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ABSTRACT

In the present work, we show that the linearized homogenized model for a pantographic lat-
tice must necessarily be a second gradient continuum, as defined in Germain (1973). Indeed,
we compute the effective mechanical properties of pantographic lattices following two routes
both based in the heuristic homogenization procedure already used by Piola (see Mindlin,
1965; dell'lsola et al., 2015a): (i) an analytical method based on an evaluation at micro-level of
the strain energy density and (ii) the extension of the asymptotic expansion method up to the
second order. Both identification procedures lead to the construction of the same second gra-
dient linear continuum. Indeed, its effective mechanical properties can be obtained by means
of either (i) the identification of the homogenized macro strain energy density in terms of the
corresponding micro-discrete energy or (ii) the homogenization of the equilibrium conditions
expressed by means of the principle of virtual power: actually the two methods produce the
same results. Some numerical simulations are finally shown, to illustrate some peculiarities
of the obtained continuum models especially the occurrence of bounday layers and transition
zones. One has to remark that available well-posedness results do not apply immediately to
second gradient continua considered here.

1. Introduction

Network materials made of a repetitive set of beams continue to attract the interest of many researchers [see for instance
dell'lsola & Steigmann, 2015; Dos Reis, 2012; Steigmann & dell’lsola, 2015), due to their low weight and interesting mechanical
performances in comparison to bulk materials. The relationship between the material microstructure and the resulting proper-
ties is the key to optimization and design of lightweight, strong, and tough materials and structures (McVeigh, Vernerey, Liu, &
Brinson, 2008). For this reason, lattices of beams have been often considered also in modeling bone (eventually growing) tis-
sues, see e.g. Andreaus and Colloca (2009), Andreaus, Colloca, and lacoviello (2012, 2013a, 2014a), Federico et al. {2005), Grillo,
Federico, and Wittum (2012), Han, Federico, Epstein, and Herzog (2005) and Luongo, Zulli, and Piccardo (2009) for recent devel-
opments on this topic.

A planar pantographic lattice — more details are given in dell'lsola, Giorgio, and Andreaus (2015b) and Madeo, Della Corte,
Greco, and Neff (2015) — is a system constituted by two families of Euler beams each of which, in the reference configuration, is
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Fig. 1. Unit cell of the pantograph structure. The link at node (i,j) is a pivot.

parallel to one of the two coordinate axes. Each beam in one family is connected by means of an internal pivot to all the beams
belonging to the other family and intersecting it (see Fig. 1). Pantographic lattices considered here are slightly different from
those considered in Alibert, Seppecher, and dell'lsola (2003): indeed there, the topological connection between two arrays of
pantographic beams was obtained superimposing the central pantographic pivots (which we denoted with the letter B in the
following Fig. 1). The comparison between the pantographic lattice studied here and that which has been previously studied will
be the object of future work.

Unfortunately, the pioneering paper by Maxwell (1864) has limited the consideration of engineers to beam lattices statically
(over-)determined and including only clamping constraints, or to simple trusses. Actually, Maxwell only wanted to supply to the
designers a useful mathematical and computational tool and limited his attention to a class of structures simply because their
“calculation” via analytical methods was viable. One cannot attribute to Maxwell any intention to limit the class of structures of
interest but simply the wish to allow for a rigorous design based on solid mathematical grounds in cases closed form calcula-
tions are possible, in an époque when this was the only possible form of computation. Most likely beyond Maxwell’s intentions,
his algorithmic procedure imposed a paradigm in engineering design: only truss structures or structures with clamped internal
constraints between beams are commonly considered in engineering design. This paradigm has no logical nor (by now) “practi-
cal” ground: it was actually imposed by the limitations induced by the demand of studying the deformation problems using: (i)
the analytical closed form solutions and (ii) as calculating devices simply with paper and pencil. However, this design paradigm
has been incorporated (without any logical or algorithmic reason) in the most modern tools of numerical calculation: in many
of them it is unreasonably difficult to impose internal constraints between beams, except when this constraint is a clamp. As a
consequence, the attention of those researchers looking for homogenized field models (and demonstrating their results using
heuristic - as done in the present paper - or by more rigorous identification methods - see Alibert and Della Corte (2015) for
a rigorous result in a similar context) has been limited to the “traditional” class of beam lattices, which has indeed a natural
continuum counterpart, namely the standard Cauchy first gradient model. In the beautiful book by Kuznetsov (2012), under-
constrained structural systems are courageously studied against the prescriptions of the aforementioned paradigm: the deep
analysis of the author leads to a clear understanding of the “practical” importance of systems which have been unreasonably
neglected in engineering sciences. Indeed, not considering the possibility of their use has considerably reduced the potential
performances of structural systems: pantographic structures we consider here are underconstrained and show very interesting
mechanical features, among which we remark the fact that their continuum counterpart is given by second gradient models.

