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ABSTRACT: A scenario is proposed to describe the capture
of a spherical particle around a cylindrical pore. This geometry,
“ideal” as far as the problem of particle capture on a filtration
membrane is concerned, is clearly relevant in view of the pore-
scale geometry of nucleopore or microsieve filtration
membranes, and also of some microfluidic systems used to
perform fluid−particle separation. The present scenario
consists of three successive steps: particle deposition on the
membrane away from the pore, subsequent reentrainment of
some of the deposited particles by rolling on the membrane
surface, and final arrest by a stabilizing van der Waals torque
when the particle rolls over the pore edge. A modeling of these three steps requires the hydrodynamic and physicochemical
particle−membrane interactions to be detailed close to the singular pore edge region and raises questions concerning the role of
particle surface roughness. The relevance and robustness of such of a scenario for rough micrometer-sized latex particles is
emphasized and comparisons are made with existing experimental data.

1. INTRODUCTION

Particle capture by a collecting surface is a ubiquitous
phenomenon, with applications covering an extremely broad
spectrum, from environmental flow problems (e.g., collection of
aerosol particles by rain droplets1 or plankton capture by
subaquatic tentacular feeders2) to industrial applications (e.g.,
filtration as a fluid cleaning process3). In the context of
filtration, particle capture on porous filtration membranes is
known to occur even when the radius of the particle, a, is
smaller than the pore radius, rp. Various structures can then be
observed on the surface of filtration devices, from dendrites to
arches “bridging” the pore openings, depending on the
physicochemical and hydrodynamic conditions of the filtration
process.4−6 Several scenarios have been proposed to describe
pore bridging, which can ultimately lead to complete pore
clogging. Some authors invoke the instantaneous creation of a
bridge due to the converging flow (hydrodynamic bridging)7,8

while others describe its progressive build up by successive
particle depositions.4,9,10 The deposition of the very first
particle close to the pore is an essential step in the latter
scenario of pore clogging, and will impact the subsequent
particle plug structure. For this reason, the specific case of the
capture of a single spherical particle close to a single cylindrical
opening in a flat surface, in a situation where there is no length
scale separation between the particle and opening sizes, is
relevant for filtration applications. Surprisingly, studies of this
situation are rare, certainly because this apparently simple

geometry brings its share of problems as far as the description
of the particle−membrane hydrodynamic and physicochemical
interactions are concerned, particularly in the singular pore
edge region.10 As a matter of fact, the spherical particle/
cylindrical pore geometry also closely matches that encoun-
tered in microsieve membranes, that is, microfabricated
membranes consisting of a thin (O(μm)) silicon sheet
patterned by regular arrays of cylindrical holes, the radius of
which is typically in the range O(0.1−10 μm) . To a lesser
extent, this geometry is also similar to configurations found in
some microfluidic devices where particles moving in a “large”
microchannel are flow-driven through a set of smaller channels
and possibly captured at their entrance.4,9,11,12

The problem of predicting particle capture location on a
microsieve has been addressed recently by Lin et al.10 Their
experimental results highlighted the existence of two well-
separated, preferential locations for particle capture around a
cylindrical pore: an “outer” capture position shifted from the
pore edge by a fraction of the particle radius and an “inner”
capture position with the contact point on the pore edge and
the particle center of mass well above the pore opening. These
authors attempted to explain these two distinct capture
positions with a purely hydrodynamic approach based on an
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accurate description of the trajectory of a particle in the flow
and an effective distance for capture criterion intended to
model the effects of surface forces: particles passing at a
distance smaller than an arbitrary value ϵ from the membrane
were instantaneously and definitively captured at the position
where the criterion was satisfied. They observed that unrealisti-
cally large values of ϵ (compared to the range of attractive
surface forces) had to be imposed to obtain two distinct capture
positions. This conclusion highlighted the need for more
elaborate modeling of the particle capture mechanism.
The aim of the present Article is to provide such a modeling

strategy by introducing explicit calculations of the van der
Waals (vdW) forces near the microsieve, and, in particular, near
the pore edge, while retaining Lin et al.’s good description of
hydrodynamic interactions. It turns out that explicitely
accounting for vdW forces alone in the dynamics of suspended
particles is not sufficient for two preferential positions for
particle capture to be obtained and that particle rolling on the
membrane surface has to be taken into account. These
ingredients lead to the simplest three-step scenario giving
satisfactory predictions. During the first step, suspended
particles are transported toward the microsieve by the flow,
with significant influence of both hydrodynamic and vdW
particle−membrane interactions. If a particle follows a
trajectory leading to contact with the membrane, then, once
deposited, it will experience both a hydrodynamic torque, Γh,
tending to sweep it toward the pore and a resistive torque, Γa,
due to adhesion forces. If Γh overcomes Γa, the particle starts a
rolling phase. This is the second step of the scenario. During
the third and last step, every rolling particle passes over the
pore edge and experiences a strong resistive vdW torque, Γe,
able to arrest the particle with its center of mass above the pore
opening. This torque is generated by the asymmetry of the
particle−membrane vdW interaction when the particle is above
the pore edge.
The modeling techniques and assumptions associated with

each of the three steps are presented in section 2. The results
obtained with the proposed scenario are presented and
discussed in section 3. Although the article is mainly based
on the hydrodynamic and surface interaction parameters of Lin
et al.’s study, some elements are also provided to show that this
three-step scenario is quite generic and relevant for a broader
range of parameters.

