no
algorithm is known to perform well and accurately. We pro-
pose a new paradigm for constructing one dimensional axial
structures associated with a polyhedral object. These structures,
called the level set diagrams, are associated with scalar func-
tions defined over the set of vertices of a polyhedron. We study
in details the level set diagram associated with the shortest path
distance to a source point. This particular association fitsnicely
into a theoretical framework and presents interesting properties
for the purpose of shape description.

Keywords: skeleton, cylindrical decomposition, Euler For-
mula, Dijkstra’s algorithm.

1 Introduction

We present a new paradigm for constructing one dimensional
axial structures, the level set diagrams (LSDs for short), asso-
ciated with a polyhedral object. These diagrams capture the
overall shape as well as the topology of an object. They can be
used for deforming or animating an object.

This construction is radically different from the classical Me-
dial Axis [5, 14] which does not necessarily produces a one�Université de Poitiers. I.R.C.O.M.-S.I.C. SP2MI, Boulevard 3,
Teleport 2, B.P. 179, 86960 Futuroscope Cedex, FRANCEyINRIA Rocquencourt, Domaine de Voluceau, B.P. 105, 78153 Le
Chesnay Cedex, FRANCE

dimensional structure. Formally, the Medial Axis is the setof
the centers of maximal spheres contained in a given object. Al-
gorithms that construct the Medial Axis of a polyhedral surface
are generally complex. They start with adding points on the ob-
ject boundary and computing their Delaunay triangulation [9].
Generally, the resulting Medial Axis needs to be pruned as it
may contains numerous small branches [1]. Also, the Medial
Axis can be composed of pieces of curves as well as pieces
of surfaces. By construction, however, LSDs are simple one
dimensional graphs. They relate to the level sets of scalar func-
tions defined over the vertices of a polyhedral surface. More
precisely, the points of an LSD correspond to “average points”
associated with the connected components of the level sets of
a given scalar function. Figure 1 shows an LSD of a three-
fingered shape.

Figure 1: An LSD (bold lines) of a an object is defined by
the centers of the connected components of the level sets (thin
lines) of a given function. The dashed bold lines indicate joints
between LSD branches.

Shinagawa et al. [19, 20] have introduced a similar diagram in
the context of medical and geographical applications. Theycall
their diagram theReeb graphin reference to a classical topo-
logical graph associated with level sets of a Morse function1,f , defined on a smooth surface [15, 10]. The vertices of the
Reeb graph correspond to critical points of the functionf , that
is points where the gradient off is null.

Shinagawa et al. are mainly interested in encoding the topologi-
cal structure of a terrain while the LSD is a geometrical skeleton

1A Morse function, on a surface, is a twice differentiable function
whose Hessian - the Jacobian of the gradient in a suitable coordinate
system - has a non-zero determinant everywhere its gradientvanishes.



that describes both the topology and the geometry of an object.

LSDs depend on the particular function chosen to compute the
level sets. Shinagawa et al. use the height function (the z-
coordinate), relatively to a given orientation of the object to
define their diagram. This is particularly meaningful for ter-
rain data as critical points correspond to peaks, pits or passes of
the terrain. We show that in our case theshortest path distance
to a source pointis often a better choice of function especially
for describing the geometry of tubular and branching objects.

The two major components of our approach are the study of
the level sets of a function defined on a polyhedron and the use
of the shortest path distance to a source point to define such a
function. de Berg et van Kreveld [7] studied the structure ofthe
level sets of the height function on a polyhedral terrain. Asin
[19, 20], the structure of the level sets is recorded into a tree
analogous to the Reeb graph. In [7], it is shown that this tree,
called thecontour tree, can be constructed inO(n log n) time.
In [22], a simpler construction of the contour tree is provided for
general functions (not only height functions) defined on general
polyhedra (not only terrains).

An LSD is a geometric embedding of the contour tree where
each point of the contour tree is mapped to the isobarycenterof
the corresponding level set contour.

In [12], we used the shortest path distance to a source point to
define a function on the vertices of a polyhedron. The same
function is used by Axen and Edelsbrunner [2] in a very differ-
ent context. In this work, the topology of surfaces is explored by
a wave traversal to produce sounds in relation with the topology
of the surface. The waves precisely correspond to level setsof
the shortest path distance to a source point. Note, however,that
Axen and Edelsbrunner consider topological distances - edges
have unit length - rather than Euclidean distances.

Section 2 presents some basic definitions and properties of the
level sets of a function defined on a triangulated polyhedron.
In Section 3, we describe the evolution of a the level-sets as
the level is varied. This description is based upon the notion of
index of a vertex. Section 4 studies the level sets of the shortest
path distance to a source point. This study is used in Section
5 to define efficient algorithms that construct the LSD. Results
are commented in Section 6. Finally, we discuss future works
and conclude in Section 7.

2 Level Sets of Functions

This section provides some definitions and notation that areim-
portant to the construction and properties of the LSD. In the
following, we only consider LSDs of triangulated polyhedra.