Classical homogenization of such structures with a discrete topology towards an equivalent Cauchy continuum has been an
active research field since many years, and several methods have been developed over the last two decades to find an effective
continuum (Bornet, Bretheau, & Gilormini, 2001; Chesnais, Boutin, & Stephane, 2012; Dos Reis, 2010; Dos Reis, Ganghoffer, &
Brillard, 2007; Sanchez-Hubert & Sanchez-Palencia, 1992) amongst these works, many of them treat the homogenized behav-
ior of elastic and plastic materials reinforced by rigid fibers (Bellieud & Bouchitté, 2002; Contrafatto, Cuomo, & Fazio, 2012; El
Jarroudi & Brillard, 2001; Luongo, 2001; Sili, 2005; Turco, 2005), also in the context of the mechanical study of living and grow-
ing tissues (see Federico, Grillo, Imatani, Giaquinta, & Herzog, 2008; Grillo et al., 2009a; Grillo, Wittum, Giaquinta, & Micunovic,
2009b; Lekszycki, 2002). The classical homogenization techniques nevertheless encounter limitations when the wavelength of
the loading or deformation field becomes comparable with the typical microstructure size; it is a well established fact in the
literature (Buechner & Lakes, 2003; Harrigan, Jasty, Mann, & Harris, 1988) that the classical Cauchy theory does not allow for
the correct prediction of the mechanical response of bone at sufficiently small scale levels and/or when specific loading con-
ditions are adopted (Andreaus, Giorgio, & Lekszycki, 2014b; Andreaus, Giorgio, & Madeo, 2014c), requiring the improvement of
these theories by incorporating additional intrinsic parameters and internal length scales to correlate the microstructure with
the macrostructure. Indeed, first gradient Cauchy theories need to be improved by incorporating additional intrinsic parameters
and internal length scales to correlate the microstructure with its macro-modeling via suitably introduced macro-fields (see e.g.
Auffray, dell'lsola, Eremeyev, Madeo, & Rosi, 2015; dell'lsola, Andreaus, & Placidi, 2015a): an important field of investigation in
this context concerns the introduction of second gradient models in the description of damage, see Aifantis (1992) for a gen-
eral perspective and Misra and Poorsolhjouy (2015), Misra and Singh (2014), Placidi (2015a), Placidi, Andreaus, Della Corte, and
Lekszycki (2015), Rinaldi (2009), Rinaldi and Placidi (2014), Scerrato, Giorgio, Della Corte, Madeo, and Limam (2015) for more
recent results in this direction. Moreover, if one replaces the pivots in the nodes of the lattice so as to have contact interaction



between the two families of beams, it is clear that a damaged pantographic structure could also be modeled by means of piece-
wise linear systems (Andreaus, Chiaia, & Placidi, 2013b). It has also to be pointed out that a homogenized macroscopic model of a
pantographic structure is intrinsically anisotropic, with the anisotropic behavior depending on the distribution of orientation of
the fibers, in the same way as it occurs in polycrystalline materials (Placidi & Hutter, 2006; Placidi, Faria Sergio, & Hutter, 2005;
Seddik, Greve, Placidi, Hamann, & Gagliardini, 2008).

The objective of homogenization towards generalized continua considering either additional degrees of freedom (like the
Cosserat medium as advocated by the two Cosserat brothers in 1986 and 1909 and the micromorphic medium; Cosserat &
Cosserat, 1896, 1909; Eringen & Suhubi, 1964) or additional higher order gradients (like the second order gradient continuum;
Mindlin & Eshel, 1968; Toupin, 1962) is to remedy to these limitations and to extend the range of validity of the continuum
approach beyond the strict assumption of the scale separation, short range micro-interactions or absence of high contrast of
physical and geometrical properties at micro-level (see, Camar-Eddine & Seppecher, 2003; Pideri & Seppecher, 1997; Trinh &
Forest, 2010; Trinh, Janicke, Auffray, Diebels, & Forest, 2012). As mentioned in (Forest, 2006), the method to be used must be
able to account for the effect of the morphology and distribution of phases on the material response and to predict scale effects
(size effects of the constituents and impact of strong gradients of the loading); several methods have been developed towards
this objective in the literature (see Alibert et al., 2003; Dos Reis & Ganghoffer, 2012a; Forest, 1998, 2002; Hirschberger, Ricker,
Steinmann, & Sukumar, 2009; Seppecher, Alibert, & dell'Isola, 2011).

The Cosserat continuum presents several limitations to the study of the localization of deformations in presence of shear gra-
dients, and a second order grade continuum is more suitable for this purpose (for the asymptotic methods needed in this context
see e.g. Luongo, 1992, 2001). Several authors have turned their attention towards the development of rigorous homogenization
procedures showing the ability to account for the heterogeneous nature of the material at the micro-level using a second gradient
macroscopic constitutive law (Camar-Eddine & Seppecher, 2003; Pideri & Seppecher, 1997); works in this direction consider both
linear elastic materials (Mindlin, 1965) and non-linear materials (Bardenhagen & Triantafyllidis, 1994; Mareno & Healey, 2006).
Higher order homogenization schemes have been built for architectured materials in both the linear and nonlinear regimes in
the work of Trinh (2011). Auffray (2008) focused on the mechanical response of honeycombs, accounting for scale effects being
present. The recent work of El Jarroudi (2013) treats the homogenization of nonlinear elastic material in contact with a set of
more rigid nonlinear elastic fibers periodically distributed within the structure. In these papers (see also Alibert et al., 2003),
it is proven that some specific, highly organized, microstructures show a macroscopic behavior which, at macro-level, cannot
be described with first gradient models. Unfortunately, it is not still available a general method allowing for the algorithmic
classification of a given micro-structure determining the most appropriate macro model suitable for its description.

In the present work, we shall construct an equivalent second order gradient continuum for the pantograph structure con-
sidered in the linearized regime and in the neighborhood of a reference configuration where the beams are straight. These are
exactly the assumptions accepted in Placidi (2015b), where the aim is complementary to the one of the present paper: indeed,
while here we aim to identify the macroscopic constitutive equations via the specification of the microstructure of the system,
in the aforementioned paper, this identification is planned via the experimental evidence obtained in a series of well-designed
tests.

In future developments, we shall address the problem of finding the equivalent continuum for pantographic lattices in the
regime of large deformations. We explicitly remark here that the 2D continuum which we determine is the most suitable model
for pantographic lattices, and is more general than standard plate models, as it involves second gradient of in-plane displace-
ments: these 2D continua were already investigated in the literature (see e.g. Altenbach, Eremeyev, & Morozov, 2009, 2010, 2012;
dell'lsola & Steigmann, 2015; Giorgio, Grygoruk, dell'lsola, & Steigmann, 2015; Pietraszkiewicz, Eremeyev, & Konopinska, 2007;
Steigmann & dell'lsola, 2015) and they present very interesting mathematical features.

Thereby, we shall extend the first order homogenization schemes recently developed for the determination of the effective
mechanical properties of periodical lattices considered as Cauchy or micropolar continua (Dos Reis & Ganghoffer, 2012a) to-
wards second order gradient continua. Following the ideas presented in recent contributions devoted to the 1D case (Carcaterra,
dell'lsola, Esposito, & Pulvirenti, 2015; Elnady, Dos Reis, & Ganghoffer, 2015), we shall deal with 2D structures in the present
work. The developed framework based on the principle of virtual powers allows incorporating the local microstructural effects
via the consideration of the second order displacement gradient.

