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Abstract. The present paper on invariant or covariant polynomials built from a set

of three dimensional vectors under the action of the SO(3) group is a follow–up to our

previous article [G. Dhont and B. I. Zhilinskíı. The action of the orthogonal group

on planar vectors: invariants, covariants and syzygies. J. Phys. A: Math. Theor.,

46(45):455202 (27 pages), 2013.] dealing with a set of two dimensional vectors under

the action of the SO(2) group.

The goal is to show how to obtain Molien functions for SO(3) invariant and

covariant modules, how to recast them in an appropriate form when these modules

are not free, and how to use them to build integrity bases for free modules or their

generalization in the case of non-free covariants modules.

We also explain how to easily derive O(3) invariants and covariants basis from

SO(3) ones . However, applications of SO(3) invariant and covariant bases extends

to cases such as the modelling of potential energy or dipole moment hypersurfaces in

quantum chemistry, where O(3)-symmetry is expected to hold, unless parity violation

is considered, but where the use of the SO(3) invariant ring is more practical than that

of O(3).
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1. Introduction

The present work on the SO(3) invariants and covariants built from N vectors of the

three–dimensional space stems from two previous articles. The first one [1] dealing with

planar vectors and SO(2) symmetry, which put forward the problem of dealing with

non-free covariant modules that arise when dealing with non finite groups.

Our goal is to propose integrity basis for the set of SO(3) invariants and covariant free

modules and easy-to-use generating families in the case of non-free covariants modules.

The existence of such non-free modules is one of the noteworthy features unseen when

dealing with finite point groups, that we want to point out. As in paper [1], the Molien

function plays a central role in the conception of the generating families.

The article is organized as follows: In the next section the Molien functions for up to

5 spatial vectors are computed and checked by the use of two independent paths. The

first computation relies on the Molien integral [2] and requires the matrix representation

of the group action on the N spatial vectors. The second path explained in Appendix

A considers the Molien function for only one spatial vector as the elementary building

material from which are worked out the other Molien functions. In the third section, we

use these explicit Molien functions to make two conjectures of practical importance to

derive and employ families of generating functions in the perspective of fitting symmetry-

adapted quantum mechanical quantities. In the last section, we explain a general method

to actually build such generating families and apply it to the non trivial case of 3

spatial vectors. We provide results for both SO(3) and 0(3) groups. However, we

argue that despite the fact that molecular systems can be considered as invariant under

spatial inversion, it is usually more useful to fit molecular potential energy and dipole

moment hypersurfaces with SO(3)-covariant generating families. We conclude with our

perspectives for this work.

2. Construction of the generating function for N vectors

2.1. Molien general integral formula

2.1.1. Rotation parametrization A rotation of a pointM that leaves invariant the origin

O of the three–dimensional space can be described as a rotation of angle ω around a

rotation axis whose position is defined through the θ and ϕ spherical angles with respect

to the (Ox1y1z1) system of axes, see Figure 1. As usual, the spherical angles are defined

to be in the 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π intervals. A rotation with a negative angle of

rotation ω < 0 around the rotation axis with (θ, ϕ) spherical coordinates is equivalent

to a rotation with the opposite angle of rotation −ω > 0 and the opposite axis of

rotation with (π − θ, ϕ+ π) spherical coordinates . The 0 ≤ ω ≤ π interval of rotation

angle is enough to cover all possible rotations. This parametrization counts twice the

rotations with a rotation angle ω = π (a rotation of π around the rotation axis with
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(π − θ, ϕ+ π) spherical angles is identical to a rotation of π around the rotation axis

with (θ, ϕ) spherical angles) but this is a set of measure zero.

1x

y1

z1

O

θ

ϕ

ω M

Figure 1. Parametrization of a rotation in three–dimensional space. The θ and ϕ

angles are the spherical angles of the rotation axis, the ω angle is the rotation angle

around the rotation axis.

2.1.2. Definition of a basis vector attached to the rotation axis We construct a basis

vector attached to the rotation axis whose vectors ~ex3
, ~ey3, ~ez3 are deduced from the

initial basis vector ~ex1
, ~ey1, ~ez1 through two successive rotations of the axes such that the

rotation axis coincides with the Oz3 axis, see Figure 2:
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Figure 2. Definition of the (Ox3y3z3) frame.
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step 1: rotation of the axes by an angle ϕ around the z1 axis:

(
~ex2

~ey2 ~ez2

)
=
(
~ex1

~ey1 ~ez1

)



cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


 , (1)

step 2: rotation of the axes by an angle θ around the y2 axis:

(
~ex3

~ey3 ~ez3

)
=
(
~ex2

~ey2 ~ez2

)



cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 . (2)

The relation between the initial basis ~ex1
, ~ey1 , ~ez1 and the final basis ~ex3

, ~ey3, ~ez3 is

then:

(
~ex3

~ey3 ~ez3

)
=
(
~ex1

~ey1 ~ez1

)



cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1







cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




=
(
~ex1

~ey1 ~ez1

)



cosϕ cos θ − sinϕ cosϕ sin θ

sinϕ cos θ cosϕ sinϕ sin θ

− sin θ 0 cos θ




︸ ︷︷ ︸
=M1(θ,ϕ)

. (3)

The matrix M1 (θ, ϕ) is an orthogonal matrix:

M1 (θ, ϕ)M1 (θ, ϕ)
T = M1 (θ, ϕ)

T
M1 (θ, ϕ) = I3×3.

2.1.3. Rotation of the point M in (Ox3y3z3) It is easy to describe the rotation of a

point M around the z3 axis by an angle ω, see Figure 3:

x3

y3

z3
O

ω M

M’

Figure 3. Rotation of point M in the (Ox3y3z3) frame.




x′
3

y′3

z′3


 =




cosω − sinω 0

sinω cosω 0

0 0 1




︸ ︷︷ ︸
=M2(ω)




x3

y3

z3


 (4)
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2.1.4. Rotation of the point M in (Ox1y1z1) Let x1, y1, z1 and x3, y3, z3 be the

coordinates of point M respectively in the (Ox1y1z1) and (Ox3y3z3) system of axes:
−−→
OM = x1~ex1

+ y1~ey1 + z1~ez1 = x3~ex3
+ y3~ey3 + z3~ez3 . (5)

Relation (5) can be written as:

−−→
OM =

(
~ex1

~ey1 ~ez1

)



x1

y1

z1




=
(
~ex3

~ey3 ~ez3

)



x3

y3

z3




=
(
~ex1

~ey1 ~ez1

)
M1 (θ, ϕ)




x3

y3

z3


 (6)

We deduce from (6) the relation between x1, y1, z1 and x3, y3, z3:


x1

y1

z1


 = M1 (θ, ϕ)




x3

y3

z3


 , (7)




x3

y3

z3


 = M1 (θ, ϕ)

T




x1

y1

z1


 . (8)

The primed variable are the coordinates for
−−→
OM ′:

−−→
OM ′ = x′

1~ex1
+ y′1~ey1 + z′1~ez1 = x′

3~ex3
+ y′3~ey3 + z′3~ez3 . (9)

Finally, we obtain that:



x′
1

y′1

z′1


 = M1 (θ, ϕ)




x′
3

y′3

z′3




= M1 (θ, ϕ)M2 (ω)




x3

y3

z3







x′
1

y′1

z′1


 = M1 (θ, ϕ)M2 (ω)M1 (θ, ϕ)

T




x1

y1

z1


 (10)

The rotation matrix M (ϕ, θ, ω) is

M (ϕ, θ, ω) = M1 (θ, ϕ)M2 (ω)M1 (θ, ϕ)
T
. (11)
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2.1.5. Molien function theory The Haar measure for the SO(3) Lie group is given for

function f by the integral:
∫ π

0

∫ 2π

0

∫ π

0

f (ϕ, θ, ω) sin θdθdϕ sin2 ω

2
dω.

with normalization factor:∫ π

0

∫ 2π

0

∫ π

0

sin θdθdϕ sin2 ω

2
dω = 4π

π

2
= 2π2.

Each rotation angle ω ∈ [0, π] defines an equivalence class, all the rotations with

the same angle but different rotation axes belong to the same class. The character χ(L)

is equal to:

χ(L) (ω) =
sin
(
L+ 1

2

)
ω

sin ω
2

.

The Molien function for computing the number of invariants or covariants of

representation (L), L ∈ N from N space vectors
−−→
OMi is given by

1

2π2

∫ π

0

∫ 2π

0

∫ π

0

χ(L) (ω)∗

det (I − λD (ϕ, θ, ω))
sin θdθdϕ sin2 ω

2
dω (12)

where D (ϕ, θ, ω) is a 3N × 3N block matrix representation of the rotation operation:

D (ϕ, θ, ω) =




M (ϕ, θ, ω) 0 · · · 0

0 M (ϕ, θ, ω) · · · 0

...
...