2. MODEL
Computing the trajectory of a particle to its final capture location
involves both hydrodynamic and surface interactions. Before going
into the details of their modeling, the relevant particle and membrane
properties are recalled briefly.
2.1. System. In this paper, we will consider the parameters of the

experiments by Lin et al.,10 where latex particles suspended in water
(dynamic viscosity μf = 10−3 kg m−1 s−1 and mass density ρf = 1 g
cm−3) were filtered through a silicon-nitride coated microsieve with
pores of radius rp = 5 μm.
The latex particles have a radius a ≃ 2.5 μm and a mass density ρp =

1.05 g cm−3. They are known to be covered with a layer of polymer
chains which is typically a few nanometer thick, giving the particles a
rough character.13,14 Scanning electron microscopy (SEM) and atomic
force microscopy (AFM) measurements have shown that they are also
covered with asperities of much larger sizes. Considine et al.15 reported
asperities with sizes a′ in the range 8−20 nm for 6 μm diameter
surfactant-free sulfate latex particles similar to the ones considered
here. Assuming the asperities to be homogeneously distributed over
the particle surface, the typical distance, h, between two asperities
scales as a′/S1/2, where the fractional surface coverage by asperities S

has been estimated to be around a few percent.16 In the following, we
will therefore consider h ≃ 10a′. The asperities will be modeled as
hemispherical bumps of height a′ described by a normal distribution
with mean value μ = 15 nm and standard deviation σ = 2 nm, evenly
distributed with a spacing h = 150 nm, consistent with measurements
of Considine et al.15 and Suresh and Walz.16

2.2. van der Waals Interactions. In the experimental study by
Lin et al., weak particle surface charge and insensitivity of the results to
pH and salinity of the suspending fluid were reported, which suggests
that electrostatic effects were negligible. The attractive vdW forces are
then the key to describing particle capture in the present system.

The Hamaker additivity hypothesis is adopted throughout this work
since the geometry would render other approaches intractable. A
Hamaker constant H = 3.7 × 10−20 J for the polystyrene-water-silicon
nitride system is computed with the approximate relation (11.13) of
Israelachvili,17 from the values for the optical indexes and relative
permittivities of each of these three materials.

2.2.1. VdW Force Exerted on a Particle Suspended in the Flow.
The vdW interaction between a rough particle and the smooth
membrane surface (the subnanometric roughness of the silicon surface
will be neglected) can be written as the sum of two terms: the
contribution of the smooth spherical core of the particle of radius a
and the contribution from all the hemispherical bumps. As will be
proved a posteriori, the contribution of the asperities can safely be
neglected during the period of time before deposition of the particle.
Particles will therefore be modeled as smooth spheres of radius a
during step 1. The problem is, however, not trivial for the singular pore
edge/spherical particle geometry of the present study, so the vdW
interaction has been computed numerically for a detailed set of
locations above the membrane and pore, and on the pore edge.

Precise numerical evaluation of the vdW force including retardation
effects would require daunting numerical efforts even for simple
geometries,18 and is not applicable to the present one. If Hamaker’s
additivity hypothesis is invoked, the problem is greatly simplified. In
this framework, the pairwise interaction force exerted between every
pair of atoms of both solids is summed, neglecting any many-body
interactions. This approximation usually gives results within 10−20%
of the exact value. The pairwise interaction energy between two atoms
is E = −β/l6, where β is the Lifschitz-van der Waals energy constant
and l is the distance between the atoms. The pairwise force exerted on
an atom at position A by an atom located at position B is fB→A = −∇E
= 6βl−8l where l = AB. The force density exerted at some point x in the
particle by the entire membrane is

∫π
= H

l
dVf x l( )

6 1
V2 8 2

2 (1)

where H = βQ1Q2π
2 is the effective Hamaker constant, Qi is the

number of atoms per unit volume in the solid i, the index 1
(respectively 2) refers to the particle (respectively the membrane), l =
x2 − x, and x2 is the point scanning the volume of the membrane V2.
The total force exerted by the membrane on the particle is

∫= VF f x( ) d
V

a 1 1
1 (2)