The similarities of the methods we present here and the asymptotic expansion and perturbative methods used, in slightly
different context, by (see e.g. Luongo, Zulli, & Piccardo, 2008, 2009) are remarkable: we expect that multiscale methods will
need to be used explicitly when lattices with multiple different length scales will be considered, thereby leading to homoge-
nized higher gradient continua. In this regards, it has to be noticed that higher gradient continua require enhanced integration
schemes to avoid some numerical problems as locking or spurious modes (see e.g. Cazzani, 2013; Cazzani & Lovadina, 1997;
Cazzani & Ruge, 2012; Cazzani, Malagt, & Turco, 2014a; Garusi, Tralli, & Cazzani, 2004; Reccia et al. 2012): in the present in-
stance, we use some packages from COMSOL adapted by introducing some fictitious microstructural tensor fields equated to
displacement gradients via Lagrange multipliers. This approach can be safely made more effective by introducing isogeometric
integration schemes (see e.g. Greco & Cuomo, 2013, 2014; Greco, Impollonia, & Cuomo, 2014; Cazzani et al., 2014a, 2014b, 2015;
Turco & Aristodemo, 1998). It has to be remarked that the most peculiar feature of the obtained homogenized energy consists in
the existence of so called floppy modes, e.g. displacements which are not rigid and which correspond to vanishing deformation
energy. Indeed, it is easy to check that the found homogenized energy admits as floppy modes all first order polynomials with re-
spect to the Lagrangian coordinates. Also very peculiar is its dynamics behavior: it seems suggestive that pantographic structures,
once suitably modified by the introduction of a set of microscopic oscillators, for instance by considering generalized beams as
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Fig. 2. Kinematics of a beam element.

those studied in (Piccardo, Ranzi, & Luongo, 2014), may favor the energy trapping processes described in Alibert et al. (2003),
Carcaterra and Akay (2007) and Koc, Carcaterra, Xu, and Akay (2005). The final aim should be the design of novel metamaterials
(see e.g. Boutin & Hans, 2003; Chesnais et al., 2012; Placidi, Rosi, Giorgio, & Madeo, 2014).

The paper is organized as follows: the effective strain energy density per unit surface of the pantograph is derived based on
an analytical method in Section 2. As a main aspect, a general methodology is presented in Section 3 to compute the effective
mechanical properties of beam lattices up to the second order gradient of the displacement. We shall expose into details
(Section 3) the technical steps required to construct the equivalent second gradient continuum, thereby highlighting the
forces dual to the first and second order kinematic variables in the sense of the virtual power of internal forces. The proposed
method is a variant of similar homogenization schemes already developed for second gradient continuum (Kouznetsova, Geers,
& Brekelmans, 2002), with the main difference that the topology of the initial medium is discrete. In Section 4, numerical
simulations are performed, exemplifying some features of the obtained second gradient continuum. We conclude this work by
a summary of the main results and a few perspectives (Section 5).

2. Analytical derivation of the effective energy of the pantograph

The pantograph is well-known, for it is a typical example of a structure exhibiting no first order elasticity, but instead its
elasticity appears directly at second order when it is viewed as a continuum, thus it is a second order grade continuum. The goal
of the work is to derive the effective continuum behavior of the pantograph through its continuum energy.

The unit cell of the pantograph is represented on Fig. 1, together with the kinematic angular variables.

The kinematic assumption is as follows: both beams, linking together the pair of nodes (i — 1,j — 1) —(i+ 1,j+ 1) and (i + 1,
j—1)—(i—1,j+ 1), are inextensible and articulated by a pivot at the central node (i, j). This unit is repeated by periodicity in
the plane in order to replace the discrete structure by an effective continuum body with homogenized properties at a mesoscopic
scale of description. The displacement and rotation are continuous at all nodes.

The deformation energy of the pantograph structure viewed as a continuum is evaluated based on two different approaches:
the first method is analytical and relies on the work of Askar (1968). The second method is more rigorous and relies on the discrete
asymptotic homogenization technique to build the effective second order gradient continuum based on asymptotic expansions.

2.1. Analytical expression of the energy

The general expression of the internal deformation energy associated to a beam element (i — j, i+1 — j+1), Fig. 2, is obtained
in a straightforward manner as:
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This energy is made of three terms representing the different forms of strain energy, namely extensional, flexural and shear
contributions. The beams of the pantograph are supposed to be inextensible: the linearized strong from of the inextensibility
condition writes for a beam element:

I2 = I2, with I, the initial beam length, that is
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The following relation between the Lagrangian and Eulerian positions holds
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The variable u denotes the displacement. Thus, it holds that
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Previous condition becomes in the small perturbations framework
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Thus, one obtains the following linearized inextensibility condition:
+1
(5 -¢&0) =
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introducing therein the flexural rigidity K; = L I ‘the shear rigidity K. = 125’ and L, = a the beam length.

2

Both beams on Fig. 1, linking together the pair of nodes (i —1, j — 1)b— (i+1,j+1)and (i+1,j—-1)-({—1,j+1) have
shear rigidities denoted K¢, and K, and flexural rigidities denoted K £ and K oy these two beams are articulated by a pivot at the
central node.