. . . 0

0 0 · · · M (ϕ, θ, ω)




(13)

One easily finds that

det (I − λD (ϕ, θ, ω)) =
[
(1− λ)(1− 2λ cosω + λ2)

]N
. (14)

Collins and Parsons [3] computed the Molien function for the invariants using

the Euler angle parametrization of the rotations. The numerator in the integrand of

the Molien function is just 1 for the invariant and both parametrization (theirs and

ours) are equivalent. For covariants, the numerator in the integrand is the character

which depends only on rotation angle. For covariant, our parametrization gives a

straightforward integral over only one variable ω while calculations would not be so

direct using Euler angles.

2.1.6. Generating functions for the (L) covariants For any L, denoting by ΓN the

initial representation of SO(3) on N spatial vectors, we have,

g ((L)← ΓN ;λ)

=
1

2π2

∫ π

0

∫ 2π

0

∫ π

0

sin(L+ 1

2)ω
sin ω

2

[(1− λ)(1− 2λ cosω + λ2)]N
sin θdθdϕ sin2 ω

2
dω

=
2

π

1

(1− λ)N

∫ π

0

[
sin
(
L+ 1

2

)
ω
]
sin ω

2

(1− 2λ cosω + λ2)N
dω (15)
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the Molien function integral can be simplified by noting that,
[
sin

(
L+

1

2

)
ω

]
sin

ω

2
=

cos (Lω)− cos [(L+ 1)ω]

2
, (16)

so that,

g ((L)← ΓN ;λ)

=
1

(1− λ)N

{
1

π

∫ π

0

cos (Lω) dω

(1− 2λ cosω + λ2)N
−

1

π

∫ π

0

cos [(L+ 1)ω] dω

(1− 2λ cosω + λ2)N

}

=
1

(1− λ)N

(
g̃SO(2)

(
(̃L)← Γ̃N ;λ

)
− g̃SO(2)

(
˜(L+ 1)← Γ̃N ;λ

))
, (17)

where the tilde quantitites refer to the SO(2) group: (̃m), m ∈ Z is an irreducible

representation of SO(2) and Γ̃N is the representation generated by N two dimensional

vectors. General expressions for g̃SO(2)
(
(̃L)← Γ̃N ;λ

)
can be found in [1] or derived

from the following formula [4],

∫ π

0

cosnx dx

(1− 2a cosx+ a2)m

=
a2m+n−2π

(1− a2)2m−1

m−1∑

k=0

(
m+ n− 1

k

)(
2m− k − 2

m− 1

)(
1− a2

a2

)k

, a2 < 1. (18)

2.2. One spatial vector

Combining the general Molien function formula (17) with Eq.(18) for the case N = 1,

we obtain,

g1 ((L)← Γ1;λ) =
λL

1− λ2
. (19)

Remark: The sum over L of g1 ((L)← Γ1;λ) weighted with their order of degeneracy,

is equal to 1
(1−λ)3

:

∞∑

L=0

(2L+ 1) g1 ((L)← Γ1;λ) =
1

(1− λ)3
. (20)

This relationship can be generalized for every value of N ,
∞∑

L=0

(2L+ 1) g ((L)← ΓN ;λ) =
1

(1− λ)3N
. (21)

It simply means that by summing over all symmetry-adapted generating functions with

their order of degeneracy one recovers the generating function for the total number of

linearly independent polynomials in 3N variables of a given degree.
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2.3. Two spatial vectors

The six coordinates {x1, y1, z1, x2, y2, z2} of two spatial vectors span a six–dimensional

representation: {x1, y1, z1, x2, y2, z2} that is a direct sum:

Γ2 = Γ1 ⊕ Γ1. Rather than making use of Eqs. (17) and (18), the generating functions

for two vectors can be deduced by coupling the generating functions for one vector

obtained in (19), see Appendix A. Distinguishing the two Γ1 Molien functions by their

variables, one obtains:

g1 ((L)← Γ2;λ1, λ2) =

L∑
i=0

λi
1λ

L−i
2 + λ1λ2

L−1∑
i=0

λi
1λ

L−i−1
2

(1− λ2
1) (1− λ2

2) (1− λ1λ2)
, (22)

(with the convention that the second term in the numerator is zero for L = 0), or

indistinguishing the Γ1 representation origins by setting λ1 = λ2 = λ,

g1 ((L)← Γ2;λ) =
(L+ 1)λL + LλL+1

(1− λ2)3
. (23)

2.4. Three spatial vectors

The initial representation Γ3 = Γ1 ⊕ Γ1 ⊕ Γ1 contains nine variables and is reducible.

Again, the generating functions for three vectors can be obtained by coupling the

generating function for one vector and the generating function for two vectors, according

to Appendix A. One obtains the following expression:

g1 ((L)← Γ3;λ) =
N1 ((L)← Γ3;λ)

(1− λ2)6
, (24)

N1 ((L)← Γ3;λ) =
(L+ 2)(L+ 1)

2
λL + (L+ 2)LλL+1

− (L+ 1)(L− 1)λL+3 −
L(L− 1)

2
λL+4. (25)

The coefficients in the numerator (24) are greater or equal to zero if L = 0 or L = 1.

Negative coefficients appear for L ≥ 2, however the Molien function can be rewritten

as (26).

g2 ((L)← Γ3;λ) =
(2L+ 1)λL + (2L+ 1)λL+1

(1− λ2)6

+
L(L−1)

2
λL + (L+ 1)(L− 1)λL+1 + L(L−1)

2
λL+2

(1− λ2)5
, (26)

where all the coefficients in the numerators are positive coefficients for L ≥ 2. The gen-

erating function suitable for a symbolic interpretation in term of a generalized integrity

basis are given in Table 1 up to L = 6.
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Table 1. Expressions of the symbolically interpretable gi Molien functions for three

spatial vectors and (L) final irreducible representations, 0 ≤ L ≤ 6.

i Γfinal gi (Γfinal ← Γ3;λ)

1 (0) 1+λ
3

(1−λ2)6

1,2 (1) 3λ+3λ2

(1−λ2)6

2 (2) 5λ2+5λ3

(1−λ2)6 + λ
2+3λ3+λ

4

(1−λ2)5

2 (3) 7λ3+7λ4

(1−λ2)6 + 3λ3+8λ4+3λ5

(1−λ2)5

2 (4) 9λ4+9λ5

(1−λ2)6 + 6λ4+15λ5+6λ6

(1−λ2)5

2 (5) 11λ5+11λ6

(1−λ2)6 + 10λ5+24λ6+10λ7

(1−λ2)5

2 (6) 13λ6+13λ7

(1−λ2)6 + 15λ6+35λ7+15λ8

(1−λ2)5

2
...

...

We have proceeded in a similar fashion to obtain the generating function for four

and five spatial vectors given in Appendix B.1 and Appendix B.2 respectively. Any

number of spatial vectors can be achieved by recursion, in principle.

2.5. Extension to O(3)

The block matrix representation of the inversion operation for the ΓN initial

representation is −I3N , where I3N is the 3N × 3N identity matrix. So, denoting by

(L)ǫ , ǫ = ±, the irreducible representations of O(3), the corresponding Molien functions

are easily obtained:

gO(3) ((L)ǫ ← ΓN ;λ) =
1

2
[g ((L)← ΓN ;λ) + ǫg ((L)← ΓN ;−λ)] .
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3. Two conjectures around the Molien function

3.1. First conjecture

Based on the results of the previous section, we conjecture that for any number of three

dimensional vectors and any final representation of SO(3), there exists a positive integer

lmax (N,L) with 1 ≤ lmax (N,L) ≤ 3N − 2, such that the Molien function g can be cast

in the form of a sum of rational fractions:

g ((L)← ΓN ;λ) =

lmax(N,L)∑

l=1

N l
N,L (λ)

(1− λ2)3N−2−l
, (27)

with the lmax (N,L) numerator polynomials N l
N,L (λ) =

nmax(N,L,l)∑
n=0

c
l,n
N,Lλ

L+n having only

non–negative coefficients cl,nN,L. The exponents on λ in the numerator polynomials start

at L, since (L)–covariants built from vectors are at least of total degree L.

The ring of invariant polynomials (L = 0) under the reductive SO(3) group is a

free module over a subring of invariant polynomials [5, 6]. It admits an homogeneous

system of parameters or Hironaka decomposition and the Molien function for invariant

polynomials can be cast in the form (27) with a single rational fraction. Its symbolic

interpretation suggests 3N − 3 primary or denominator invariant polynomials of degree

2 and c
1,n
N,0 secondary or numerator invariant polynomials of degree L+ n with 0 ≤ n ≤

nmax (N, 0, 1).