For a given triangulated polyhedron,P, we consider a function,f , defined over its verticesv1; : : : ; vn so that two adjacent ver-
tices are given two different values. Actually, as noticed in [20],
all that is required is to tell which of any two adjacent vertices
gets the smaller value. In practice, we can order arbitrarily the
vertices having the same value so that the above requirement
can be alleviated.

Definition 1 An edge(vi; vj) is said to be across-edgerela-
tively to a levell if f(vi) < l < f(vj ):
Similarly, a face(vi; vj ; vk) is said to be across-facerelatively
to a levell if the three values of its vertices encompassl, that isf(vi) < l < f(vj) < f(vk); orf(vi) < f(vj) < l < f(vk):
Remark that a cross-face has exactly two cross-edges.

Definition 2 Thedual graphof P is the graph whose vertices
are the faces ofP and whose edges correspond to pairs of inci-
dent faces.

The preceding remark shows that a cross-face (relatively toa
level l) is adjacent to exactly two cross-faces in the dual graph
(see Figure 2).

−

+

+

+ −

−

+

+

+

Figure 2: A triangulation with its cross-adjacency graph (bold
lines) for a given levell. Vertices with values greater (smaller)
thanl are marked with a “+” (a “-”).

Property 1 For any level l, distinct from the valuesf(v1); : : : ; f(vn), the set of cross-faces constitutes a set of dis-
joint cycles in the dual graph.

This property is to be compared with the fact that a level set of a
Morse function defined on a closed smooth surface is composed
of disjoint closed curves, if that level set contains no critical
point.

These cycles of cross-faces define closed polygonal contours on
the polyhedronP. For this, we associate with each cross-edge(vi; vj) the pointpij(l) = l� f(vi)f(vj)� f(vi)vi + f(vj)� lf(vj)� f(vi)vj :
If (vi; vj ; vk) is a cross-face, we can draw the linepij(l)pik(l)
as on Figure 3.

Definition 3 The geometricrealization of a level set is the
set of polygonal contours obtained by drawing the lines(pij(l)pik(l)) in every cross-faces. We will noteC(l) the re-
alization of the level set of levell.



vi

vkvj

pij(l) pik(l)

Figure 3: Segment(pij(l)pik(l)) is the geometric realization of
the cross-face(vi; vj ; vk).

These polygonal contours are not necessarily planar. They will
be further “averaged” in order to construct the LSD.

If l1 < l2 are two levels, such that no vertexv verifies l1 �f(v) � l2, then the two corresponding level sets are traversed
by the same cross-faces. It follows thatC(l1) can be deformed
continuously intoC(l2) and vice versa. In other words,C(l1)
andC(l2) arehomotopic. In particular, they have the same num-
ber of contours.

This result will be strengthen in the next section. As we will
see, the contours are still homotopic when the levell passes
through a valuef(v), as long asv is aregular vertex.

3 Vertex Index and Euler Formula

The LSD encodes the set of contoursC(l) asl evolves. Branch-
ing of the LSD can only occur whenC(l) changes of homotopy
type. It is thus important to know for which value ofl the topol-
ogy of the polygonal contoursC(l) is modified. As we just saw,
this can only happen whenl equalsf(v) for some vertexv of
the polyhedronP.

In order to describe the topological change at a vertexv we
introduce theindex of a vertexv. Let w1; w2; : : : ; wk be
the k neighbors ofv enumerated counterclockwise aroundv.
As Takahashi et al. [20], we consider the number of sign
changes,Sgcf (v), in the sequence(f(w1) � f(v); f(w2) �f(v); : : : ; f(wk) � f(v); f(w1) � f(v)). The index ofv is
defined as Indf (v) = 1� Sgcf (v)2
Figure 4 shows a vertex with index�1. This index tells howf

v

− −

−

+ +

+

Figure 4: A “+” (a “-”) indicates av neighbor,w, such thatf(w) is greater (smaller) thanf(v). The number of sign
changesSgcf (v) counts the number of “+” and “-” sequences.

is changing aroundv. It actually records part of the topology ofP itself. By summing the indices over all the vertices, we get
the very nice formula

Property 2 Xv2P Indf(v) = �(P)
where�(P) = nV � nE + nF is the Euler characteristic ofP andnV , nE andnF are respectively the number of vertices,
edges and faces ofP.

proof: Sgcf(v) counts the number of triangles(vi; v; vj) in-
cident tov such thatf(v) is betweenf(vi) andf(vj). Since
every triangle has exactly one vertex for which this occurs the
sum of theSgcf (v) for all the vertices counts the total number
of triangles: Xv2P Sgcf (v) = nF ;
so that Xv2P Indf (v) = nV � 12nF :
As P is a triangulation, we have3nF = 2nE or equivalentlynF = 2(nE � nF ). It follows thatXv2P Indf (v) = nV � nE + nF = �(P) 2
The same formula can be found in [3] and [11] in a slightly
different context. Takahashi et al. [20] implicitly refer to a sim-
ilar formula but they only consider vertices for whichSgcf (v)
equals 0 or 4. In fact, Takahashi et al. directly refer to Morse
theory. In this theory a critical point may only get three differ-
ent index values, two of which corresponding to local extrema.
Another effective analogy is provided with the notion ofindex
of a critical point of a gradient vector field. A critical point
of a vector field is a (isolated) point where the vector field is
null. Very roughly speaking the index of a critical point is the
number of revolutions made by the vector field while turning
around that point [11]. In order to show the analogy with our
notion of index, we first orient the edges according to thef -
values of their endpoints. This orientation corresponds tothe
gradientof f along the edges. Note that a triangle cannot have
its edges oriented clockwise nor counterclockwise as shownin
Figure 5. Then, in each triangle ofP we draw a continuous
vector field, as sketched on Figure 5, so that the direction ofthe
vector field on the triangle boundary agrees with the orientation
of its edges. Now, the vertices ofP are the critical points of this
vector field and it can be shown that their index, relatively to the
vector field, coincides with our notion of index. The above Eu-
ler formula thus corresponds to a classical summation formula
over the index of the critical points of a continuous vector field
[11].