The strain energy of the structure is written as follows:
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Here and in the sequel, indices 1 and 2 refer respectively to the first and second beam.
One denotes separately both contributions to the strain energy associated to each beam:
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For the second beam, it holds similarly
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We next elaborate the development of each contribution to the total energy:
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We use the Bernoulli model including a local rotation, in addition to the displacement acting as the translational d.o.f. The
rotation is limited to the zero order (one order less than the displacement), so that previous expressions in (5) entail
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The continuity of the angular variation of the beam at the central node delivers the condition:
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Thus W takes the form:
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One next develops the second component of the energy

) 12 = S92
b ([ -0 ]+ [ -]

W2 = . . i1 o\ 72 . . .- i1 2 (10)
ke ([(nz;ﬂ =) = §(6a5h + 00 )|+ [ - maii) - 8 (02 + 005 | )
Using similarly two distinct finite difference schemes delivers
i - oy | a9 | - i ona| @ 9|
1 . -1) _
(it —m) =a5e) +5 5 |+ (Rh=min)=ea50| -5 59 an
j j j

with according to Bernoulli model and the continuity of the angular variation of the beam at the central node the following
conditions:
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One then obtains after development the strain energy for the second beam
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The total energy of the pantograph over the unit cell writes accordingly
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The transition is next made from the local basis (attached to the beam) to the Cartesian basis: the local components mﬁ. and

772} project along the two components [3: |. After development of Eq. (14), one obtains (details are in the Appendix, expression
Eq. (13)):
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For the pantograph, the orientation of the first beam is 8 = %, thus previous expression of the energy becomes
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Fig. 3. Kinematics and statics for a single isolated beam es.

This entails the expression of the energy density by dividing by the area of the elementary unit cell, that is S = (v/2a)2, viz.
2 2
a? 0%v; 021y %u; 0%y
W/S = —K, 17
=73 C([ e T dy? e T 9y? (17)
This expression only involves second order gradient contributions; one notes as expected from the geometry of the system
the symmetry with respect to the displacements components u; and vy.

The constitutive law of the second order equivalent medium can easily be obtained by computing the second order derivatives
of the postulated strain energy density, viz.

1 . 1 azllj 82Llj
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This entails based on the comparison of (17) with (18) that the Cauchy stress vanishes, thus a purely second order grade
effective continuum is obtained, with the hyperstress components given by

. 1 a? 821/1 821/1 ’ 82u1 82Ll1 2
W= <2Kf+4KC>|:<8x2+8yz>i| e T )| 7

ow a? ow a?
Su e a(m):(Kf""ch); Sy = B(W):(I<f+21<c>

x? 9y2
ow a? ow
Spi= s = (Kf + Kc>: Sn =y =512
9(%) 2 (%)

The next section is devoted to the presentation of the discrete homogenization technique, which is extended to derive an
effective second order grade continuum for planar lattices.

3. Discrete homogenization up to second order

We shall account for the second order gradient of the displacement and derive the expression of the hyperforces and hyper-
stress tensor, based on the virtual power form of the equilibrium equations; this shall later on entail the expression of the energy
density.

3.1. Expressions of forces

We consider an inextensible 2D beam with length I, = €L, developing internal work under the action of the transverse forces
To, Tr and the moments My, Mg; the subscripts O and E refer to the origin and extremity nodes of the beam (Fig. 3).

From beam theory and using a so called complete Bernoulli model (Dos Reis, 2010; Dos Reis & Ganghoffer, 2012b) with
inextensible beams, we will determine the moment expressions accounting for the second order gradient of the displacement;
we summarize below the expressions of the transverse forces and moments in vector format:

e — i (em (05D + (@ +¢3>) (19)
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with Df), D} the displacement vectors of the origin and extremity nodes of each beam respectively, I; the beam length, and

Kb = % the shear rigidity.
b

3.2. Asymptotic expansion of the kinematic variables D®

One considers displacement fields parameterized by the curvilinear abscissa (denoted by s in the sequel):
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It holds in Cartesian coordinates
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The same displacement (vector field) writes in curvilinear coordinate along the beam
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Specializing previous displacement field at the origin and extremity nodes gives the Taylor series expansions:
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=Dy (s°) + eL; S,ba g(s ) + &2 ’2”’ 0 8(;2(5 ) + .-+ &DE(s) +£2L,-6,b ( ) 44+ &2DE(sE) + - (27)
Si i
This entails the relative displacement
aD,(s°) BDE(SS) 1252 52D, (s°)
_ 0 o 2( po b
(DG — D) —E(Dl - Lidy 3s, ) +e <D2 — Lid 3s; 121 37512 (28)

with L; the periodicity length (length of the repetitive unit cell, see Fig. 3), §; the shift factor equal to 41) for nodes belonging to
a neighboring cell, and nil for nodes located inside the considered cell, and i € {1, 2} indicating the considered axis e or e;.

The cell is equilibrated at each node, and the efforts are periodical, with a period length equal to the cell width; this means
each boundary node n has a mirror node on an opposite edge of the unit cell, as pictured in Fig. 4: one such node belongs to the
elementary cell and is labeled n., whereas the second node belongs to the adjacent cell, and is called n,. The first node type is an
origin node for the beam, whereas the second node type is an extremity node.

One notices that the relative displacement expresses versus both first and second order gradients of the displacement field.

Similarly, one writes the asymptotic expansion of the microrotations, restricting presently to the first order:

F = o(s*)
Thus,

5 =do(s°),  @f =o(s*) = M bL



Inserting Eq. (28) into Egs. (19)-(22), one obtains the following expressions of the transverse forces and moments:

, g(ebt - (DY — DE — L;8;,2o12) 4 Lbgho)
To =K e 252 . 29
07\ o2 (e”i.(Dg -Dj - Li5ib D;s(f Lt 82'3?;.55 )>> e
Tr=-Tp (30)
KbLh 82 (Lb(3¢0) + 3ebL (D? — DI; (S d[)gs(sé) ))
Mo = = IDE) 128 52Dy (s* (31)
6 \ +&° (:aebl (Dg — D — L8, S5 — 1 0o >))
ket [ €2 (L°(¢o) + 3P+ (D9 — DE — 1,6, 2o ) )
Mg = — dDE 3 1282 32Dy (st (32)
6 \ +&° (BebL (Dg — D5 — Ly, 15(5 Lol 'Zi,,z“ )>>
The following notations are conveniently introduced:
Vor =DY - e (33)
aDo (s
Veq = <DE + Lids gs( )> et (34)
1
Voz = DY. et (35)
ODE(s®) L2682 92Do(s%)
_ E i “ib o bl
Vi = <D + LiSy, 35, +-5 T e (36)
This leads to the following simpler expressions of the forces and moments:
To = K¢ (£ (Vor — Ver + L’o) + &2 (Voo — Vi2)) (37)
T =-Tp (38)
KLy « 5 (1b 3
Mo = =% (e*(L°Bo) +3(Vor = Vi) + > B(Voz — Vi2))) (39)
Mg = Mo (40)