If the module of (L)–covariants (L > 0) is free, the situation is similar to the ring

of invariant polynomials: the form (27) is a single rational fraction and the usual Molien

function interpretation in terms of integrity basis holds. If the module of (L)–covariants

is not free, and this can happen [7], then lmax > 1. The form (27) admits a symbolic

interpretation in terms of a generalized integrity basis already proposed in our previous

work on SO(2) [1]. The non free module is a sum of lmax (N,L) submodules. Each of

these submodules is a free module that corresponds to the lth rational fraction symbolic

interpretation in terms of integrity basis (1 ≤ l ≤ lmax (N,L)): it is a module on a ring

of invariants generated by 3N − 2 − l primary invariants and the minimal number of

covariant generators of degree L+n is given by c
l,n
N,L. So, this conjecture is in fact closely

related to that of Stanley: conjecture 5.1 of Ref. [8].

In practice, the numerators in the sum of expression (27) can be determined

algorithmically for a given pair (N,L) by starting with the g1 ((L)← ΓN ;λ) expression,

which is always a single rational fraction. If for the value of L considered, the numerator

N1 has only non–negative coefficients, then the form is the desired one and the algorithm

stops. Otherwise we perform a polynomial long division of the numerator by 1 − λ2.

The division process is stopped not when the degree of the remainder r1 is less than 2

as one would do in the usual Euclidean polynomial division, but when the coefficients

of the remainder r1 become non–negative for the L-value considered, which will happen
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according to the conjecture. Then the numerator is rewritten as:

N1 = r1 +
(
1− λ2

)
q1.

The remainder r1 serves as the numerator of the first rational fraction in (27). If the

quotient q1 has only non–negative coefficients for the value of L considered, the algorithm

stops and the final form of the Molien function is then:

g ((L)← ΓN ;λ) =
r1

(1− λ2)3N−3
+

q1

(1− λ2)3N−4
.

Otherwise, the process is iterated, i.e. the quotient q1 is divided in the same way by 1−λ2

and the new remainder will constitute the numerator of the second rational fraction.

The procedure is repeated until the quotient has also only non–negative coefficients,

which will happen according to the conjecture.

For example, for N = 3, the single rational fraction (24) with its numerator (25)

is suitable for L < 2. For L ≥ 2, we obtain successively by the division process of the

numerator (25):

(L+ 2)(L + 1)

2
λL + (L+ 2)LλL+1 − (L+ 1)(L − 1)λL+3 −

L(L− 1)

2
λL+4

= (1− λ2)

(

L(L − 1)

2
λL+2

)

+
(L + 2)(L + 1)

2
λL + (L+ 2)LλL+1 −

L(L− 1)

2
λL+2 − (L+ 1)(L − 1)λL+3

= (1− λ2)

(

(L+ 1)(L− 1)λL+1 +
L(L − 1)

2
λL+2

)

+
(L + 2)(L + 1)

2
λL + (2L+ 1)λL+1 −

L(L− 1)

2
λL+2

= (1− λ2)

(

L(L− 1)

2
λL + (L+ 1)(L− 1)λL+1 +

L(L − 1)

2
λL+2

)

+ (2L+ 1)λL + (2L+ 1)λL+1

(28)

The remainder (2L + 1)λL + (2L + 1)λL+1 has only non negative coefficients and

is the numerator of the first rational fraction we are seeking for. The quotient
L(L−1)

2
λL+(L+1)(L−1)λL+1+ L(L−1)

2
λL+2 happens in this simple case to have only non

negative coefficients for L ≥ 2. It will constitute the numerator of the second fraction

and we find again the expression (26) with two rational fractions for the Molien function.

For N = 4, the numerator expression N1 ((L)← Γ4;λ) is suitable for L < 3. For

L ≥ 3, we obtain successively by the division process of the initial numerator:

(L + 3)(L + 2)(L + 1)

6
λL +

(L+ 3)(L + 2)L

2
λL+1 +

(L+ 3)(L + 2)(L + 1)

6
λL+2 −

(L+ 3)(L − 2)(5L + 4)

6
λL+3

−
(L+ 3)(L − 2)(5L + 1)

6
λL+4 +

L(L − 1)(L − 2)

6
λL+5 +

(L+ 1)(L− 1)(L − 2)

2
λL+6 +

L(L− 1)(L− 2)

6
λL+7

= (1− λ2)

(

−
L(L− 1)(L − 2)

6
λL+5

)

+
(L+ 3)(L + 2)(L + 1)

6
λL +

(L+ 3)(L + 2)L

2
λL+1 +

(L+ 3)(L + 2)(L + 1)

6
λL+2

−
(L+ 3)(L − 2)(5L + 4)

6
λL+3 −

(L+ 3)(L − 2)(5L + 1)

6
λL+4 +

L(L− 1)(L − 2)

3
λL+5 +

(L+ 1)(L − 1)(L − 2)

2
λL+6

= (1− λ2)

(

−
(L+ 1)(L − 1)(L − 2)

2
λL+4 −

L(L− 1)(L − 2)

6
λL+5

)

+
(L+ 3)(L + 2)(L + 1)

6
λL +

(L+ 3)(L + 2)L

2
λL+1

+
(L+ 3)(L + 2)(L + 1)

6
λL+2 −

(L+ 3)(L − 2)(5L + 4)

6
λL+3 −

(L− 2)(L2 + 8L+ 3)

3
λL+4 +

L(L− 1)(L− 2)

3
λL+5

= (1− λ2)

(

−
L(L− 1)(L − 2)

3
λL+3 −

(L+ 1)(L − 1)(L − 2)

2
λL+4 −

L(L− 1)(L − 2)

6
λL+5

)

+
(L+ 3)(L + 2)(L + 1)

6
λL
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+
(L+ 3)(L+ 2)L

2
λL+1 +

(L + 3)(L + 2)(L+ 1)

6
λL+2 −

(L− 2)(L2 + 7L+ 4)

2
λL+3 −

(L− 2)(L2 + 8L+ 3)

3
λL+4

= (1 − λ2)

(

(L− 2)(L2 + 8L+ 3)

3
λL+2 −

L(L− 1)(L − 2)

3
λL+3 −

(L+ 1)(L − 1)(L − 2)

2
λL+4 −

L(L− 1)(L − 2)

6
λL+5

)

+
(L+ 3)(L + 2)(L + 1)

6
λL +

(L+ 3)(L + 2)L

2
λL+1 −

(L3 + 6L2 − 37L− 18)

6
λL+2 −

(L− 2)(L2 + 7L+ 4)

2
λL+3

= (1 − λ2)

(

(L− 2)(L2 + 8L+ 3)

3
λL+2 −

L(L− 1)(L − 2)

3
λL+3 −

(L+ 1)(L − 1)(L − 2)

2
λL+4 −

L(L− 1)(L − 2)

6
λL+5

)

+
(L+ 3)(L + 2)(L + 1)

6
λL +

(L+ 3)(L + 2)L

2
λL+1 −

(L3 + 6L2 − 37L− 18)

6
λL+2 −

(L− 2)(L2 + 7L+ 4)

2
λL+3

= (1 − λ2)

(

(L− 2)(L2 + 7L+ 4)

2
λL+1 +

(L− 2)(L2 + 8L+ 3)

3
λL+2 −

L(L− 1)(L − 2)

3
λL+3 −

(L+ 1)(L − 1)(L − 2)

2
λL+4

−
L(L− 1)(L − 2)

6
λL+5

)

+
(L+ 3)(L+ 2)(L + 1)

6
λL + 4(2L + 1)λL+1 −

(L3 + 6L2 − 37L− 18)

6
λL+2 (29)

= (1− λ2)

(

(L3 + 6L2 − 37L− 18)

6
λL +

(L− 2)(L2 + 7L+ 4)

2
λL+1 +

(L− 2)(L2 + 8L+ 3)

3
λL+2 −

L(L− 1)(L − 2)

3
λL+3

−
(L+ 1)(L − 1)(L − 2)

2
λL+4 −

L(L − 1)(L − 2)

6
λL+5

)

+ 4(2L + 1)λL + 4(2L+ 1)λL+1 (30)

For L = 3 and L = 4, the algorithm stops at Eq. (29), where all coefficients of the

remainder are positive, whereas for larger values of L the coefficient − (L3+6L2−37L−18)
6

of

λL+2 is negative in the remainder of Eq. (29) and one must stop only at Eq. (30). Let

us consider first the cases L = 3 and L = 4. The quotient has negative coefficients and

must be divided again by (1− λ2),

(L− 2)(L2 + 7L+ 4)