The index of a vertexv describes how the level set realizationC(l) is modified aroundv, as the levell is raised fromf(v)� �
to f(v) + �, for a sufficiently small�.



vk

vi vi

vj vj

vk

Figure 5: On the left: Orientation of the edges of a triangle
induced byf (f(vi) < f(vj) < f(vk)). On the right: The tan-
gent vectors to the oriented curves defines a vector field com-
patible with the edge orientation.

If Indf (v) is null, then thev neighbors are partitioned into
two connected setsfv�jf(v�) < f(v)g and fv+jf(v+) >f(v)g as shown in Figure 6 on the left.C(f(v) + �) is deduced

v v

− − − −

−

+

+ +

+ + +

+

Figure 6: The neighborhood of a vertexv in two different con-
figurations. a ’+’ (’-’) indicates av neighbor,w, such thatf(w)
is greater (smaller) thanf(v). The level set realization is shown
for a level slightly belowf(v) (dotted curve) and slightly abovef(v) (plain curve). The index ofv is 0 on the left and -1 on the
right.

from C(f(v) � �) by substituting points on cross-edges of the
type (v; v�) to points on cross-edges of the type(v; v+). The
change reduces to a sweep and a chain substitution of cross-
edges so thatC(f(v) + �) is still homotopic toC(f(v)� �).
Several chain substitutions may occur at the same time when
different non adjacent vertices get the same valuef(v).
Definition 4 A vertex with a null index is said to beregularand
critical otherwise. Similarly the valuef(v) of a critical vertex
is called acritical value. Any other value is said to beregular.

Note that a positive index (+1) indicates a local extremum. A
critical vertex which is not an extremum is called asaddlever-
tex. When traversing a critical value the topology of the level
set is changing. The evolution of the level set depends on the
index of the corresponding critical vertex (see Figure 6). The
precise topological change not only depends on the index but
also on the whole configuration of the level set. Figure 7 shows
two possible changes in the level sets that depend on the con-
figuration ofC(f(v)� �). As will be shown in the next section
the topological changes of the level sets can be deduced directly

−

v

− −

−

+ +

+

v

−

−

+ +

+

Figure 7: Two configurations of a vertex with index�1. The
number of connected components of the level set increases on
the left while it decreases on the right as the level is augmented
from belowf(v) (dotted curve) to abovef(v) (plain curve).

from the vertex indices when considering the shortest path dis-
tance to a source point on a genus-0 polyhedron.

4 The Shortest Path Distance to a
Source Point

Up to this point we have not considered any specificf . As we
want the LSD to represent the object geometry, the definitionoff should involve the geometry ofP. Takahashi et al. use the
height function [20], so that any vertex is associated its own z-
coordinate in a suitable coordinate system. In this case, the level
sets correspond to cross-sections betweenP andxy-planes. As
noticed in the introduction this choice is relevant for terrain data
as the critical vertices correspond to peaks, passes or pitsof the
terrain. However, for other classes of objects it may happenthat
the height function does not give an intuitive LSD in any coordi-
nate system. Figure 13 shows a self-intersecting tubular object
whose “natural” axis could not be determined with any height
function. A better choice for the level sets is provided withthe
moving front of some flow emanating from a tip of the tube.
Such fronts correspond to the level sets of the geodesic distance
to a tip of the tube. The computation of the geodesic distance
to a source point on a polyhedron has been extensively stud-
ied (see [16]). We prefer to compute the shortest path distance
relatively to the graph induced by the edges of a polyhedron.
It provides an approximation, sufficient for our purpose, ofthe
geodesic distance. It further allows us to simplify and acceler-
ate the computation and fits nicely into a theoretical framework.

In the following, we study the level sets of the shortest path
distance to a given source point. We will note the functionds
instead off . For any vertexv, ds(v) is the length of a shortest
path to a given source points. (The choice ofs will be dis-
cussed in the results section.)ds can be computed efficiently
with a modified breadth-first search starting from the source
and using the classical Dijkstra’s algorithm [6]. Dijkstra’s al-
gorithm makes use of a priority queue to select the next vertex
to be processed in the breadth-first search. Dijkstra’s algorithm
also returns for any vertexv a pointer�(v) to the preceding
vertex on a shortest path linkingv to the sources. By iterating
the� pointer we can follow a strictly decreasing path from any
vertex to the source.



ds presents interesting properties that allows for easy compu-
tation of the associated LSD. First of all, the source points is
the only local minimum ofds. This means that from any ver-
tex we can draw a path of edges leading to the source point
with strictly decreasing vertexds-values. To obtain further nice
properties we will assume from now on that the polyhedronP
has a 0-genus, that isP is topologically equivalent to a triangu-
lated sphere.