The computation of the vdW force with eq 2 requires the evaluation of
a six-dimensional integral of a very steep function. This is a difficult
problem both analytically and numerically. Some authors have reduced
the number of integration dimensions by converting the volume
integrals into surface integrals. This is done, for example, in the surface
formulation method19,20 and in the surface element integration
method.21,22

To the best of the authors’ knowledge, the interaction force
between a sphere and a membrane perforated by a cylindrical pore has
never been computed accurately when the sphere is outside the pore,
although it has been evaluated approximately for a sphere near a
rounded pore in Bowen et al.23 and has been evaluated accurately with
the definition 2 for a sphere inside a cylindrical pore.24 In the present
work, the three integrals on the volume of the sphere are performed
analytically and only the three integrals on the microsieve volume
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remain. The latter integrals are evaluated with a standard second order
quadrature on an adaptive octree mesh. The microsieve volume is
iteratively split into small cubes only in regions where the integrand is
the largest, to increase the numerical accuracy without increasing the
CPU load too much. The force computation is performed in several
passes, with the mesh being refined automatically between two
successive passes. The process is stopped when the value of the force
does not vary by more than 2−3% between two passes. More details
can be found in Hallez.25

A continuous model of the vdW force components Fa,R and Fa,Z for
any location along the particle trajectory was obtained by using
semianalytical expressions fitting the discrete numerical values
obtained from eq 2. This model is an ad hoc modification of the
exact expressions for Fa,R and Fa,Z in the limit a/rp → 0. The details are
given in the Supporting Information.
2.2.2. VdW Torque Exerted on a Particle Deposited Far from the

Pore Edge. During the rolling and final arrest steps, the details of the
particle surface play a major role by providing the only means to
counterbalance the hydrodynamic torque Γh, which tends to sweep the
particles from the surface. To compute the adhesion torque, Γa, far
from the pore edge, the membrane surface is considered to be smooth
and flat. The spherical particle located at a radial position R is assumed
to lie on two asperities located at positions R ± h/2 and at a contact
distance dc to the membrane surface (for smooth surfaces in contact,
Born repulsion is the reason why the distance of closest approach dc is
nonzero and in this case dc is typically considered to be ≈0.4 nm). The
norm of the adhesion torque around the contact point of the
downstream asperity is then:

Γ =
′ − + − +

+ ′h Ha

a a a h d
h

Ha
d2 6[ /4 ] 6a 2 2

c
2

c
2

(3)

where the first term is the torque due to the adhesion force exerted on
the spherical particle core shifted from the surface by the asperities and
the second term is the torque due to the upstream asperity in contact
with the membrane, both terms being computed with the Derjaguin
approximation (contributions of additional asperities located at R ± 3
h/2 do not significantly modify the values obtained from eq 3). Such a
description is quite generic and is the building block of several
adhesion models (e.g., Rumpf26 and Rabinovitch et al.27). The
roughness distribution and the model of hemispherical asperities used
here can be criticized but it has the merit of involving only three
physical parameters: h, a′, and dc, with experimental observations
giving reasonable ranges of values for two of them (h and a′). More
sophisticated models exist, with non-Gaussian distributions, several
length scales, flattened asperities, or including several asperities in
contact simultaneously,28−30 but they all involve additional parameters
which are unknown and would have to be fitted somehow. Therefore,
no insight would be gained by using these models here, and we restrict
ourselves to the simple model eq 3, showing it to be sufficient to
reproduce the experimental observations.
2.2.3. VdW Torque Exerted on a Particle Deposited on the Pore

Edge. A particle will be located at least temporarily on the pore edge
either if it has rolled on the membrane toward the pore or if it first
touched the membrane directly on the pore edge. In both cases, it
experiences a vdW torque opposing the hydrodynamic torque Γh. In
fact, the part of the particle remaining above the membrane is still
attracted by the membrane whereas the part of the particle hanging
above the pore lacks this attraction. This imbalance creates a localized,
negative stabilizing adhesion torque of norm Γe. To our knowledge,
such an important effect that is expected to appear close to any
geometrical singularity has never been highlighted before. Similarly to
the adhesion torque Γa, Γe is expected to depend critically on both the
particle and membrane surface properties (physicochemical effects in
play, roughness of surfaces, tiny details of the pore edge geometry,
etc.). The contribution of the spherical particle core to the torque
around the contact point between the sphere and the pore edge E,
Γe,core, can be readily obtained (once the vdW interaction has been
computed numerically as mentioned before) using the simple relation

Γ = ×EG Fe,core a (4)

as shown in the Supporting Information and where the point G locates
the particle center of mass (see Figure 1). The effect of an asperity

touching the membrane upstream at a distance h′ while the particle is
on the pore edge is to add a torque contribution h′Ha′/6dc2 to Γe such
that