2
λL+1 +

(L− 2)(L2 + 8L+ 3)

3
λL+2 −

L(L− 1)(L − 2)

3
λL+3 −

(L+ 1)(L − 1)(L − 2)

2
λL+4 −

L(L− 1)(L − 2)

6
λL+5

= (1 − λ2)

(

L(L− 1)(L− 2)

6
λL+3

)

+
(L − 2)(L2 + 7L+ 4)

2
λL+1 +

(L− 2)(L2 + 8L+ 3)

3
λL+2 −

L(L− 1)(L − 2)

2
λL+3

−
(L+ 1)(L − 1)(L − 2)

2
λL+4

= (1 − λ2)

(

(L+ 1)(L − 1)(L − 2)

2
λL+2 +

L(L− 1)(L − 2)

6
λL+3

)

+
(L − 2)(L2 + 7L+ 4)

2
λL+1 −

(L− 2)(L2 − 16L− 9)

6
λL+2

−
L(L − 1)(L − 2)

2
λL+3

= (1− λ2)

(

L(L− 1)(L − 2)

2
λL+1 +

(L+ 1)(L − 1)(L − 2)

2
λL+2 +

L(L− 1)(L− 2)

6
λL+3

)

+ 2(L − 2)(2L + 1)λL+1

−
(L− 2)(L2 − 16L − 9)

6
λL+2 (31)

This time both remainder and quotient have non negative coefficients, so we stop here

and retrieve the numerators of the second and third fractions of g2 in Eq. (B.3). For

L > 4, we have to divide the quotient of Eq. (30) by (1− λ2),

(L3 + 6L2 − 37L − 18)

6
λL +

(L− 2)(L2 + 7L+ 4)

2
λL+1 +

(L− 2)(L2 + 8L+ 3)

3
λL+2 −

L(L− 1)(L − 2)

3
λL+3

−
(L+ 1)(L − 1)(L − 2)

2
λL+4 −

L(L− 1)(L − 2)

6
λL+5

= (1 − λ2)

(

L(L− 1)(L − 2)

6
λL+3

)

+
(L3 + 6L2 − 37L− 18)

6
λL +

(L − 2)(L2 + 7L+ 4)

2
λL+1 +

(L− 2)(L2 + 8L+ 3)

3
λL+2

−
L(L− 1)(L − 2)

2
λL+3 −

(L+ 1)(L − 1)(L − 2)

2
λL+4

= (1 − λ2)

(

(L+ 1)(L− 1)(L − 2)

2
λL+2 +

L(L− 1)(L− 2)

6
λL+3

)

+
(L3 + 6L2 − 37L− 18)

6
λL +

(L− 2)(L2 + 7L+ 4)

2
λL+1
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−
(L− 2)(L2 − 16L− 9)

6
λL+2 −

L(L− 1)(L − 2)

2
λL+3

= (1 − λ2)

(

L(L− 1)(L − 2)

2
λL+1 +

(L+ 1)(L − 1)(L− 2)

2
λL+2 +

L(L − 1)(L − 2)

6
λL+3

)

+
(L3 + 6L2 − 37L − 18)

6
λL

+ 2(L− 2)(2L + 1)λL+1 −
(L− 2)(L2 − 16L − 9)

6
λL+2 (32)

= (1− λ2)

(

(L− 2)(L2 − 16L − 9)

6
λL +

L(L− 1)(L − 2)

2
λL+1 +

(L+ 1)(L − 1)(L − 2)

2
λL+2 +

L(L− 1)(L− 2)

6
λL+3

)

+ 2(L − 3)(2L + 1)λL + 2(L− 2)(2L + 1)λL+1 (33)

For 5 ≤ L ≤ 16 one stops at Eq. (32), where all coefficients of the remainder are positive,

whereas for larger values of L the coefficient of λL+2 is negative in the remainder of

Eq. (32) and one must continue up to Eq. (33). In both cases, the quotient has only

non-negative coefficients, so the remainders and quotients of Eqs. (32) and (33) gives

the numerators of the second and third fractions of g3 and g4 in Eqs. (B.4) and (B.5).

We leave it to the reader to treat the case N = 5.

3.2. Conjecture 2

For the electric dipole moment hypersurface, the relevant covariant module corresponds

to the (1) irreducible representation and will always be a free module. This conjecture

is based on the observation that for a given N , g1 ((L)← ΓN ;λ) has the right form of

Eq. (27) for all L if N = 1 or N = 2 and for all L < N if 5 ≥ N > 2.

4. Construction of the generating families for N vectors

The main goal of this section, is to propose a general method to obtain a suitable

generating family of SO(3) covariants in the case of non-free module. This method

takes advantage of the interpretable form of the Molien function seen in the previous

section. The simplest case of a non-free module occurs for N = 3 vectors and L = 2.

We will first provide explicit, natural basis sets for the free cases corresponding to

N ∈ {1, 2}L ∈ {0, 1, 2} and N = 3, L ∈ {0, 1}. Then, we will show how to deal with

the simplest non-free case: N = 3, L = 2. Finally, we will explain how to generalize the

latter construction.

4.1. One spatial vector

The initial representation Γ1 contains the three variables x1, y1, z1, and Eq. 19 shows

that there is one basic invariant of order 2, and one set of (2L+1)-degenerate auxiliary

covariants of order L spanning the (L)-covariant free module.

The basic invariant is of course the scalar product Q11 = x2
1 + y21 + z21 , while the

auxiliary covariants are spherical harmonics. For example, for L = 1 one can take the
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set




x1

y1

z1


, for L = 2,




2z21 − x2
1 − y21

x1z1

y1z1

x1y1

x2
1 − y21



, and so on.

4.2. Two spatial vectors

The ring of invariant is well-known [9] and generated by the 3 scalar products:

Q11 = x2
1 + y21 + z21 , Q22 = x2

2 + y22 + z22 , Q12 = x1x2 + y1y2 + z1z2.

For L = 1,

g1 ((1)← Γ2;λ1, λ2) =
λ1 + λ2 + λ1λ2

(1− λ2
1) (1− λ2

2) (1− λ1λ2)
. (34)

The two first order (1)-covariant basis vectors can be taken as




x1

y1

z1


 and




x2

y2

z2


, and

the second order one as their cross-product




y1z2 − z1y2

z1x2 − x1z2

x1y2 − y1x2


.

g
O(3)
1

(
(1−)← Γ

O(3)
2 ;λ

)
=

2λ

(1− λ2)3
. (35)

So the z-component of the electric dipole moment function of an ABC molecule will

have the form:

DMS[x1, y1, z1, x2, y2, z2] = Pz1 [Q11, Q22, Q12]z1 + Pz2 [Q11, Q22, Q12]z2,

(36)

where Pi are polynomials in the primary invariants. The other components are related

by symmetry which implies Pxi
= Pyi = Pzi. So, only two polynomials in three variables

need to be fitted on data to determine the DMS functions.

For L = 2,

g1 ((2)← Γ2;λ1, λ2) =
λ2
1 + λ2

2 + λ1λ2 + λ2
1λ2 + λ1λ

2
2

(1− λ2
1) (1− λ2

2) (1− λ1λ2)
. (37)

The three second order (2)-covariant basis vectors can be guessed as




2z21 − x2
1 − y21

x1z1

y1z1

x1y1

x2
1 − y21



,
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


2z22 − x2
2 − y22

x2z2

y2z2

x2y2

x2
2 − y22




and




2z1z2 − x1x2 − y1y2

x1z2 + z1x2

y1z2 + z1y2

x1y2 + y1x2

x1x2 − y1y2



, by analogy with spherical harmonics

and the two third order ones can be constructed by subtituting one set of coordinates

in the last expression by the (L = 1)-cross-product covariant,




2z1(x1y2 − y1x2)− x1(y1z2 − z1y2)− y1(z1x2 − x1z2)

x1(x1y2 − y1x2) + z1(y1z2 − z1y2)

y1(x1y2 − y1x2) + z1(z1x2 − x1z2)

x1(z1x2 − x1z2) + y1(y1z2 − z1y2)

x1(y1z2 − z1y2)− y1(z1x2 − x1z2)



,




2(x1y2 − y1x2)z2 − (y1z2 − z1y2)x2 − (z1x2 − x1z2)y2
(y1z2 − z1y2)z2 + (x1y2 − y1x2)x2

(z1x2 − x1z2)z2 + (x1y2 − y1x2)y2
(y1z2 − z1y2)y2 + (z1x2 − x1z2)x2

(y1z2 − z1y2)x2 − (z1x2 − x1z2)y2



.