We next determine the derivatives of the displacements, expressions L;5;, in a Cartesian

avo<sf> LSy aD ) ang ! 1b3Do(S)
952
i

basis. After resolution and simplifications, one obtains:

aD, oD, dDop aD
LSy gs(ls ) _ =116, (cos 01 —— X 9 4 sin 01 3y ) + L8, (cos 0y —— X +sin 6, 8yo> (41)
aDE (%) oDt | oDt oD% oDE
LiSip 35, =1,81( cos0; a—x‘ +sin6; aTl + L8, cos@, —L o T sin6, By] (42)
1282 9°Do(s*) L3 (c05291 Do 1 sin’6; & D° + 2sin6; cosd; gigg)
171
it A A (43)
2 ds? +L 2% <c05292 Do 1 sin®6, & DU + 2sinf,cosb, g;g;)
The trigonometric factors cos 61, sin 61, cos 6, and sin 0, are respectively the components of the periodicity vectors Y; =
[E?s 31‘ lij) and Yo = [g?ff@;](’-j) (as pictured in Fig. A.1 in the Appendix).



3.3. Homogenization step

3.3.1. Writing of the equilibrium equations in virtual power form
The equilibrium equations write in virtual power form as (self-equilibrium in the absence of external forces)

Z (Tb V) =0 (44)
beB(b)

with v a virtual velocity field chosen to vanish on the edges of the domain.
The moment equilibrium applied to the lattice nodes writes (Dos Reis & Ganghoffer, 2012b)

DN (MG -wh+Mp-wp) =0 (45)
vieZ? beBg

with w the virtual rate of rotation. This equation will prove useful later on to solve the localization problem for the kinematic
unknowns.

The virtual power of internal forces for the whole lattice expresses accordingly as the sum of a product of internal forces by
their kinematic dual quantities at each node:

The virtual velocity field is of the same form as the displacement field evaluated in previous section. In the sequel, we select
a field having a simple form, reducing to the zero order term in &.
The virtual velocity field is then written as:

D¢ (P) =Do (P) + - -- (47)

Vector P therein represents the coordinate vector of the considered point of the global lattice. Previous velocity field in (47)
can be decomposed into longitudinal and transverse components; the virtual transverse velocity writes:

Ve(P) = D*(P) - eb*
=Vo(P)+--- (48)

One may decompose the sum in (46) as a double summation on the cells and the nodes of a given cell, viz.

P=Z(ZT,-V,-)=ZPe (49)

ceZ \neB CceZ

with i = (c, n), Z being the set of all lattice cells, B the set of all nodes a given elementary cell, and P. the virtual power of an
elementary cell. One can thus write

Pe=)"TV, (50)

neB

Since the sum of efforts cancel at each lattice node, it only remains the edge efforts for each node since the virtual power of
internal forces mutually cancel:

P=3" (To Vo +T; VE) (51)
b

Since each beam is equilibrated, it holds the equality T? = —Té’; this entails the following simplification of the previous virtual
power in (51) as:

=Y (TE <VE —Vo)) (52)
b
We next expand the relative virtual velocity (Vi — Vp). A Taylor series expansion of (48) gives
Vo (s°) =Vo (s5) +---
Ve = Vo (s° +eLidy) = Vo +€Li51bavgis(iss) + Eszerﬁ,az\g;Siz(sa) o
Thus
AV (s°) N 52% 82V (s°)

Vi —Vo) = eLis;
( E O) & 18111 asi 2 8512



The expression of the virtual external power of an elementary cell in (52) then becomes

Vo (s 1282 92V, (s¢
Pe:Z[TE(é‘L(Slb Os(,- D g2 '2”’ 8052( )>i|
1

b

- ; [(Kg (6 (Vor — Vet + o) + £ (Vor — Vi) (u a,bavgis(f) +&? L?;?b 82\gosz(s) )] (54)
In order to further simplify expression (54), one introduces the following notations:
Tp = —k(e(Vor — Ver + L’do) + &2 (Vor — Viz)) = (eT¢ + &°T7) (55)
thus leading to
() (P s ) () e
One recalls the expression of the discrete form of the virtual power of forces for the entire lattice:
P=>"P (57)
CeL

A continuous form of this power is obtained, transforming the double summation into the Riemann integral in the domain €2
whene — 0

. _ 2 _
limP =2y P = [ Rds (58)
Q

CceZ

Considering that the elementary cell is a small surface element
1
dv = gds — ds = —dv,
g
with s therein the curvilinear coordinate and g the determinant of the Jacobian of the coordinate transformation:

ORI o)
g = det |: a‘}’es[lz] dR[Z] ]
ER) “0sy

R is the vector function for the coordinate change between the Cartesian and the curvilinear basis, expressed in the form
= [Lis1Y1[1] + Las2Ya[ 1], Lys1Y1[2] + LasaYa[2]] g jy, @s pictured in Fig. A.1. This entails the continuous form of the virtual power
of internal forces:

. 3 1 e 0V (s9) L28202V (), o OV (s%) 51282 92V, (s°)
l‘f& pP= [gz[ (T LiSy, 35, ) (T 2 aw + T2Li8y 35, T} 2 9w dv (59)
Q

b

One denotes the apparition of terms in three orders in ¢: the zero order term shall lead to the Cauchy stress, the first order to
the coupling tensors between first and second order effects, and the second order term to the hyperstress tensor. One restricts in
the sequel to periodic structures with central symmetry, thus the coupling tensors vanish.

avo(s) L5 92 Vo(s

From Egs. (41) and (43), one can develop the expressions and insert them back into (59):

(T1 <L181 (cos@13V° +sin6; 3"0) +L252<c05023v‘) +siné, 3"0)))

Lt <c05291 2y sin’6; % VO +25m91c0501ﬁ) dv (60)

2 2
Q b +€& TE

L 5 . 2y
+22 <c05202 Vo | 51n202 o VD + 2sinf,cos6, gx‘z@)

3.3.2. Equivalence with a second gradient continuum
The principle of virtual power is involved to establish the equilibrium equations used for the determination of the stress and
hyperstress tensors. Let recall the constitutive law for an anisotropic second gradient continuum:

0ij = Gijpq €pq + Mpgrij Kpgr
Sijk = Mijkpq €pq + Aijkpgr Kpar

introducing therein oy}, S;jk, €pg et Kpgr the stress, hyperstress, deformation and gradient of deformation tensors respectively.