∑ΓΓ = | | + ′
′

=

h
Ha

d6i

N

R i
i

e e,core
1

,
c

2
(5)

where we consider N asperities in contact with the membrane, of size
ai′ and located at positions such that h′R,i is the distance between point
E and the contact point of the asperity projected on the vertical plane
(O, eR, eZ) as defined in Figure 1. Note that the contributions of other
asperities not in contact with the membrane can be neglected due to
the dc

−2 dependence of the torque they generate.
2.3. Hydrodynamics. Hydrodynamics come into play as a

transport mechanism when particles are suspended in the fluid (step
1) and as a source of shear stress when particles touch the membrane
(steps 2 and 3). A typical fluid velocity V0 = 1.2 × 10−4 m s−1 can be
obtained from the fluid flow rate through a single pore of the
microsieve reported by Lin et al. Hydrodynamics and the particle
trajectory are determined by the Reynolds and Stokes numbers. The
particle Stokes number is the ratio of the particle viscous relaxation
time, a2ρp/9μf, to a typical flow time scale rp/V0 and is O(10−5). The
particle Reynolds number Rep = ρfV0a/μf is O(10−4) and the flow
Reynolds number Ref = ρfV0rp/μf is of the same order of magnitude.
The fluid and particle motion are thus both noninertial, and the fluid
flow obeys the Stokes equation.

2.3.1. Trajectory of a Suspended Particle. The first step of the
present scenario of particle capture corresponds to the hydrodynamic
transport of the particle until it first touches the membrane surface. In
this study, a particle trajectory approach is used to describe the particle
motion in the axisymmetrical flow cell depicted in Figure 1, which
models the flow around a single pore in the membrane surface. This
approach is aimed at obtaining probability distribution functions for
particle deposition location as a function of the distance, R, to the pore
center. Here, we will neglect the particle roughness effects and this
assumption will be validated a posteriori by the results presented in
subsection 3.1.

Figure 1. Particle approaching a cylindrical orifice located at the
bottom of an axisymmetrical flow cell of radius R0. The orthogonal
coordinate system (eR, eZ, eR ∧ eZ) is centered on point O. The
coordinate d is the distance between the particle center of mass and
the membrane. The coordinate s is defined along the iso-d contour
shown as a solid line by s = −d(θ − π/2) for R < rp, and s = R − rp for
R ≥ rp. Points E and G locate the pore upper edge (R = rp, Z = 0) and
the particle center of mass, respectively.
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For the low-Reynolds-number flow considered, a major difficulty
lies in modeling the hydrodynamic interaction between the particle
and the membrane surface. This was thoroughly studied for the
geometry considered here by Wang et al.31 and Kao et al.32 This point
was tackled by decomposing the problem into three distinct zero-
Reynolds-number flow problems: the pure translation (i) or rotation
(ii) of a spherical particle in a quiescent fluid, and the imposed flow at
infinity around a fixed particle (iii). Enhanced drag coefficients were
introduced for each of these three cases, for any particle location, and
summed to obtain the global drag force on the particle. These drag
coefficients are “enhanced” in that they differ from the classical Stokes
expression because they take the hydrodynamic interaction between
the particle and the membrane into account. In the limit Ref ≪ 1 and
St ≪ 1, the trajectory equation, modified to explicitly consider
particle−membrane physicochemical interactions, reads:

=
+

+ Ω +
Z
R

F
F

F V N F

F V a F N F
d
d

R

Z

Z Z Z

R R R R

t

t

s
adh a,

s r
adh a, (6)

All the terms appearing in this equation are dimensionless. The Fj
i

terms are the enhanced drag coefficients and are functions of the
particle location. The superscript refers to which of the three basic
flows is considered (t for translation, r for rotation, and s for the flow
past the fixed particle) and the subscript to the direction considered (Z
or R, see Figure 1). The term Ω denotes the sphere angular velocity
and (VR, VZ) the fluid velocity field. Additional information on these
coefficients is given as Supporting Information. The Fa,Z and Fa,R terms
are the Z and R components of the attractive vdW force computed
numerically as described in subsection 2.2.1. The dimensionless ratio
between the attractive vdW force and the particle−membrane
hydrodynamic interaction appearing in the trajectory equation is
called the adhesion number: Nadh = H/6πμfV0a