4.3. Three spatial vectors

The ring of invariant is well-known [9] and generated by the 6 scalar products:

Qij := xixj + yiyj + zizj for 1 ≤ i ≤ j ≤ 3.

For L = 0,

g1 ((0)← Γ3;λ1, λ2, λ3) =
1 + λ1λ2λ3

(1− λ2
1) (1− λ2

2) (1− λ1λ2) (1− λ1λ3) (1− λ2λ3)
, (38)

the secondary invariants are the scalar 1 and the determinant

∣∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣
For L = 1,

g1 ((1)← Γ3;λ1, λ2, λ3) =
λ1 + λ2 + λ3 + λ1λ2 + λ1λ3 + λ2λ3

(1− λ2
1) (1− λ2

2) (1− λ1λ2) (1− λ1λ3) (1− λ2λ3)
. (39)

The three first order (1)-covariant basis vectors can be taken as




x1

y1

z1


,




x2

y2

z2




and




x3

y3

z3


, and the three second order one as their cross-product




y1z2 − z1y2

z1x2 − x1z2

x1y2 − y1x2


,




y1z3 − z1y3

z1x3 − x1z3

x1y3 − y1x3


,




y2z3 − z2y3

z2x3 − x2z3

x2y3 − y2x3


.



Action of the SO(3) rotation group on a set of three dimensional vectors 16

So the z-component of the electric dipole moment function of an ABC molecule will

have the form:

DMS[x1, y1, z1, x2, y2, z2, x3, y3, z3] = Pz1 [(Qij)1≤i≤j≤3]× z1 + Pz2 [(Qij)1≤i≤j≤3]× z2

+ Pz3 [(Qij)1≤i≤j≤3]× z3 + Px1y2−y1x2
[(Qij)1≤i≤j≤3]× (x1y2 − y1x2) +

Px1y3−y1x3
[(Qij)1≤i≤j≤3]× (x1y3 − y1x3) + Px2y3−y2x3

[(Qij)1≤i≤j≤3]× (x2y3 − y2x3),

(40)

where the Pi’s are polynomials in the primary invariants. The other components are

related by symmetry.

For L = 2, when the representations are distinguished, the symbolic interpretation

of the numerator of the Molien function,

N1 ((2)← Γ3;λ1, λ2, λ3) = λ2
1 + λ2

2 + λ2
3 + λ1λ2 + λ1λ3 + λ2λ3 +

λ2
1λ2 + λ2

1λ3 + λ1λ
2
2 + λ1λ

2
3 + λ2

2λ3 + λ2λ
2
3 + 2λ1λ2λ3

− λ2
1λ

2
2λ3 − λ2

1λ2λ
2
3 − λ1λ

2
2λ

2
3 − λ2

1λ
2
2λ

2
3 (41)

suggests that there are 6 linearly independent, auxiliary covariants of order 2 and 8

of order 3 related by 3 syzygies of order 5 and 1 of order 6. Then, the symbolic

interpretation of

g2 ((2)← Γ3;λ) =
5λ2 + 5λ3

(1− λ2)6
+

λ2 + 3λ3 + λ4

(1− λ2)5
. (42)

specifies that only 5 auxiliary covariants of order 2 and 5 of order 3 should be used to

generate a free module over the whole ring (associative algebra) of primary invariants

A, denoted MA
1 . However, to generate the N = 3, L = 2 covariant module, this free

module should be completed by a second one,MÃ
2 , spanned by one auxiliary covariant

of order 2, three of order 3 and one of order 4, over a subring (subalgebra) Ã spanned

by only five primary invariants.

Let us exploit these pieces of information. For 1 ≤ i ≤ j ≤ 3, we define

Dij := 2zi ∗ zj − xixj − yiyj. (43)

From the well-known expressions of spherical harmonics, we deduce that the Dij ’s are

the (mL = 0)-components of the 6 auxiliary covariants of order 2, we are looking for.

Let us further construct a similar expression by substituting an order 1 by an order 2

(L = 1)-covariant,

∀i, j, k ∈ {1, 2, 3} Tijk := 2zi (xjyk − xkyj)− xi (yjzk − ykzj)− yi (xkzj − xjzk) . (44)

The Tijk’s are the (mL = 0)-components of order 3 covariants. However, only 8 can be

linearly independent, since ∀i, j, k ∈ {1, 2, 3} Tijk + Tikj = 0 and Tijk + Tjki + Tkij = 0.
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For a given i, we retain only those Tijk with j < k, and for i, j, k all distinct, we decide

to discard

T213 = T123 + T312. (45)

The three syzygies of order 5 are found to be, by solving linear systems of equations:

Q23 ∗ T112 −Q22 ∗ T113 −Q13 ∗ T212 −Q11 ∗ T223 +Q12 ∗ (2 ∗ T123 + T312) = 0 (46)

Q13 ∗ T223 +Q33 ∗ T212 −Q12 ∗ T323 +Q22 ∗ T313 −Q23 ∗ (2 ∗ T312 + T123) = 0 (47)

Q11 ∗ T323 +Q23 ∗ T113 −Q12 ∗ T313 −Q33 ∗ T112 +Q13 ∗ (2 ∗ T312 − T213) = 0 (48)

the last one can be rewritten by using Eq.(45) as

Q11 ∗ T323 +Q23 ∗ T113 −Q12 ∗ T313 −Q33 ∗ T112 +Q13 ∗ (T312 − T123) = 0. (49)

Similarly, the syzygie of order 6 is found to be:

(Q2
23 −Q22 ∗Q33) ∗D11 + (Q2

13 −Q11 ∗Q33) ∗D22 + (Q2
12 −Q11 ∗Q22) ∗D33+

2 ∗ ((Q12 ∗Q33 −Q13 ∗Q23) ∗D12 + (Q13 ∗Q22 −Q12 ∗Q23) ∗D13 + (Q11 ∗Q23 −Q12 ∗Q13) ∗D23) = 0

(50)

There is some arbitrariness in the choice of the primary invariant to be removed

from the invariant ring A to defineMÃ
2 . Let us choose Q23, so that Ã is the subring of

A spanned by {Q11, Q22, Q33, Q12, Q13}. Then, the natural order 2 auxiliary covariant

to be eliminated fromMA
1 is D11, since including it inMÃ

2 , together with the order 4

covariant, Q23×D11 is sufficient to obtain all the (Qn
23×D11)’s with n > 1. This results

from Eq.(50), which permits to reexpress Q2
23 × D11 in terms of other elements of the

MÃ
2 module. It remains to select the three order 3 auxiliary covariants to exclude from

MA
1 and include in MÃ

2 . The natural choice is T112, (2 ∗ T123 + T123) and T113, since

Q23 ∗T112, Q23 ∗ (2 ∗T123+T123) and Q23 ∗T113, are easily re-expressed with terms either

inMA
1 or inMÃ

2 , by means of the syzygies Eqs.(46), (47) and (49) respectively. The 5

order 2 auxilliary covariants and the 5 order 3 auxilliary covariants spanning MA
1 can

be chosen to be D12, D13, D22, D23, D33, T123, T212, T223, T313, T323.

4.4. Generalization to higher N and L values

The path followed in the previous section for N = 3 and L = 2 can be generalized to

higher values of N and L. The decomposition of non-free modules into a sum of free

modules on subrings of the ring of primary invariants will have more terms: Table B1

suggests 3-term decompositions for N = 4 and L ≥ 3, while Table B2 suggests 4-term

decompositions for N = 5 and L ≥ 4. One is tempted to conjecture that (N − 1)-

term decompositions will occur for N -vectors and L ≥ N − 1, for all N ≥ 2. The
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decompositions are not unique, since, as we have seen, there is some arbitrariness in the

choice of the generators of the primary invariant subrings and of the covariant generators

of the modules on these subrings (although some choices are more natural than others).

So, it is difficult to give a general and explicit construction. We only sketch the main

line.