With this assumption, we get the following property that will
provide a complete description of the topological change when
the level passes through a critical value.

Property 3 The set of cross-faces incident tov for a level l
lower thands(v) belong to a unique cycle.

proof: SinceP has a 0-genus, the realization of any level set
cycle splitsP into two connected components. If such a cy-
cle contains a cross-face incident tov, then one of these two
components must containsv while the other contains the source
point. This is easily seen from the above decreasing path prop-
erty (see also Figure 8). Now, any decreasing pathp from v to

v
−

−

−

+

+

+

s

p

Figure 8: The pathp : v ! s meets the realization of any
level set cycle containing one or more cross-faces (shaded on
the Figure) incident tov once and only once.s should meet every cycle containing a cross-face incident tov.
Sincep meets the whole level setC(l) exactly once, there must
be only one such cycle2
From this property it is seen that the configuration of Figure7
on the right cannot occur. Also, ifnc(l) counts the number of
cycles ofC(l), then for any vertexv, we havenc(ds(v) + �) = nc(ds(v)� �)� Indds(v) ;
since any chain ofv neighbors further thanv from the source
gives rise to a new cycle (see Figure 7 left).

Property 3 prevents the LSD from having loops. The vertex
with the highest distanceds on a loop would indeed have two
branches going down the source which would contradict prop-
erty 3. Since the LSD is connected (just follow a decreasing
path to the source from any vertex on a cycle), the LSD must be
a tree.

The tree structure of the LSD is recorded into a contour tree
[22] Ts(P) whose root, internal nodes and leaves are respec-
tively the sources, the saddle vertices, and the local maxima.

The lines ofTs(P) link critical vertices and correspond to cylin-
drical parts ofP. Figure 9 shows a simple example.

s1

s2

s4

s3

s5

s s

s1

s2

s4

s5

s3

d2

d1

d3

d4

d5

Figure 9: The LSD is an embedding of the treeTs(P). On the
left the LSD is computed from five level sets ofds correspond-
ing to the distancesd1; : : : ; d5.
In practice, we will use its tree structure to construct the LSD.

5 Algorithms

We present algorithms for computing the treeTs(P) and the
LSD associated with the distanceds. To clarify the presenta-
tion we assume that no two vertices ofP are at the same dis-
tance from the source. In case this would happen, we can still
arbitrarily order the vertices having the same distance so that
we can compare any pair of adjacent vertices. In [2], this kind
of degeneracies is treated by first performing a barycentricsub-
division. However, this technique does not apply here as we
are not considering topological distances. Also, the barycentric
subdivision does not solve all the degeneracies (i.e. adjacent
critical vertices with the same distance) and further arbitrary
choices must be taken.

We also assume that the neighbors of a vertex, the incident faces
to an edge, and the edges and vertices of a face can be accessed
in constant timeO(1). The winged-edge data structure [4, 25],
for instance, fulfills all these requirements.

To construct the LSD, we need to sweep the level from zero to
its maximum valuemax ds and compute the “average” point of
various level set cycles.

The set of cross-faces contained in a level set changes whenever
the level passes trough a vertex value. The number of different
level sets is thus equal to the number of vertices. Since mostof
the vertices have to be regular most of these level sets will have
the same topology. Also, polyhedral objects may have hun-
dreds or thousands of vertices, and we do not need that many
level sets to construct the LSD. In practice, we fix the number
of levels (from 16 to 50 in our examples) and select the levels
uniformly in the range[0;maxds]. For each selected levels,
we must compute the corresponding level set realization. This



requires finding a starting cross-edge in each cycle of the level
set. Then, from faces incident to these starting cross-edges, we
can walk the dual graph ofP along the level set and determine
all the level set cycles.

These starting cross-edges play the role of what van Kreveldet
al. [22] call a seed set. In our case there is no need to compute
such a seed set. The tree structureTs(P) of the LSD actu-
ally provides an efficient tool to determine a starting edge in
each cycle of any level set. Precisely, we build the LSD while
traversing the lines ofTs(P). For each line(si; sj) of Ts(P)
we can obtain a starting cross-edge in any cycle contained in
the associated cylindrical part. This is done with a decreasing
path starting atsj as shown in Figure 10.

s1

s2

s4

s3

s5

s

π(s3) 
y

z

Figure 10: The� pointer provided by the Dijkstra’s algorithm
is used to find a starting cross-edge(y; z) of a cycle contained
in the cylindrical region betweens1 ands3.

As the construction algorithm is guided by the tree structureTs(P), we can assure that we do not miss any cycle in a level
set and that each cycle is computed only once.

The overall LSD construction algorithm is thus based on two
steps: in a first step, we build the treeTs(P), and in a second
step, we compute the LSD itself.