2, with its value being
2.6 × 10−3 for the parameters of Lin et al. considered here. The
particle trajectory eq 6 was integrated numerically using Runge−Kutta
solvers implemented in Matlab.
2.3.2. Particle in Contact with the Membrane. Whenever a

particle is in contact with the membrane or the pore edge, it is subject
both to a hydrodynamic torque Γh due to the converging flow toward
the pore opening and to an adhesion torque (Γa or Γe) resisting it. To
obtain reliable values of the destabilizing hydrodynamic torque, the
flow field around a fixed sphere of radius a deposited close to the pore
edge was first obtained by direct numerical simulations. Then, the
overall torque Γh was obtained by numerical integration of the viscous
stress tensor over the particle surface. Such numerical computations
cannot be avoided in the situation of interest here because of the
complex flow geometry and the lack of length scale separation between
the particle size and the pore diameter: close to the pore edge, both
shear rates dVR/dZ and dVZ/dR may provoke particle rolling and they
vary over length scales comparable to or smaller than the particle size.
Details on these numerical computations and the validation tests are
given in the Supporting Information. The presence of the asperities on
the surface of the particle was neglected in the aforementioned
simulations. This is justified as follows: the hydrodynamic torque
exerted on the spherical core (and around the contact point) is Γh,core
∝ γȧ3, while the contribution of all the N asperities on the surface is
Γh,asp ∝ Nγȧa′2, where γ ̇ is some shear rate scale. Γh,asp/Γh,core is
therefore O(N(a′/a)2) ≡ O(S), where the surface coverage of the
asperities S is O(10−2) in the present study as discussed in subsection
2.1.

3. RESULTS AND DISCUSSION
3.1. Particle Deposition. The particles were all launched at

a distance Z/R0 = 2 above the membrane surface, with varying
radial positions Ri. Figure 2a shows a typical example of a
trajectory computed in the limiting case Nadh = 0. As expected
for a spherical particle subject to hydrodynamic interactions
only, no deposition occurs due to a lubrication effect: the
particle skims over the membrane surface before ultimately
entering the pore. This is observed for all computed trajectories

in that case. In Figure 2b, the same purely hydrodynamic
trajectory is shown (crosses), along with a trajectory starting at
the same Ri but with Nadh = 2.6 × 10−3 (dots). This trajectory
deviates from the purely hydrodynamic one and finally “falls”
onto the membrane as the normal component of the attractive
vdW force diverges and overcomes the repulsive hydrodynamic
interaction. This happens as soon as Z/R0 < 0.253 here, that is,
when the particle−membrane distance becomes smaller than
about 30 nm (see Figure 2b). This behavior explains why
neglecting the particle roughness is an acceptable assumption
during the particle deposition stage. Surface roughness is
known to make a contribution to particle−membrane hydro-
dynamic interaction only when a separation distance much
smaller than the roughness length scale a′ is reached,33 whereas,
here, a′ is of the order of 15 nm. As far as the vdW interaction
is concerned, the few bumps that are the closest to the
membrane will determine the order of magnitude of the
contribution of asperities to the vdW force. Denoting the
spherical core-membrane distance by d, the latter contribution
is O(Ha′/(d − a′)2) while the contribution of the spherical core
is O(Ha/d2), so the contribution of asperities is non-negligible
only when d is smaller than 17 nm for the values of a and a′
considered here. To conclude, the contributions of the
asperities to both the hydrodynamic and vdW forces become
significant only when the trajectory of the smooth particle is
already quite perpendicular to the membrane. Thus, the
presence of asperities on the particle does not modify
significantly the deposition locations found in the present
trajectory analysis for a smooth sphere.

Figure 2. (a) Purely hydrodynamic trajectory (Nadh = 0, Ri = 0.954R0)
entering the pore. The particle is shown at two locations along the
trajectory. The pore edge is located at (R/R0 = 0.5, Z/R0 = 0); see also
Figure 1. (b) Crosses, trajectory obtained with Nadh = 0 and Ri =
0.954R0; dots, trajectory obtained with Nadh = 2.6 × 10−3 and Ri =
0.954R0. The solid line at Z/R0 = 0.25 shows the location reached by a
particle center of mass when deposition occurs.
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We now turn to the analysis of particle trajectories leading to
deposition, focusing on the location on the membrane where
particle deposition occurs. From the knowledge of a discrete set
of particle trajectories, a probability distribution function (pdf)
for the radial deposition locations of particles, fd(R), can be
computed. Here, fd(R) is normalized such that fd(R) dR is the
fraction of the total number of deposited particles that deposit
between R and R + dR. The pdf fd(R) is displayed in Figure 3

(crosses) for Nadh = 2.6 × 10−3. The pdf shows a well-defined
single maximum around R ≈ 5.1 μm and does not exhibit the
characteristic two-peaks shape of the experimental pdfs
reported in Lin et al. This observation is robust as far as the
value of the adhesion number is concerned (see the Supporting
Information).
The present trajectory analysis predicts the locations at

which particles first touch the membrane. This is not always
their final capture position as they may still be able to start a
rolling phase if the local shear flow is strong enough to
overcome adhesion forces. This is the focus of the next section.
3.2. Particle Reentrainment. The second step in the

present capture mechanism is the triggering of the rolling phase
for some of the particles deposited as described in the previous
section. For micrometer-sized particles, rolling is the main
reentrainment mechanism, as will be discussed later. The
occurrence of rolling is determined by the balance between a
positive hydrodynamic torque Γh acting on the particle, which
tends to trigger rolling, and a negative stabilizing torque due to
adhesion forces, with norm Γa. Rolling of a deposited particle
will occur if Γh > Γa.
Dimensionless torque values Γh/(μfV0R0