The tensors Gijpg. Ajjkpgr» Mpgrij are the first and second order elasticity tensors and the coupling tensor respectively. For periodic

uniform structures endowed with central symmetry, the coupling tensor M vanishes.



Let then determine the expressions of the stress and hyperstress tensors, starting from the internal power of stresses for a
second order grade continuum in the case of linear elasticity, to highlight the comparison with Eq. (60):

Ay

An expansion of previous expression in index form leads to:
P’ = Q[ (((Uijei®ej> — (Sumer ® e, @ em) - <gi£)> : <giz>> - (Drer)dv
- Q/ ((aijfrf®ej> : (g:) - (Drer) — (Skmex ® € ® em) - (g:) . (2:) , (Drer)> dv
- [ ((rstoes-ar) - (22) - (meromoen-e) ) (e ) v

Q

=Qf<(0'€q)'<g,g)((5-%)~e(;)-(ax8:£<q>>du )

Previous expression can be recast under the form

,. oD 92D
(e (32) - (£2)-

Q

introducing therein the force vector we use here a slightly different convenient notation by underlining tensors which are indexed
by additional superscript

Fl=0g eg=o0jei@e;-eq=0iei (64)
and the force hyper-vector
HP1 = (S-€y) e = (Sumes © 1@ e - €5) € = St (65)
Based on Egs. (64) and (65), one can next reconstruct the stress and hyperstress tensors g and S

g = (oue) @eg =l @eg (66)

[111%%]

= (Sipper) ®eg@ep =H" @ e @ ep (67)

Let introduce vectors T} = T/ e"* et T2 = T?eb*, in order to formulate Eq. (60) under the form

. 8DO 82DO
_ q. _HPa.
lm})p_/}b (F <8xq) H Bxpaxq>du (68)
Q

with
Tl
ge{1,2}, F'= (;)(LlfS]cos@]—i-Lz(Szcost) (69)

1
F2 = (E) (L] 81 sin91 +L2825in92) (70)

with g = L;L,(cos#;sinf, — sinf;cosd,) the determinant of the Jacobian matrix and the pair (p,q) € {(1,1),(2,2),(1,2)}.
There are three combinations (instead of four), since one makes the summation on the combination (1,2) and (2,1) of the crossed
derivative:

l'l‘l‘1 = l'l]‘l = L% L%81ZCOS291 +L%5%C05292 (71)
g 2 2
H2 — T; | ( L38]sin’6; +L§5§sin292 .
g 2 2

T2
H? = <gE> (L3183 cosb; sind; +1383sinf,cos6; ) (73)



Fig. 5. Pantographic structure, by courtesy of Tomasz Lekszycki, Marek Pawlikowski and Roman Grygoruk. The rectangle has sides 7 cm x 21 cm. The bending
stiffness of the beams is selected to be K? = 7.85 x 10~ Nm.

Table 1
Geometrical and mechanical data for the pantographic structure shown
in Fig. 5.
Parameters Value
Sample length 210 mm
Sample width 70 mm
Displacement in extension 7 mm
Displacement in shear 7 mm
Displacement in compression and bending ~ Minimum: 7 mm
has a linear distribution Maximum: 14 mm
Bending stiffness of the beam K’ =785x103Nm

The automatic treatment of the discrete homogenization method is implemented in a MAPLE code, allowing the direct com-
putation of the stress and hyperstress tensors; this will enable the evaluation of the strain energy density. The method allows to
treat any centrosymmetric lattice in a systematic manner. One obtains a vanishing Cauchy stress at the first order, viz.

o=0

The hyperstress third order tensor S is obtained as (without accounting for periodicity, thus here the shift factor § must be
removed so we will put it equal to 1 and the periodicity length L; is replaced by the length of each beam L? in Eqs. (26)-(28), then
the same steps are followed):

d%u d%u d%u d%u

a? =k + T 0 a? 0 5t + S

S[1.2,1.2,1] = =k o T Ay . S[1.2,1.2,2]= —k e T Ay
T geed o Lo el

This entails the following expression of the strain energy density:

2 2 2,, 72 2 2;,. 72
W/S=£I<c |:3 V1+8V1:| +|:8 u1+8 u1:|

8 0x2 ay? 0x2 ay?
The same expression of the strain energy density characteristic of a pure second order medium is obtained by both methods.

3.3.3. Determination of the internal lengths
In order to identify the internal lengths associated to the different deformation modes (extension and in-plane shear in the
present case), one can rely on the equilibrium equations (in the absence of body forces)

_(39a | 3o %S | Sz | %S | 0°Si
8x1 sz

=0, k=1,2,
8X1 3X1 8X1 3X2 8X2 8X1 8X2 8X2
inserting therein the obtained expressions of the stress and hyperstress tensors. Alternatively, one can use the obtained strain
energy density

1
W = W(S,’j, K,]k)z

E(Uijgij+sijk1<ijk)7 with  Kije = €y
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Fig. 6. Deformed shape in extension: the scale of colors measures bending energy. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 7. The same deformation as in Fig. 2: 3D plot of deformation energy.
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Fig. 9. Bending and compression test: formation of internal boundary layers as determined by the plot of the deformation energy. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)
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Fig. 10. The same deformation as in Fig. 5: actual shape of inextensible fibers and color plot of the deformation energy. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

One can then factor out the successive components of the small strain first order tensor: in the isotropic case for in-
stance, it holds that oy; = (A + 2)&q1, and S111 = 2aKyy; = 2a&q1 1, thus one can isolate the contribution %((7118114-51111(1]1) =
%((A +2/) +2aV,)é&q, from which one can identify the internal length in extension in the first direction,