The construction follows the steps of the algorithm of section 3.1. The number of

covariant generators of each degree for each free module in the decomposition: MÃ0

1 ,

MÃ1

2 , MÃ2

3 , . . ., (where Ã0 = A, Ã1 = Ã in our previous notation) are given by the

successive rests of the divisions by (1 − λ2) and the last quotient with only positive

coefficients. To find successive sets of syzygies, it suffices to solve linear systems in

the primary invariant ring and its successively selected subrings. The numbers of

independent syzygies to obtain and their degrees, are given by the negative coefficients

in the expressions of the numerator N1 and its successive quotients by (1−λ2) appearing

while following the algorithm of section 3.1. For example, for N = 4, L = 3, Eq.(B.2)

tells us that there will be 19 syzygies of degree 6 and 16 of degree 7 to be used in order to

select Ã1 and the 20 generators of degree 3, 28 generators of degree 4 and 48 generators

of degree 5 ofMÃ0

1 according to the rest in Eq.(29). This first set of syzygies is to be

obtained by solving a linear system in A. Then, the quotient of Eq.(29) tells us that a

second set of 2 syzygies of degree 6, 4 of degree 7 and 1 of degree 8 is to be obtained

by solving linear systems in the subring Ã1, previously selected. Finally, the rest in

Eq.(31), tells us that there are 14 covariant generators of degree 4 and 8 of degree 5 to

be chosen forMÃ1

2 , and the quotient in Eq.(31) that, once Ã2 has been selected, there

will be 3 covariant generators of degree 4, 4 of degree 5 and 1 of degree 6 to be found

forMÃ2

3 .

Since the SN permutation group action on vector indices preserves partial degrees,

one can take advantages of the Molien functions with distinguished representation

arguments, to obtain information about the partial degrees of the variables in these

syzygies. This reduces significantly the size of the linear systems to be solved. For

example, in the N = 3 and L = 2 case, the syzygie of order 6 is found to be of

partial degrees n1 = n2 = n3 = 2 from the last term in Eq.(41). Though, we have not

systematically reported such detailed expressions for N > 2, because the closed formulas

we have obtained are not polynomial. For example, for N = 3, we have obtained the

following fraction

N1 ((L)← Γ3;λ1, λ2, λ3) =
1

(λ1 − λ2) (λ1 − λ3) (λ2 − λ3)

[
λ2λ3

(
−λ1+L

3 − λ2λ
1+L
3 + λ1+L

2 (1 + λ3)
)
+

λ3
1λ2λ3

(
−λ1+L

3 − λ2λ
1+L
3 + λ1+L

2 (1 + λ3)
)
+ λ2+L

1

(
−λ3 (1 + λ3)− λ3

2λ3 (1 + λ3) + λ2

(
1 + λ3

3

)
+

λ2
2

(
1 + λ3

3

))
+ λ1

(
λ2+L
3 + λ3

2λ
2+L
3 − λ2+L

2

(
1 + λ3

3

))
+ λ2

1

(
λ2+L
3 + λ3

2λ
2+L
3 − λ2+L

2

(
1 + λ3

3

))]
(51)

which we only managed to simplify into interpretable polynomial expressions such as

Eq.(41), when L takes specific values. Such interpretable, detailed expressions can also

be exploited to provide the partial degrees of the covariant generators of the modules,

after division by the factor in the denominator corresponding to the primary invariant
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excluded from the next subring in the decomposition.

5. Conclusion

We have derived general expressions of the Molien generating function for N vectors

of the three dimensional Euclidian space to compute the number of invariants and co-

variants of the SO(3) symmetry group. An extension to the O(3) group is easy. In the

case where the module of covariant is non free, an algorithm to transform the Molien

function into a form amenable to a symbolic interpretation in term of a generalized

integrity basis has been proposed. The same algorithm can serve to build step by step

such a generalized integrity basis, which consists in a collection of basis of covariants

for free covariant modules over subrings of the ring of primary invariants.

The case of the invariant (“L = 0 covariants”) module, is always free. In quantum

physics, an integrity basis can be useful to express SO(3)-totally invariant observables

such as the so-called potential energy hypersurface in quantum chemistry [10], when it

is not possible or appropriate to separate out rotational from internal coordinates. Note

that such an observable is actually O(3)-totally invariant, but for polyatomic molecules

of four atoms and more, it is more practical to use coordinates, such as dihedral angles,

that are SO(3)- but not O(3)-invariants.

We have conjectured that the L = 1 covariants module will always be free, as well.

We have provided explicit integrity basis up to N = 3. In quantum physics, these in-

tegrity basis can be useful to express observables such as dipole moment hypersurface,

used in quantum chemistry to calculate dipolar transition intensities. If, in addition

to the SO(3) action, there is a finite group action on the vector variables, it can be

taken advantage of in a second step as was argued in [10] for the particular case of

invariants. For example, for N = 2 which can be related as we have seen to the case of

a triatomic molecule ABC, if the origin of the two vectors is A and if B=C, then the

action of the permutation group S2 on the vectors




x1

y1

z1


 and




x2

y2

z2


 can be exploited

to simplify the expression of the physical observables such as the DMS functions. In this

particular case, we deduce for example that the polynomials of Eq. (36) must satisfy,

Pz1[Q1, Q2, Q3] = Pz2 [Q2, Q1, Q3], and Px1y2−y1x2
[Q1, Q2, Q3] = −Px1y2−y1x2

[Q2, Q1, Q3].

The (L = 2)-case can be useful in theoretical physics and chemistry to expand

observables such as quadrupole moments. However, the elimination of some primary

invariants breaks the permutational symmetry of the subrings used for the modules

MÃ1

2 , MÃ2

3 , . . ., of the covariant module decomposition. So, unfortunately in such a

case, further permutational symmetry adaptation will be unpractical in general.
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Appendix A. Generating functions obtained by coupling

The Molien function with a direct sum initial representation gG (Γfinal ← Γinitial,1 ⊕ Γinitial,2;λ)

can be calculated using Molien functions for the Γinitial,1 and Γinitial,2 initial representa-

tions, see Eq.(43) of [11]:

gG (Γf ← Γi,1 ⊕ Γi,2;λ) =
∑

Γf,1

∑

Γf,2

n
Γf

Γf,1,Γf,2
gG (Γf,1 ← Γi,1;λ) g

G (Γf,2 ← Γi,2;λ) ,(A.1)

where the symbol n
Γf

Γf,1,Γf,2
counts the irreducible representation of Γf in the product

Γf,1 ⊗ Γf,2.

This paper deals with the group G = SO(3). The initial representation ΓN

originating from N spatial vectors is reducible:

ΓN = Γ1 ⊕ ΓN−1,

and The Molien function g (Γfinal; ΓN ;λ) can be calculated using Eq. (A.1) with initial

representations Γi,1 = Γ1 and Γi,2 = ΓN−1.

g ((L)← ΓN ;λ)

=
∞∑

LA=0

∞∑

LB=0

nL
LA,LB

g ((LA) ; Γ1;λ) g ((LB) ; ΓN−1;λ) (A.2)

g ((L)← ΓN ;λ)

=

∞∑

LA=0

LA+L∑

LB=|L−LA|

g ((LA)← Γ1;λ) g ((LB)← ΓN−1;λ)

=
L−1∑

LA=0

LA+L∑

LB=L−LA

g ((LA)← Γ1;λ) g ((LB)← ΓN−1;λ)

+
∞∑

LA=L

LA+L∑

LB=LA−L

g ((LA)← Γ1;λ) g ((LB)← ΓN−1;λ)
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Appendix B. Generating function for four and five vectors

Appendix B.1. Generating function for four vectors

Let us write the four spatial vector generating function in the form,

g1 ((L)← Γ4;λ) =
N1 ((L)← Γ4;λ)

(1− λ2)9
, (B.1)

By coupling the generating function for one vector and the generating function for

three vectors, the numerator is found to be:

N1 ((L) ; Γ4;λ)

=
(L+ 3)(L+ 2)(L+ 1)

6
λL +

(L+ 3)(L+ 2)L

2
λL+1

+
(L+ 3)(L+ 2)(L+ 1)

6
λL+2 −

(L+ 3)(L− 2)(5L+ 4)

6
λL+3

−
(L+ 3)(L− 2)(5L+ 1)

6
λL+4 +

L(L− 1)(L− 2)

6
λL+5

+
(L+ 1)(L− 1)(L− 2)

2
λL+6 +

L(L− 1)(L− 2)

6
λL+7 (B.2)

The generating function (B.1) has positive or null coefficients in its numerators for

L = 0, 1 or 2. Negative coefficients appear for L ≥ 3. However, the Molien function can

be rewritten as (B.3), which has only positive coefficients for L = 2, 3 or 4, as (B.4),

which has only positive coefficients for L between 5 and 16, and as (B.5), which has

only positive coefficients for L ≥ 17.

g2 ((L)← Γ4;λ)

=
(L+3)(L+2)(L+1)

6
λL + 4(2L+ 1)λL+1 + (−1

6
L3 − L2 + 37

6
L+ 3)λL+2

(1− λ2)9

+
2(L− 2)(2L+ 1)λL+1 − (L−2)(L2−16L−9)

6
λL+2

(1− λ2)8

+
L(L−1)(L−2)

2
λL+1 + (L+1)(L−1)(L−2)

2
λL+2 + L(L−1)(L−2)

6
λL+3

(1− λ2)7
(B.3)

g3 ((L)← Γ4;λ)

=
4(2L+ 1)λL + 4(2L+ 1)λL+1

(1− λ2)9

+
(1
6
L3 + L2 − 37

6
L− 3)λL + 2(L− 2)(2L+ 1)λL+1 − (L−2)(L2−16L−9)

6
λL+2

(1− λ2)8

+
L(L−1)(L−2)

2
λL+1 + (L+1)(L−1)(L−2)

2
λL+2 + L(L−1)(L−2)

6
λL+3

(1− λ2)7
(B.4)

g4 ((L)← Γ4;λ)
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=
4(2L+ 1)λL + 4(2L+ 1)λL+1

(1− λ2)9

+
2(L− 3)(2L+ 1)λL + 2(L− 2)(2L+ 1)λL+1

(1− λ2)8

+
(L−2)(L2−16L−9)

6
λL + L(L−1)(L−2)

2
λL+1 + (L+1)(L−1)(L−2)

2
λL+2 + L(L−1)(L−2)

6
λL+3

(1− λ2)7

(B.5)

The generating function suitable for a symbolic interpretation in term of a gener-

alized integrity basis are given in Table B1 for selected values of L.

