Bounds to the normal for proximity region graphs

Abstract : In a proximity region graph G in R d , two distinct points x, y of a point process µ are connected when the 'forbidden region' S(x, y) these points determine has empty intersection with µ. The Gabriel graph, where S(x, y) is the open disc with diameter the line segment connecting x and y, is one canonical example. Under broad conditions on the process µ and regions S(x, y), bounds on the Kolmogorov and Wasserstein distances to the normal are produced for functionals of G, including the total number of edges, and total length.
Type de document :
Article dans une revue
Stochastic Processes and their Applications, Elsevier, 2018, 128 (4), pp.1208-1237. 〈https://www.sciencedirect.com/science/article/pii/S0304414917301709?via%3Dihub〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01223503
Contributeur : Raphael Lachieze-Rey <>
Soumis le : lundi 2 novembre 2015 - 18:32:03
Dernière modification le : lundi 30 juillet 2018 - 18:39:53
Document(s) archivé(s) le : mercredi 3 février 2016 - 11:04:53

Fichiers

gbg.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01223503, version 1
  • ARXIV : 1510.09188

Collections

Citation

Larry Goldstein, Tobias Johnson, Raphaël Lachièze-Rey. Bounds to the normal for proximity region graphs. Stochastic Processes and their Applications, Elsevier, 2018, 128 (4), pp.1208-1237. 〈https://www.sciencedirect.com/science/article/pii/S0304414917301709?via%3Dihub〉. 〈hal-01223503〉

Partager

Métriques

Consultations de la notice

118

Téléchargements de fichiers

98