2 2a
TA+2u

In a similar manner, one elaborates the contribution
1 1
5(012812 + S122K122) = 5{211« + az45Va}en

leading to the identification of the internal length in shear 12 = “23# (Papanicolopulos & Zervos, 2010).
In the present case of the pantograph, isolating contributions from the strain energy density leads to the successive identifi-
cation of the following internal lengths in extension and shear:

1 ouy  0%uy , @
— (0'11811 +S1kKm) = (KC (0 +-—-V ) Ix + 32 lxx vy
1 1 v, 0% a?
5(0'22822 + S$202[00) = 5 (Kc (0 +-—-V ) ! + a){;) = l;y = Y

ay
1 1 du;  d%u a?
5 (012812 + S122K122) = 2<Kc<0+ —V ) 8y] + 8x2]> =2 =0 =—

T4
For more complex structures, the asymptotic homogenization is quite efficient (analytical methods become quite complicated
and inapplicable).
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Fig. 11. The same deformation as in Fig. 5: 3D plots of deformation energy showing deformation concentrations in layers and corners.

4. Simulations at the structural level based on the equivalent second gradient continuum
In order to regularize the second order gradient continuum, we incorporate small but finite stretches of the two beams of the

pantograph structure, leading to an additional first order energy density.
Expression (1) of the strain energy of the structure accordingly becomes:

i +72 - 172 i L2 - - 2 -
o ([0 -0 T o =00 ) b ([ 00 T+ -] )
i : i L+ 2 . . = . 2
b [ =) =5 (003 40 ) ]+ [l = mi2) - 500 007
] i i +\ 72 . . - . 2
([ a7 =) = (0500 ) | [ =) —8(0f v

EH LN




02F T T T T T T T T T T L
A 0.0624
0.18f §
0.05
0.16 &
0.14F 4 0
0.12F b
01k i -0.05
0.08f .
1-01
0.06 .
0.04 -
-0.15
0.02F b
o 4Vv-0.185

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Fig. 12. Shear deformation field showing regions of constant shear and transition zones. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

Following the same steps as in Section 2, we obtain the following continuum strain energy density:

@ ([, 20" [02u, 92w P\ K (0w dup
Wis =gk [axz +8y2} Tloe T | ) T\ ox Ty

In Fig. 5, a picture of a real pantographic structure is shown; it gives a motivation of the micro-macro identification procedure
presented in this paper; the bending stiffness of the beams is uniform and has been selected as K? = 7.85 x 10~3 Nm. It has to
be remarked that numerical simulations using micro models based on Cauchy 3D continua require few days of computations on
a powerful workstation. By comparison, the simulations performed using the homogenized model constructed in the present
paper were obtained with the same workstation and the same software (Comsol Multiphysics) in a few minutes. Note that the
2D continuum obtained with the homogenization procedure assumes the existence of two families of inextensible fibers with
no relative slip (for more details about these continuum models, see dell’lsola, Della Corte, Greco, & Luongo, 2015c): therefore,
the minimization process which we used to get all shown equilibrium configurations requires the method of Lagrange multi-
pliers. The boundary conditions imposed in all numerical simulations consist in imposed displacement (hard device boundary
conditions). The normal derivatives of displacement are left arbitrary and therefore the dual double forces are assumed to vanish.

The geometrical and mechanical data for the pantographic shown in Fig. 5 are summarized in Table 1.

In Fig. 6, the 2D equivalent model constructed in previous section is used to obtain the deformed shape in extension of a
rectangular specimen having a side three times longer than the other. The same figure shows the actual shape of inextensible
fibers and a scale of colors measures the density of the second gradient deformation energy, which has been computed as related
to the microscopic bending of inextensible fibers.

It appears from Fig. 7 that the deformation energy is concentrated in some transitions zones and at wedges of the specimen:
this reflects the occurrence, in 2D second gradient materials, of contact forces concentrated in points. Fig. 8 shows the nearly
piecewise constant shear deformation field in the case of a sheared specimen; we observe the occurrence of five shear regions
(denoted by green, blue and red), with relative boundary layers: this circumstance could not be accounted for without a second
gradient model.

The surface double traction and the edge tractions may be evaluated from the principle of virtual work (Germain, 1973;
Papanicolopulos & Zervos, 2010), using integration by part in the virtual work of internal forces (suggesting a similar expression
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Fig. 13. Effect of presence of holes on the strain energy field in extension.

of the virtual work of external forces), viz. the equalities
_(vainr + SWext =0

SVVint = / (O’,‘j88i]‘ -I—S,'ijKijk)dv
v

Wy = /kaude +/Pk5ukd5+/RkD8ude+%Ek&lkds
% S S C

The quantities P, Ry, E; therein are respectively the surface tractions, the surface double tractions and the edge tractions. The
body forces f}, are balanced by the first order and second order stresses in the equilibrium equation

(o — Sijk,i)‘j‘i‘fk =0



0.2 1
A101
0.8} -
0.14
0.16f 4
0.12
0.14f 1
0.1
0.12f ]
0.1 R 0.08
0.08f -
0.06
0.06 1
0.04
0.04} J
0.02
0.02f -
o J 0
v 4.41x107"
0 002 004 006 008 01 012 014 016 018 0.2
0.2t R
A0374
0.18 1
0.35
0.16 4
0.3
0.14f -
0.25
0.12 B
01t 1 0.2
0.08} -
0.15
0.06 4
0.1
0.04f E
0.05
0.02f ]
of J 0
v 1.22x1077
) .

0 002 004 006 0.08 0.1 012 014 016 018 0.2

Fig. 14. Effect of the presence of holes on deformation energy field in compression (top) and bending (bottom).

Classical derivations lead to the identification of the external forces versus Cauchy stress and hyperstress (the double bracket
[[.] stands for the jump of the enclosed quantity) as

Pe = n;j(0jk — Sij ;) — Dj(niSijk) + (D) njniSi
Ry = nin;S;jx

E, = Sm€mij [[nlnjsiﬂ‘]]

with e,;; the components of the permutation tensor, and s, the components of the surface vector. The occurrence of these
forces involving contributions which are specific to second gradient continua leads to specific features like boundary layers and
concentrated forces, as will be exemplified in the sequel thanks to numerical simulations.