5.1 Computing Ts(P)
The construction ofTs(P) is based on Dijkstra’s algorithm. It
is performed while traversing the adjacency graph ofP. During
this traversal, we compute the shortest path distanceds of the
visited vertices as well as the� pointer to the preceding neigh-
bor on a shortest path. As for the classical Dijkstra’s algorithm,
we maintain a priority queue with respect to the distance. This
priority queue contains the vertices adjacent to the already vis-
ited vertices, but whose distance have not yet been fixed by the
algorithm. Since in the Dijkstra’s algorithm vertices are pro-
cessed in their order of distance, this traversal amounts tosweep
a level set from distance zero to the maximum distance.

The construction ofTs(P) is directly inspired from the con-
tour tree algorithm in [22]. Starting from the root, we visitthe
vertices ofP until we encounter a singular vertexv. At this
point, we create a line(s; v) of Ts(P). If v is a local maximum
the construction is stopped andTs(P) reduces to the single line(s; v). Otherwise,v must be a saddle vertex, and we split the
priority queue into1 � Indds(v) subqueues corresponding to
the branches ofTs(P). In order to represent several branches
(i.e. subqueues) in the priority queue, we label every vertex v
in the queue with a contour numberc(v). Splitting a contour in
the queue amounts to replace the contour number of its vertices
by traversing each new contour. We also maintain a contour ta-
bleCT containing for every contouri the saddle vertexCT [i]
that gave birth to this contour branch during the sweep.

The algorithm proceeds as follows

0 (Initialize )Q : a priority queue of vertices w.r.t.ds
for each vertexv of P

Mark v as unprocessed.ds(s) = 0�(s) = NULLQ = fsg
Inserts as the root ofTs(P)CT [1] = snc = 1 (nc is the number of contours in the queue)c(v) = 1
1 (Main loop)
begin
1 while Q is not emptydo

begin
Extractv = head ofQ and dequeueQ
Mark v as processed

5 for vi adjacent tov and marked unprocesseddo
if vi is not inQ then

begin
Setds(vi) to ds(v) + kv � vik
Set�(vi) to v

10 Setc(vi) to c(v)
Insertvi intoQ

end
else ifds(vi) > ds(v) + kv � vik then

begin
15 Changeds(vi) to ds(v) + kv � vik

Change�(vi) to v
Changec(vi) to c(v)

end
Compute the indexInd(v)

20 if Ind(v) = 1 (v is a local maximum)then
Insert line(CT [c(v)]; v) into Ts(P) with v as a leaf

else ifInd(v) < 0 (v is a saddle point)then
begin

Insert line(CT [c(v)]; v) into Ts(P)
25 Split contourc(v) into 1� Ind(v) subcontours

corresponding to the cycles incident tov
of the level setC(ds(v) + �)
Use the old contour numberc(v) and the new numbersnc + 1; : : : nc � Ind(v) for the new contours

30 CT [c(v)] = v
for 1 � j � �Ind(v) doCT [nc + j] = vnc = nc � Ind(v)



end
end

end

Analysis In the following we sketch some proof for correctness
of the algorithm and analyze its complexity.

Statement 1 Ind(v) can be correctly computed at line 18 of
the main loop.

In the classical Dijkstra’s algorithm vertices are dequeued in
distance order [6]. This is still true in our case as we use Dijk-
stra’s algorithm without changing the order of processing of the
vertices.

When dequeuing a vertexv (line 3), all the adjacent vertices
with a distance smaller thands(v) have already been processed
while all the other adjacent vertices must lie in the queue with
their distance set to a value greater thands(v). It follows thatInd(v) can be correctly computed.

Statement 2 WhenQ is dequeued (line 3 of the main loop), it
contains the extremity of all the cross-edges, relatively to the
levelds(v)� �, and these extremities are labelled according to
the connected components, or contours, of the level setds(v)��.
WhenQ is dequeued in line 3, the origin of every cross-edge,
relatively to the levelds(v) � �, obviously lies at a distance
smaller thands(v) from the source. According to the order of
processing, all these origins must have been processed earlier.
It follows that the extremity of these cross-edges have beenen-
queued at line 11 (� is chosen so that no vertex other thanv has
its distance in the interval[ds(v)� �; ds(v)]).
Until the first saddle vertex is processed, all the vertices in Q
have the same label, 1, and we know that the current level set is
composed of a single contour.

When a local maximum is encountered, the corresponding con-
tour simply disappears from the queue. When a saddle vertexw
is encountered, the corresponding contourc(w) can only split
into 1� Ind(w) contours, according to Section 4. Lines 24-31
of the main loop precisely performs this split.

To do so, we walk along each cycle ofC(ds(w) + �) corre-
sponding to a chain of+’s (see Figure 7 Right) and change the
labelc() of the extremity of the traversed cross-edges.

By construction,Q contains:� either the vertices which had a label different fromc(w) just
beforew is dequeued,� or the upper extremities of all the cross-edges relatively to the1� Ind(w) contours of levelds(w) + � and these extremities
have been labelled according to their corresponding contours.

ThenQ is further dequeued and the statement follows by induc-
tion on the number of singular vertices.

