Rational Design and Adaptive Management of Combination Therapies for Hepatitis C Virus Infection - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue PLoS Computational Biology Année : 2015

Rational Design and Adaptive Management of Combination Therapies for Hepatitis C Virus Infection

Résumé

Recent discoveries of direct acting antivirals against Hepatitis C virus (HCV) have raised hopes of effective treatment via combination therapies. Yet rapid evolution and high diversity of HCV populations, combined with the reality of suboptimal treatment adherence, make drug resistance a clinical and public health concern. We develop a general model incorporating viral dynamics and pharmacokinetics/ pharmacodynamics to assess how suboptimal adherence affects resistance development and clinical outcomes. We derive design principles and adaptive treatment strategies, identifying a high-risk period when missing doses is particularly risky for de novo resistance, and quantifying the number of additional doses needed to compensate when doses are missed. Using data from large-scale resistance assays , we demonstrate that the risk of resistance can be reduced substantially by applying these principles to a combination therapy of daclatasvir and asunaprevir. By providing a mechanistic framework to link patient characteristics to the risk of resistance, these findings show the potential of rational treatment design.
Fichier principal
Vignette du fichier
journal.pcbi.1004040.pdf (2.04 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

hal-01224118 , version 1 (04-11-2015)

Licence

Paternité

Identifiants

Citer

Ruian Ke, Claude Loverdo, Hangfei Qi, Ren Sun, James O. Lloyd-Smith. Rational Design and Adaptive Management of Combination Therapies for Hepatitis C Virus Infection. PLoS Computational Biology, 2015, 11 (6), pp.e1004040. ⟨10.1371/journal.pcbi.1004040⟩. ⟨hal-01224118⟩
480 Consultations
115 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More