Fig. 9 shows the deformation energy field relative to a combined bending and compression test. One can observe the onset
of three boundary layers, the major of which involves a series of sub-layers characterized by an increasing level of deformation
energy (pictured in red, yellow, green and cyan in Fig. 9), while the third one with lowest intensity cuts the first boundary layer
being concentrated in a inextensible fiber orthogonal to the most deformed ones: this situation is better illustrated by Fig. 10.



The previous integrals building up the work of external forces have to be interpreted in the present 2D context (V denotes the
pantograph domain, a surface, S a line and C a domain edge); the surface tractions and double tractions are distributed within the
observed boundary layers (Figs. 9 and 10), while the concentrated force observed at the top right corner of the tested specimen
(Figs. 9 and 10) corresponds to quantity E; expressed in the last expression.

Fig. 11 shows 3D plots of the deformation energy in the same in-plane bending and compression test: it is intended to depict
the onset of concentrated contact forces. Fig. 12 shows the nearly piecewise constant pattern of the shear deformation field:
one can identify four shear regions (orange, blue and red), separated by the corresponding transition zones with, once more, the
regularizing effect of second gradient energy.

Finally, in Figs. 13 and 14, the effect of the presence of two symmetric holes is shown. In Fig. 13, a sort of deformation energy
fringes is obtained together with the “dispersive” effect determined by the presence of holes, in the case of pure extension. In the
case of compression and bending, the presence of holes exacerbates the intensity of the deformation energy in transition zones
and the intensity of concentrated forces (Fig. 14).

5. Conclusion

In the present work, we have shown that the linearized homogenized model for the pantographic lattice described at micro-
level by Fig. 1 must necessarily be a second gradient continuum. Some numerical simulations are finally shown, to illustrate
some peculiarities of the obtained continuum models. The developed homogenization technique is general and is capable of
treating any lattice, periodical or not. It provides the full set of first and second gradient effective moduli accounting for the
full anisotropy of the effective continuum. For more complex structures, the asymptotic homogenization is quite efficient (in
comparison, analytical methods become quite complicated and inapplicable).

If we consider the total expression of the rotation (5) including the gradient of the rotation, the energy density w := W/S takes
now the more general form

1 a? %2v; 0%y 2 0%y, 0%y 2
W_(2Kf+41<c>|:<ax2+3y2>i| + W‘FT}}Z

This constitutes an extension of previous Bernoulli beam model towards a second gradient continuum in which the fibers
curvatures related to second order displacement gradients are present: as underlying beams forming the pantographic lattice
are Euler beams, these gradients determine the rotation of beams fibers. In this sense, the considered model supplies an example
of a constrained Cosserat continuum.

The well-posedness results available in the literature do not apply immediately to the energy we have determined via our
homogenization procedure: it seems that some investigations about its mathematical nature may be needed.

However, the numerical simulations presented in this paper show that there is a reasonable large set of boundary conditions
for which a suitable formulated integration scheme actually do converge. Few additional comments are here in order about
the results of our simulations: the model is capable to describe (i) the onset of zones where deformation and deformation
gradients are concentrated; (ii) the establishment of different segregated deformation zones (or phases); and the global effect of
the presence of holes on the overall deformation pattern. All these features indicate that the modeling effort presented in this
paper deserve further efforts.

One has to remark that the model which we obtained here via a micro-macro identification procedure has been heuristically
introduced by Rivlin and Pipkin, already in the decades 1950-1960: for a review and a reformulation of the results of last authors,
the reader shall refer to dell’'lsola et al. (2015c). Although the assumption of inextensible fibers has not a general validity, the
results obtained in Section 4 are an important step towards the understanding of the mechanical behavior of the considered
systems: we are confident that the generalization to the case of extensible, but stiff fibers will be a relatively easy task.

There is no unique way to generate second order grade continuum models from such discrete homogenization of lattices, since
the effective continuum is clearly dependent on the initial static model at the beam level. Another alternative to the complete
Bernoulli beam model which is more appropriate for bending dominated lattices (like the pantograph) would be to consider
Bernoulli kinematics without rotation (appropriate for tension dominated lattices). Such an alternative is clearly of high interest
and will be investigated in future contributions.

The consideration of the large displacements response in such pantographic structures constitutes a natural extension of
the present work. It will not be possible, in general, to determine a closed form expression of the homogenized energy for the
equivalent continuum; nevertheless, the determination via numerical computations of the effective stiffness coefficients will be
helpful, and shall constitute an objective for future investigations. Moreover, in the more general context of large displacements
and deformations of thin and light structures, may be of great interest further investigations about external non-conservative
interactions as studied in Carassale, Freda, and Marré-Brunenghi (2013), Nguyen, Freda, Solari, and Tubino (2015), Pagnini (2010),
Solari, Pagnini, and Piccardo (1997). These phenomena, involving stability issues, can be useful addressed using perturbation
methods as e.g. described in Luongo (1992, 2001).

Appendix: Transition from curvilinear to Cartesian coordinates

It holds for the first beam
M |; =cosf v —sinf uy (A1)



Fig. A.1. Change of basis.

Similarly, one can write for the second beam
n2|9 =cos B v; +sinB uy (A2)

This entails the first and second derivatives

ol _g~on (A3)
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where s represents the curvilinear coordinate along any beam element, N € {1, 2, 3} indicates the space dimension; in the present
2D context, N = 2, thus
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The trigonometric factors cos 61, sin 61, cos 05, sin 0, therein are respectively the components of the periodicity vectors, by
which one can generate the whole lattice, denoted Y; = [g?;g: lgi j) and Yp = [i?;gj](i,j)' as shown in Fig. A.1.

In the present situation, one has Y; = [E?;g; —olijandYs = [E?rfgzz - ?](,-_j).

Inserting the present values of the trigonometric factors cos 04, sin 8, cos 6, and sin 05, one obtains the transformation of
the derivatives:
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One next substitutes factors ni. by their expressions (Eq. (1)) and (Eq. (2)):
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Thus, the energy writes:
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