Statement 3 The main loop correctly computes the treeTs(P).

From statement 2 it is seen that each iteration of the main loop
corresponds to the sweep of all the level set cycles with respect
to the distanceds and it maintains the labelling of the vertices
according to the level set cycles already encountered.

When a singular vertexw is dequeued, the branch containing
the contourc(w) (more precisely, the contour just belowc(w))
either splits or terminates. At this point, we must create a line
in Ts(P). This line must havew as its extremity and the sad-
dle vertex that gave birth to this branch as its origin. By con-
struction this origin is preciselyCT [c(w)] and the branch is
correctly taken into account at line 21 or 24 of the main loop.

From Dijkstra’s algorithm all the vertices ofP must be pro-
cessed so that the main loop visits the entire tree.

The complexity of the algorithm reduces to the complexity of
the Dijkstra’s algorithm plus the time for splitting the queue.
Using a Fibonacci heap for the priority queue, Dijkstra’s algo-
rithm requires timeO(n log n) for a polyhedron withn ver-
tices2. A contourc(v) must be split each time a saddle vertex is
met. The total time spent for splitting the queue is thus bounded
byns�max, wherens counts the number of saddle vertices and�max is the largest number of cross-edges in a contour. Hence,
the computation ofTs(P) requires timeO(n log n+ns�max).ns and�max can be as large asO(n) so that this analysis may
lead to anO(n2) complexity in the worst case. When all splits
are simple (i.e. the contourc(v) can only split into two partsc1 andc2), van Kreveld et al. [22] propose to reduce the cost
for splitting by traversing the smaller ofc1 andc2 rather than
traversing both of them. This is done bytandem search, that
is by traversing the two contoursc1 andc2 in parallel until one
contour, sayc1, is entirely traversed. Then,c1 is traversed again
and the label of its vertices are changed accordingly. This way,
the cost for splittingc(v) is proportional to the size ofc1 (the
smaller ofc1 andc2). This leads to anO(n log n) time algo-
rithm to compute the contour treeTs(P) (see [22] for a proof).
The same complexity can be obtained for non simple splits by
extracting all but the largest contour from the contourc(v) at a
branching node.

5.2 Computing the LSD

The LSD constitutes a geometric embedding ofTs(P). In
practice, we discretize the level interval[0;maxds] into a setfl1; l2; : : : ; lrg of r levels and compute the average point of
each cycle of the level set realizationsC(l1); : : : ; C(lr). The al-
gorithm proceeds by traversing the treeTs(P). For each line of
the tree we compute and average the cycles of levell1; : : : ; lr
contained in the corresponding cylindrical part.

(Main loop)
begin
1 for each line(�; �0) of Ts(P) do

beginx = �0
for each levelli with ds(�) < li � ds(�0)

5 taken in decreasing orderdo

2Dijkstra’s algorithm works with any connected graph in timeO(n log n+ p) if p is the number of edges.



(ci; x) = processCycle(li; x)
Create a skeletal curve interpolating the pointsci

end
end

procedureprocessCycle(l; z)
begin
1 y = zz = �(y)

while ds(z) > l do
begin

5 y = zz = �(y)
end

Traverse the cycle of levell from cross-edge(y; z)
and obtain a polygonal contour realizationC

10 Computec as the barycenter ofC
return (c; y)

end

Figure 10 summarizes the construction of a cycle inprocessCycle. In line 10 ofprocessCycle we compute the
barycenter of the polygonal curveC rather than the barycenter
of its vertices. IfC = (p1; p2; : : : ; pk) thenc = kXj=1 kpjpj+1kpj + pj+12 = kXj=1 kpjpj+1k
This formula is independent of the discretization level and
avoids the artifacts caused by non-uniform meshes.

Remark that in line 4 of the main loop we replaced the inequal-
itiesds(�) < li < ds(�0) involved in the definition of a cross-
edge by the inequalitiesds(�) < li � ds(�0). This avoids
precision problems whenli equalsds(v) for some vertexv. In
such a case, thetopologyof the level set will be the same as
the topology ofC(li � �), though the embedding might have a
singular point at vertexv.

In line 7 of the main loop we can use a simple polygonal curve
or a curve fitting algorithm [17, 8]. Note that our algorithm
provides a curve for each branch of the LSD but does not tell
how the branches are geometrically linked together. The prob-
lem is that the barycenter becomes discontinuous each time a
cycle is split into several cycles. In other words, the position
of the barycenter of every new cycle changes abruptly from the
position of its “parent” cycle. This branching informationis yet
important for animation and deformation purposes. Therefore,
we keep virtual links between the branches according to the tree
structure. In the Figures of the results Section branching links
are visualized with line segments.

6 Results

We present and discuss the results of applying our LSD algo-
rithm to a number of polyhedral objects.