2) obtained from the
direct numerical simulations mentioned in subsection 2.3.2 are
shown as a function of s as squares in Figure 4. As expected, the
torque value increases as s decreases, i.e. when the particle is
progressively positioned closer to the pore edge, with its center
of mass being located above the membrane surface (s in the
range [0 1]). It continues to increase with θ when the particle
center of mass is located above the pore opening while the
particle−membrane distance remains fixed (s in the range [−1
0]; see Figure 1), finally having a roughly 1 order of magnitude
larger value than the value computed at s = 0.8. Typical values
for Γh are thus in the range ≈ O(10−17 − 10−16) N m.
The probability of rolling at a radial position R is P(Γa <

Γh(R)) = P(a′ < ac′(R)) where ac′(R) is the critical asperity size
a′ such that Γa = Γh(R) with Γa given by relation 3. The latter

equality involves a nonlinear relation that has to be solved
numerically for each position R. When a′ is normally
distributed, with mean value μ and standard deviation σ, the
probability of rolling is the cumulative distribution function:

μ
σ

= ′ < ′

= +
′ −

√⎪ ⎪
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⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥
⎫
⎬
⎭

P R P a a R

a R

( ) ( ( ))

1
2

1 erf
( )

2

rolling c

c

(7)

The pdf for location of particles that remain deposited on the
membrane fc(R), that is, particles unable to start the rolling
phase, is then:

= −f R P R f R( ) [1 ( )] ( )c rolling d (8)

It is represented as squares in Figure 3. The only parameter that
was adjusted is dc. It was set to 0.68 nm so that fc(R) exhibited a
maximum located around R = 6 μm, as reported for the outer
capture position by Lin et al. Although slightly larger than usual
values of the contact distance between solid surfaces, this value
is physically sound and may be attributed to the hairy structure
of latex particles at very small scale, the layer of polymer chains
compressed between the asperity and the surface preventing
closer contact. This value will be used throughout the article.
These results support the idea that some of the particles roll

after deposition, because the hydrodynamic torque at their
deposition location overcomes the adhesion torque. Particles
that deposit close to the pore are more likely to start rolling,
and consequently, the maximum of fc(R) is shifted further away
from the pore edge compared to the maximum of fd(R). A
similar shape for fc(R) is also obtained for values of μ and dc
within ±15% of the values considered here. The shift of the
most probable capture position away from the pore entrance
when the possibility of rolling after particle deposition is
considered is thus a rather robust observation that is not
expected to depend significantly on the details of the present

Figure 3. Probability distribution function for radial deposition
locations of particles fd(R) (crosses), normalized so that the area below
fd(R) is one, and for radial locations of particles that do not roll on the
surface fc(R) (squares).

Figure 4. Hydrodynamic torque Γh and van der Waals torque Γe close
to the pore edge as a function of s. (a) Squares, Γh; (b) solid line, Γe
for a smooth particle; (c) dashed line, Γe for a particle passing the pore
edge while rolling on a 3 nm asperity; (d) dotted line, Γe for a particle
passing the pore edge while rolling on a 15 nm asperity; (e) dash-
dotted line, Γe for the case shown on the leftmost sketch of Figure 5,
with a 25 nm asperity (data restricted to s < 0 only); (f) solid gray line,
Γa computed using eq 3, taking a′ = 15 nm (not normally distributed
here) and h = 10 a′. All the torque values have been made
dimensionless by dividing by μfV0R0

2 = 1.2 × 10−17 Nm, where V0 =
1.2 × 10−4 ms−1 is the fluid velocity used in the DNS and R0= 10 μm
the flow cell radius. The contact distance dc is 0.68 nm for curves (b)−
(e).
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modeling strategy and that is often overlooked in Lagrangian
simulations of particle flows.
Such a competition between adhesion and hydrodynamic

shear is also observed in “shear stress chambers” designed to
study the resuspension of deposited particles as a function of a
well controlled imposed hydrodynamic wall shear stress.34,35