Table B1. Expressions of the gi Molien functions for four spatial vectors and selected

(L) final irreducible representations.

i Γfinal gi (Γfinal ← Γ4;λ)

1 (0) 1+λ
2+4λ3+λ

4+λ
6

(1−λ2)9

1 (1) 4λ+6λ2+4λ3+6λ4+4λ5

(1−λ2)9

1,2 (2) 10λ2+20λ3+10λ4

(1−λ2)9

2 (3) 20λ3+28λ4+8λ5

(1−λ2)9
+ 14λ4+8λ5

(1−λ2)8
+ 3λ4+4λ5+λ

6

(1−λ2)7

2 (4) 35λ4+36λ5+λ
6

(1−λ2)9
+ 36λ5+19λ6

(1−λ2)8
+ 12λ5+15λ6+4λ7

(1−λ2)7

3 (5) 44λ5+44λ6

(1−λ2)9
+ 12λ5+66λ6+32λ7

(1−λ2)8
+ 30λ6+36λ7+10λ8

(1−λ2)7

3 (6) 52λ6+52λ7

(1−λ2)9
+ 32λ6+104λ7+46λ8

(1−λ2)8
+ 60λ7+70λ8+20λ9

(1−λ2)7

3 (7) 60λ7+60λ8

(1−λ2)9
+ 60λ7+150λ8+60λ9

(1−λ2)8
+ 105λ8+120λ9+35λ10

(1−λ2)7

3
...

3 (14) 116λ14+116λ15

(1−λ2)9
+ 564λ14+696λ15+74λ16

(1−λ2)8
+ 1092λ15+1170λ16+364λ17

(1−λ2)7

3 (15) 124λ15+124λ16

(1−λ2)9
+ 692λ15+806λ16+52λ17

(1−λ2)8
+ 1365λ16+1456λ17+455λ18

(1−λ2)7

3 (16) 132λ16+132λ17

(1−λ2)9
+ 837λ16+924λ17+21λ18

(1−λ2)8
+ 1680λ17+1785λ18+560λ19

(1−λ2)7

4 (17) 140λ17+140λ18

(1−λ2)9
+ 980λ17+1050λ18

(1−λ2)8
+ 20λ17+2040λ18+2160λ19+680λ20

(1−λ2)7

4 (18) 148λ18+148λ19

(1−λ2)9
+ 1110λ18+1184λ19

(1−λ2)8
+ 72λ18+2448λ19+2584λ20+816λ21

(1−λ2)7

4 (19) 156λ19+156λ20

(1−λ2)9
+ 1248λ19+1326λ20

(1−λ2)8
+ 136λ19+2907λ20+3060λ21+969λ22

(1−λ2)7

4
...
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Appendix B.2. Generating function for five vectors

Let us write the five spatial vector generating function in the form,

g1 ((L)← Γ5;λ) =
N1 ((L)← Γ5;λ)

(1− λ2)12
, (B.6)

By coupling the generating function for one vector and the generating function for four

vectors, the numerator is found to be:

N1 ((L)← Γ5;λ) =
(L+ 4)(L+ 3)(L+ 2)(L+ 1)

24
λL +

(L+ 4)(L+ 3)(L+ 2)L

6
λL+1

+
(L+ 4)(L+ 3)(L+ 2)(L+ 1)

8
λL+2 −

(L+ 4)(L+ 3)(L2 − 3L− 5
2
)

3
λL+3

−
(L+ 4)(L+ 3)(L− 3)(7L+ 2)

12
λL+4 −

(L+ 4)(L− 3)(2L+ 1)

2
λL+5

+
(L+ 4)(L− 2)(L− 3)(7L+ 5)

12
λL+6 +

(L− 2)(L− 3)(L2 + 5L+ 3
2
)

3
λL+7

−
L(L− 1)(L− 2)(L− 3)

8
λL+8 −

(L+ 1)(L− 1)(L− 2)(L− 3)

6
λL+9

−
L(L− 1)(L− 2)(L− 3)

24
λL+10 (B.7)

The following six alternative forms of the generating function provide at least one

expression with only positive coefficients for any L-values. In section 3.1, an algorithm

to derive them will be explained.

g2 ((L)← Γ5;λ)

=
N2,1 ((L)← Γ5;λ)

(1− λ2)12
+
N2,2 ((L)← Γ5;λ)

(1− λ2)11
+
N2,3 ((L)← Γ5;λ)

(1− λ2)10

+
N2,4 ((L)← Γ5;λ)

(1− λ2)9
(B.8)

N2,1 ((L)← Γ5;λ)

=
(L+ 4)(L+ 3)(L+ 2)(L+ 1)

24
λL + 20(2L+ 1)λL+1

+ (−
1

24
L4 −

5

12
L3 −

35

24
L2 +

455

12
L+ 19)λL+2

N2,2 ((L) ; Γ5;λ)

= (
1

6
L4 +

3

2
L3 +

13

3
L2 − 36L− 20)λL+1

−
(L− 3)(L3 + 13L2 − 406L− 208)

24
λL+2

−
(L− 3)(L3 + 12L2 − 58L− 30)

6
λL+3

N2,3 ((L)← Γ5;λ)

= −
(L− 2)(L− 3)(L2 − 81L− 40)

24
λL+2 −

(L− 2)(L− 3)(L2 − 10L− 6)

6
λL+3
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N2,4 ((L)← Γ5;λ)

=
L(L− 1)(L− 2)(L− 3)

4
λL+2 +

(L+ 1)(L− 1)(L− 2)(L− 3)

6
λL+3

+
L(L− 1)(L− 2)(L− 3)

24
λL+4

g3 ((L) ; Γ5;λ)

=
N3,1 ((L)← Γ5;λ)

(1− λ2)12
+
N3,2 ((L)← Γ5;λ)

(1− λ2)11
+
N3,3 ((L)← Γ5;λ)

(1− λ2)10

+
N3,4 ((L)← Γ5;λ)

(1− λ2)9
(B.9)

N3,1 ((L)← Γ5;λ)

=
(L+ 4)(L+ 3)(L+ 2)(L+ 1)

24
λL + 20(2L+ 1)λL+1

+ (−
1

24
L4 −

5

12
L3 −

35

24
L2 +

455

12
L+ 19)λL+2

N3,2 ((L)← Γ5;λ)

= 5(2L+ 1)(2L− 7)λL+1 −
(L− 3)(L3 + 13L2 − 406L− 208)

24
λL+2

N3,3 ((L)← Γ5;λ)

=
(L− 3)(L3 + 12L2 − 58L− 30)

6
λL+1

−
(L− 2)(L− 3)(L2 − 81L− 40)

24
λL+2

−
(L− 2)(L− 3)(L2 − 10L− 6)

6
λL+3

N3,4 ((L)← Γ5;λ)

=
L(L− 1)(L− 2)(L− 3)

4
λL+2 +

(L+ 1)(L− 1)(L− 2)(L− 3)

6
λL+3

+
L(L− 1)(L− 2)(L− 3)

24
λL+4

g4 ((L)← Γ5;λ)

=
N4,1 ((L)← Γ5;λ)

(1− λ2)12
+
N4,2 ((L)← Γ5;λ)

(1− λ2)11
+
N4,3 ((L)← Γ5;λ)

(1− λ2)10

+
N4,4 ((L)← Γ5;λ)

(1− λ2)9
(B.10)

N4,1 ((L)← Γ5;λ)