Source point location. In our current implementation the
source point can be selected either automatically or interac-
tively. In the former case we apply a heuristic based on a simple

Figure 11: A swan and its LSD. The swan is composed of 1728
faces. 20 level lines have been built from5% to 90% of the
maximal distance from the source point which is located at the
extremity of its beak (indicated by a white triangle on figure
12). The LSD was obtained in less than a second on a SGI
INDIGO2.

algorithm to find a diameter of a tree. A diameter of a tree is
a pair of vertices separated by the largest possible distance in
the tree. Intuitively, the two vertices of a diameter are located at
the tip of a longest branch of the tree. The following procedure
determines a tree diameter:

1. Pick a vertexx at random in the tree,

2. Findy such thatdx(y) is maximal,

3. Findz such thatdy(z) is maximal.

It is relatively easy to show that(y; z) is a diameter. In our case
we keep the two first steps of the procedure to find a source
point s (= y) which corresponds to the tip of some long branch
of our polyhedral object. The source point was selected auto-
matically on Figures 11, 15, and 16.

The shortest path distance is continuous with respect to the
source point sincejds(x)� ds0(x)j � ds(s0) = d(s; s0):
As a consequence, the LSD is stable with respect to the source
point location, as illustrated in Figure 12. Note that the 0-level
set coincides with the source point. In order to avoid small de-
viations due to the precise location of the source point we only
draw part of the LSD. We actually remove a small percentage of
the LSD at each of its extremities. On Figure 13, on the right,
we can see the artifact caused by the selection of the source
point on the border of the bottom knot section (the two end-
sections are triangulated without any interior point).

Self intersecting objects.Figure 13 shows that our LSD algo-
rithm can handle self-intersecting objects. This would notbe
the case if we had chosen a height function instead of the short-
est path distance. The Medial Axis transform would also fail



Figure 12: Left: the white and black arrows designate the two
source points used to compute the LSDs. Right: the two corre-
sponding LSDs are almost identical.

to extract the correct structure of a self intersecting object. The
reason is that shortest path distances only rely on edge connec-
tivity and lengths (the metric) as opposed to a proper embedding
of the vertices.

Figure 13: Left: front view of a self intersecting knot and its
LSD. Middle: lateral shaded view of the knot. Left: the LSD
seen from the same viewpoint.

Extension to non triangulated objects.Notice that the swan
and the knot on Figures 11 and 13 are not triangulated. In [12]
an extension for extracting LSDs of non triangular meshes is
proposed. In a first step we add virtual edges to the polyhedron
graph so that the restriction of the new graph to any face is a
complete graph. The shortest path distance is computed with
this new graph. The definition of a cross edge is also modified
to take into account the fact that a face may have more than two
cross-edges (see [12] for more details).

The LSDs of the man, the dolphin and the horse3 of Figures 14,
15 and 16 have branches. 16 level have been used for the horse,
31 for the dolphin and 50 for the man.

7 Discussions and Future Work

We have described an efficient algorithm for constructing the
LSD associated to a genus-0 polyhedron whose vertices are
valued by the shortest path distance to a source point. This
algorithm is fast, robust, and easy to implement. It is mainly
designed for tubular and branching objects although it works

3Copyright 1988, Rhythm & Hues Studios, Inc.

Figure 14: The man (left) is composed of 14946 faces. The
source point was selected on the top of the man’s head. The
LSD (middle) was computed in 7.74 seconds on a SGI Indigo.
Details of the LSD is shown on the right.

for any kind of shape. If the object has no obvious tree struc-
ture, as for the case of a spherical object, the LSD algorithm
still produces a one dimensional structure. Depending on the
application this may or may not be useful.

Note that the LSD may lie outside the object. Consider a
punched sphere, forming a bowl, with the source point on its
bottom (see Figure 17, left). The level sets are circles propagat-
ing from the source point up to the rim of the bowl and further
shrinking down to the bottom on the interior surface of the bowl.
The LSD of this bowl is composed of a straight line going out-
side the bowl interior up to the rim level, and turning back to
the bottom. Although this might not correspond to the intuitive
idea of a skeleton this LSD can be used for deforming the bowl

Figure 15: The dolphin is composed of 563 faces and the LSD
was computed in 0.25 seconds on a SGI Indigo.



Figure 16: A horse and its LSD. The horse is composed of
22258 faces and the computation of the LSD lasted 5.41 sec-
onds on a SGI Indigo.

(see Figure 17) with an axial deformation tool [13]. Generally

Figure 17: Left: the bowl and its corresponding LSD. Right:
the deformed bowl after bending the LSD.

speaking, the LSD provides a set of tubular parameterizations
together with articulations that can be used for animation sys-
tems. For instance, Walter and Fournier’s animation System
[24] could certainly take advantage of the LSD.

Finding axial structures is also helpful for extraction of surfaces
from scattered point sets (see [18]). In [23] we propose an al-
gorithm, based on the level set paradigm, for extracting skeletal
curves from 3D scattered data. It is especially relevant formed-
ical data such as blood vessels.