Interestingly, using experimental data from Lorthois et al.35 for
2 μm diameter bare sulfate latex particles initially deposited on
a glass plate in such a device (very similar to the experimental
case of Lin et al.), it is possible to estimate the adhesion torque
that would be obtained for 5 μm diameter particles. This
requires the use of the scaling law of Γa with the particle size a,
Γa ∼ a2, obtained from the second term of the right-hand side
of eq 3, which dominates the first one for the typical values of
a′, h, and dc considered here. The order of magnitude then
obtained for the adhesion torque, ≈O(10−17) N m, is similar to
the one obtained numerically for Γh. This strengthens the
conclusion above about the likelihood of an heterogeneous
triggering of particle rolling, obtained from the adhesion model
used in the present study with realistic constitutive parameters.
Note that the present model only relies on a criterion to

determine whether a deposited particle will be set in motion or
not. A precise description of the subsequent particle motion
along the membrane surface is neither within the scope of this
paper nor necessary. However, for the following step of the
scenario to be relevant, we need to check that a rolling particle
does not lift off the membrane. The inertial lift force exerted on
a moving rough particle in contact with a plane wall in a simple
shear flow, made dimensionless by the particle weight corrected
for buoyancy, scales as Re2/Res where Re = γ ̇ a2/ν is a Reynolds
number based on the shear rate γ ̇ and Res = Usa/ν is a Reynolds
number based on the particle settling velocity Us.

36,37 Lift
effects on millimeter-size particles were observed experimen-
tally for shear rate such that Re2/Res > 1.37 In the present case,
lift would have to balance a particle−membrane adhesion force,
which is much larger than the particle weight for micrometer-
sized particles. Estimating the adhesion force due to the core of
the particle only as Ha/a′2 provides a lower estimate for the
adhesion force as it comes down to neglecting the additional
contribution of roughness elements. Following the approach of
Leighton and co-workers,36,37 the lift force, made dimensionless
by the adhesion force, is found to scale as (Re/Nadh) × (a′/a)2,
taking γ ̇ ∼ V0/a. This ratio is typically O(10−5) in the present
study: vdW interactions are sufficiently strong to prevent any
lift effect for micrometer-sized particles, so that rolling particles
do not lift off the membrane.
3.3. Particle Capture. The third step in the present capture

mechanism concerns only particles that are reentrained by the
flow after deposition, by rolling on the membrane surface.
Again, the specific geometry of the problem comes into play.
The main idea is that a particle rolling on the surface and
approaching the pore edge will experience a localized stabilizing
torque of norm Γe when it reaches the edge. This is due to the
strong symmetry breaking in the vdW force distribution close
to the contact region. An inertialess particle will therefore be
captured on the pore edge, at the coordinate s for which Γe(s) =
Γh(s).
As a reference problem and to illustrate the physics involved,

we first consider the case of a nondeformed, smooth, spherical
particle rolling on a smooth surface. Values for Γe/(μfV0R0

2)
computed as described in subsection 2.2.3 are shown as a
function of s by the solid line in Figure 4. When s > 0.1, Γe is
negligible but a sudden increase is observed when the particle

comes close to the pore edge (s → 0). There is an increase in
torque values of 2 orders of magnitude between s = 0.1 (i.e., R
= 5.1 μm) and s = 0 (R = 5.0 μm) as the particle starts to “feel”
the symmetry breaking induced by the pore edge on the vdW
interactions. When s becomes negative, the decay in the torque
value is also very sharp: for s = −0.6 (corresponding to θ =
125°; see Figure 1), the torque value is 2 orders of magnitude
smaller than the typical destabilizing torque values Γh (Γe ≈
0.05 × μfV0R0

2). The maximal torque value obtained for s = 0
depends strongly on the particle−membrane distance, d,
considered. By varying d, it is found that, as soon as d is
smaller than a few nanometers, this maximum becomes larger
than the typical values computed for the hydrodynamic torque
(Γh/(μfV0R0

2) ≈ 3). This demonstrates that the phenomenon
of particle capture on a pore edge swept by a flow is quite
robust for typical microfluidics flow velocities.
Although the physical idea exposed above remains relevant

when a spherical particle covered with hemispherical asperities
is considered, the exact description is more complex as it
depends on the relative locations of the pore edge and the
closest roughness elements on the particle surface. For the sake
of conciseness and clarity, only two situations will be discussed.
The first is the case where the particle passes the pore edge
while rolling on an asperity (see the rightmost sketch on Figure
5). Then, both the particle and the asperity contribute to the

torque, the maximum of which remains localized around s = 0
as both the particle and asperity “feel” the dissymmetry due to
the pore edge. For an asperity radius smaller than about 30 nm,
the main contribution to the torque is due to the particle, the
small effect of an asperity being mainly to shift the particle away
from the surface. For an asperity radius smaller than 3 nm
(dashed line on Figure 4), the localized torque obtained
remains stronger than the hydrodynamic one, which causes the
inertialess particle to be captured around s = 0. For larger
asperities (e.g., dotted line on Figure 4 for a 15 nm asperity), Γe
is not strong enough to stop the particle from rolling into the
pore. Second, when no asperity is in contact with the pore edge
while the particle rolls over it, any detailed computation of Γe
requires a precisely prescribed geometry (relative position of
pore edge and of the closest asperities, with two examples being
provided on the two leftmost sketches of Figure 5). If some
asperities touch the membrane upstream of the pore edge,
particle capture at s < 0 locations is promoted by the last term
in relation 5. Considering some asperity positioned as depicted
on the leftmost sketch of Figure 5, the distance hR′ involved in
eq 5 is uniquely (although not explicitly) defined as a function
of s from simple geometrical considerations. It is rather
expected that at least two such asperities will be in contact with
the membrane since the presence of only one would lead to
particle rolling in the azimuthal direction until a second contact