As presented here, our algorithm in Section 5.1 only appliesto
0-genus surface. Following van Kreveld et al. [22], this could
easily be extended to construct LSDs of non-0 genus surfaces.
Some minor modifications are to be made in order to get a start-
ing cross-edge in each contour of a level set. In the case of a 0
genus surface, the level set just below a saddle vertex is com-
posed of a unique contour (contours can only split). It follows
that a single decreasing path from a saddle vertex is sufficient to
get a starting cross-edge for any contour below a saddle vertex.
In Section 5 this decreasing path is provided by the� pointer.
In the case of a non-0 genus surface, however, contours can also
merge at a saddle vertex. We thus need to obtain starting cross-
edges in every branch below such a saddle vertex. This can be

done by considering as many decreasing paths as there are se-
quences of “-” in the cycle of neighbors of the saddle vertex
(see Figure 7 on the left).

Finally, when applied to scattered point sets, coupling ourtech-
nique with the feature-based surface generation developedby
Takahashi et al. [21] would provide an efficient reconstruction
tool.

Acnowledgements

The authors would like to thank the anonymous reviewers for
their valuable comments and for providing useful references
([2, 7, 22]).

References

[1] D. Attali and A. Montanvert. Computing and simplifying 2D and 3D semi-
continuous skeletons of 2D and 3D shapes.Computer Vision and Image
Understanding, 67(3):261–273, September 1997.

[2] U. Axen and H. Edelsbrunner. Auditory morse analysis of triangulated
manifolds. InMathematical Visualization - Algorithms, Applications and
Numerics, pages 223–236. Springer-Verlag, 1998.

[3] T. F. Banchoff. Critical points and curvature for embedded polyhedral sur-
faces.American Mathematical Monthly, 77:475–485, 1970.

[4] B.G. Baumgart. A polyhedron representation for computer vision. InAFIPS
Conference, volume 44, pages 589–596, 1975.

[5] H. Blum and R. N. Nagel. Shape description using weightedsymmetric axis
features.Pattern Recognition, 10:167–180, 1978.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms.
McGraw-Hill, New York, NY, 1990.

[7] M. de Berg and M. van Kreveld. Trekking the alps without freezing or
getting tired. In1st Annual European Symposium in Algorithms (ESA ’93),
Lecture notes in Computer Science, volume 726, pages 121–132. Springer
Verlag, 1993.

[8] P.H. Eilers. Smoothing and interpolation with finite differences. InGraphics
Gems IV. Academic Press, 1994.

[9] J.A. Goldak, X. Yu, A. Knight, and L. Dong. Constructing discrete medial
axis of 3D objects.International Journal of Computational Geometry and
Applications, 1(3):327–339, 1991.

[10] J.C. Hart. Morse theory for implicit surface modeling.In Visualization and
Mathematics ’97, Berlin-Dahlem, September 1997.

[11] M. Henle. A Combinatorial Introduction to Topology. Freeman W.H., San
Francisco, 1979.

[12] F. Lazarus. Courbes, cylindres et métamorphoses pourl’image de syn-
thèse. Thèse de doctorat en sciences, Université PARIS VII, December
1995. http://www-sic.univ-poitiers.fr/ lazarus/publications.html#these.

[13] F. Lazarus, S. Coquillart, and P. Jancène. Axial deformations: an intuitive
deformation technique.Computer-Aided Design, 26(8):607–613, August
1994.

[14] F. Leymarie and M.D. Levine. Snakes and skeletons. Technical Report
TR-CIM-89-3, McGill Research Centre for Intelligent Machines, January
1989.

[15] J. Milnor. Morse theory, volume 51 ofAnnual of Mathematics Studies.
Princeton University Press, Princeton, NJ, 1963.

[16] J.S.B. Mitchell, D.M. Mount, and C.H. Papadimitriou. The discrete
geodesic problem.SIAM J. Comput., 16:647–668, 1987.

[17] P.J. Schneider. An algorithm for automatically fittingdigitized curves. In
Graphics Gems. Academic Press, 1990.



[18] Y. Shinagawa and T.L. Kunii. Constructing a Reeb graph automatically
from cross sections.IEEE Computer Graphics and Applications, 11(6):44–
51, November 1991.

[19] Y. Shinagawa, T.L. Kunii, and Y. L. Kergosien. Surface coding based on
Morse theory. IEEE Computer Graphics and Applications, 11(5):66–78,
September 1991.

[20] S. Takahashi, T. Ikeda, Y. Shinagawa, T.L. Kunii, and M.Ueda. Algorithms
for extracting correct critical points and constructing topological graphs
from discrete geographical elevation data. InEurographics’95, pages C–
181–C–192, Maastrich, The Netherlands, September 1995.

[21] S. Takahashi, Y. Shinagawa, and T.L. Kunii. A feature-based approach for
smooth surfaces. InSolid Modeling’97, pages 97–110, Atlanta, Georgia,
May 1997. ACM.

[22] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore.
Contour trees and small seed sets for isosurface traversal.In Computational
Geometry 1997, pages 212–219, 1997.

[23] A. Verroust and F. Lazarus. Extracting skeletal curvesfrom 3D scattered
data. InShape Modeling International’99, Aizu, Japan, March 1999.

[24] M. Walter and A. Fournier. Growing and animating polygonal models of
animals. InEurographics’97, Budapest, HU, September 1997.

[25] K. Weiler. Edge-based data structures for solid modeling in curved-surface
environments. IEEE Computer Graphics and Applications, 5(1):21–40,
January 1985.