Figure 5. Three examples of asperity configurations. Left: asperity
stabilizes the particle on the membrane. Middle: asperity destabilizes
the particle. Right: asperity shifts the particle from the membrane.
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point is reached. Besides, it is not very likely that a third
asperity is also exactly in, or close to, contact with the
membrane given that their spacing is O(10a′). The
contribution of such a third asperity is thus neglected, leading
to an approximate expression for the total stabilizing vdW
torque:

ΓΓ ≃ | | + ′ ′
s s h s

Ha
d

( ) ( ) 2 ( )
6Re e,core

c
2

(9)

The prediction 9 is depicted as a dash-dotted line for a large
asperity with a′ = 25 nm in Figure 4. The torque values
obtained are larger than hydrodynamic ones for pore/particle/
asperity configurations corresponding to angles θ up to 104°,
that is, for a particle center of mass located down to R ≃ 4 μm,
well above the pore opening. Detailing the exact rolling step to
such a final capture location is beyond the scope of this paper
but the previously computed example clearly shows that
particles may be finally captured with their center of mass
located well above the pore opening, especially if the particles
present some degree of surface roughness. Note, however, that
the strong vdW torque Γe,core of a smooth particle is in itself
sufficient to effectively arrest the particles on the pore edge for
the present hydrodynamic and physicochemical conditions.
Consequently, after this last step, the pdf for the radial

location of captured particles will exhibit two preferential
locations: an “outer” one due to particles that did not roll after
deposition (around R = 6 μm for the case shown in Figure 3)
and an “inner” one due to particles that rolled on the surface
after deposition and were finally captured close to the pore
edge by the stabilizing vdW torque Γe. It is important to note
that this population of captured particles will be supplemented
by the particles that deposited directly very close to the pore
edge and did not roll because of the existence of Γe. Therefore,
the proposed three-step scenario provides an explanation for
Lin et al.’s experimental observations where two such
preferential locations were reported (for 5.2 μm and also 2.1
μm diameter latex particles). Even if approximations have been
made to render the model tractable (expressions 3 and 9,
Hamaker additivity,...), the comments and arguments exposed
above suggest that improvements of the modeling would not
contradict this conclusion. Indeed, refining the contribution of
asperities in relation 3 might shift the position of the outer
capture position inward or outward, and the addition of
contributions of other asperities in relation 9 would only alter
the efficiency of capture at the inner position. Therefore,
although quantitative predictions on the exact capture positions
and the capture rate at these positions are probably out of reach
of the present modeling, the qualitative picture of the existence
of two preferential capture positions, one being counter-
intuitively above the pore opening, is robust in the present
three-step scenario.

4. CONCLUSION
Recent developments in the physics of particle capture, often in
the light of recent carefully designed microfluidics modeling
experiments, reveal the appearance of bridges or arches of
particles across the entrances of pores. The creation of these
bridges may be explained if at least some particles are arrested
on the pore edges to initiate the arches, as observed in some
experiments. In this paper, we have shown that such an
observation can be predicted with a model including particle
deposition on the membrane, a subsequent rolling phase for

some of the deposited particles, and a final arrest on the pore
edge due to the onset of a stabilizing adhesion torque when the
particle approaches this edge. This is a clear improvement over
previous approaches that neglected particle reentrainment and
overlooked the existence of a large stabilizing vdW adhesion
torque close to the pore edge, thus failing to describe the
counterintuitive capture location over the pore edge.
In view of the order of magnitude of the adhesion and

hydrodynamic torques estimated earlier and their scaling with
particle size (Γa and Γe ∼ a2, and Γh ∼ a3), we expect this
scenario to be quite generic for particles in the micrometer size
range (a ≈ 1−10 μm), as often encountered in microfluidic
studies of particle capture, when both particle-Reynolds and
particle-Stokes numbers are small. Larger particles may not be
captured at all and smaller ones may not roll after deposition or
may leave the surface due to thermal effects.
The present study also highlights the importance of

modeling particle adhesion on the surface, as tiny, nanometer
scale, details can have a dramatic effect on micrometer-sized
particles capture. Despite this difficulty, this work suggests that
such a touching−rolling−halting mechanism should be
implemented in Lagrangian numerical codes intended to
predict pore clogging phenomena. In addition, predictions of
capture rates and capture locations will clearly depend on the
statistics of surface properties, which suggests that statistical
approaches dealing with this point cannot be avoided, as
reported by Henry and co-workers.30,38
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