= 20(2L+ 1)λL + 20(2L+ 1)λL+1

N4,2 ((L)← Γ5;λ)

= (
1

24
L4 +

5

12
L3 +

35

24
L2 −

455

12
L− 19)λL + 5(2L+ 1)(2L− 7)λL+1

−
(L− 3)(L3 + 13L2 − 406L− 208)

24
λL+2

N4,3 ((L) ; Γ5;λ)
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=
(L− 3)(L3 + 12L2 − 58L− 30)

6
λL+1 −

(L− 2)(L− 3)(L2 − 81L− 40)

24
λL+2

−
(L− 2)(L− 3)(L2 − 10L− 6)

6
λL+3

N4,4 ((L)← Γ5;λ)

=
L(L− 1)(L− 2)(L− 3)

4
λL+2 +

(L+ 1)(L− 1)(L− 2)(L− 3)

6
λL+3

+
L(L− 1)(L− 2)(L− 3)

24
λL+4

g5 ((L)← Γ5;λ)

=
N5,1 ((L)← Γ5;λ)

(1− λ2)12
+
N5,2 ((L)← Γ5;λ)

(1− λ2)11
+
N5,3 ((L)← Γ5;λ)

(1− λ2)10

+
N5,4 ((L)← Γ5;λ)

(1− λ2)9
(B.11)

N5,1 ((L)← Γ5;λ)

= 20(2L+ 1)λL + 20(2L+ 1)λL+1

N5,2 ((L)← Γ5;λ)

= (
1

24
L4 +

5

12
L3 +

35

24
L2 −

455

12
L− 19)λL + 5(2L+ 1)(2L− 7)λL+1

−
(L− 3)(L3 + 13L2 − 406L− 208)

24
λL+2

N5,3 ((L)← Γ5;λ)

= (L− 3)(2L− 7)(2L+ 1)λL+1 −
(L− 2)(L− 3)(L2 − 81L− 40)

24
λL+2

N5,4 ((L)← Γ5;λ)

=
(L− 2)(L− 3)(L2 − 10L− 6)

6
λL+1 +

L(L− 1)(L− 2)(L− 3)

4
λL+2

+
(L+ 1)(L− 1)(L− 2)(L− 3)

6
λL+3 +

L(L− 1)(L− 2)(L− 3)

24
λL+4

g6 ((L)← Γ5;λ)

=
N6,1 ((L)← Γ5;λ)

(1− λ2)12
+
N6,2 ((L)← Γ5;λ)

(1− λ2)11
+
N6,3 ((L)← Γ5;λ)

(1− λ2)10

+
N6,4 ((L)← Γ5;λ)

(1− λ2)9
(B.12)

N6,1 ((L)← Γ5;λ)

= 20(2L+ 1)λL + 20(2L+ 1)λL+1

N6,2 ((L)← Γ5;λ)

= 5(2L+ 1)(2L− 9)λL + 5(2L+ 1)(2L− 7)λL+1

N6,3 ((L)← Γ5;λ)

=
(L− 3)(L3 + 13L2 − 406L− 208)

24
λL + (L− 3)(2L+ 1)(2L− 7)λL+1
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−
(L− 2)(L− 3)(L2 − 81L− 40)

24
λL+2

N6,4 ((L)← Γ5;λ)

=
(L− 2)(L− 3)(L2 − 10L− 6)

6
λL+1 +

L(L− 1)(L− 2)(L− 3)

4
λL+2

+
(L+ 1)(L− 1)(L− 2)(L− 3)

6
λL+3 +

L(L− 1)(L− 2)(L− 3)

24
λL+4

g7 ((L)← Γ5;λ)

=
N7,1 ((L)← Γ5;λ)

(1− λ2)12
+
N7,2 ((L)← Γ5;λ)

(1− λ2)11
+
N7,3 ((L)← Γ5;λ)

(1− λ2)10

+
N7,4 ((L)← Γ5;λ)

(1− λ2)9
(B.13)

N7,1 ((L)← Γ5;λ)

= 20(2L+ 1)λL + 20(2L+ 1)λL+1

N7,2 ((L)← Γ5;λ)

= 5(2L+ 1)(2L− 9)λL + 5(2L+ 1)(2L− 7)λL+1

N7,3 ((L)← Γ5;λ)

= 2(L− 3)(L− 6)(2L+ 1)λL + (L− 3)(2L+ 1)(2L− 7)λL+1

N7,4 ((L)← Γ5;λ)

=
(L− 2)(L− 3)(L2 − 81L− 40)

24
λL +

(L− 2)(L− 3)(L2 − 10L− 6)

6
λL+1

+
L(L− 1)(L− 2)(L− 3)

4
λL+2 +

(L+ 1)(L− 1)(L− 2)(L− 3)

6
λL+3

+
L(L− 1)(L− 2)(L− 3)

24
λL+4

The generating function suitable for a symbolic interpretation in term of a generalized

integrity basis are given in Table B2 for selected values of L.
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Table B2. Expressions of the gi Molien functions for five spatial vectors and selected

(L) final irreducible representations.

i Γfinal gi (Γfinal ← Γ5;λ)

1 (0) 1+3λ2+10λ3+6λ4+6λ5+10λ6+3λ7+λ
9

(1−λ2)12

1 (1) 5λ+10λ2+15λ3+30λ4+30λ5+15λ6+10λ7+5λ8

(1−λ2)12

1 (2) 15λ2+40λ3+45λ4+45λ5+40λ6+15λ7

(1−λ2)12

1 (3) 35λ3+105λ4+105λ5+35λ6

(1−λ2)12

2 (4) 70λ4+180λ5+110λ6

(1−λ2)12
+ 44λ5+65λ6+λ

7

(1−λ2)11
+ 29λ6+10λ7

(1−λ2)10
+ 6λ6+5λ7+λ

8

(1−λ2)9

3 (5) 126λ5+220λ6+94λ7

(1−λ2)12
+ 165λ6+149λ7

(1−λ2)11
+ 35λ6+105λ7+31λ8

(1−λ2)10
+ 30λ7+24λ8+5λ9

(1−λ2)9

3 (6) 210λ6+260λ7+50λ8

(1−λ2)12
+ 325λ7+245λ8

(1−λ2)11
+ 135λ7+245λ8+60λ9

(1−λ2)10
+ 90λ8+70λ9+15λ10

(1−λ2)9

4 (7) 300λ7+300λ8

(1−λ2)12
+ 30λ7+525λ8+345λ9

(1−λ2)11
+ 330λ8+465λ9+90λ10

(1−λ2)10
+ 210λ9+160λ10+35λ11

(1−λ2)9

4 (8) 340λ8+340λ9

(1−λ2)12
+ 155λ8+765λ9+440λ10

(1−λ2)11
+ 655λ9+780λ10+110λ11

(1−λ2)10
+ 420λ10+315λ11+70λ12

(1−λ2)9

4 (9) 380λ9+380λ10

(1−λ2)12
+ 335λ9+1045λ10+520λ11

(1−λ2)11
+ 1149λ10+1204λ11+105λ12

(1−λ2)10
+ 756λ11+560λ12+126λ13

(1−λ2)9

4 (10) 420λ10+420λ11

(1−λ2)12
+ 581λ10+1365λ11+574λ12

(1−λ2)11
+ 1855λ11+1750λ12+56λ13

(1−λ2)10
+ 1260λ12+924λ13+210λ14

(1−λ2)9

5 (11) 460λ11+460λ12

(1−λ2)12
+ 905λ11+1725λ12+590λ13

(1−λ2)11
+ 2760λ12+2430λ13

(1−λ2)10

+ 60λ12+1980λ13+1440λ14+330λ15

(1−λ2)9

5 (12) 500λ12+500λ13

(1−λ2)12
+ 1320λ12+2125λ13+555λ14

(1−λ2)11
+ 3825λ13+3255λ14

(1−λ2)10

+ 270λ13+2970λ14+2145λ15+495λ16

(1−λ2)9

5 (13) 540λ13+540λ14

(1−λ2)12
+ 1840λ13+2565λ14+455λ15

(1−λ2)11
+ 5130λ14+4235λ15

(1−λ2)10

+ 605λ14+4290λ15+3080λ16+715λ17

(1−λ2)9

5 (14) 580λ14+580λ15

(1−λ2)12
+ 2480λ14+3045λ15+275λ16

(1−λ2)11
+ 6699λ15+5379λ16

(1−λ2)10

+ 1100λ15+6006λ16+4290λ17+1001λ18

(1−λ2)9

6 (15) 620λ15+620λ16

(1−λ2)12
+ 3255λ15+3565λ16

(1−λ2)11
+ λ

15+8556λ16+6695λ17

(1−λ2)10

+ 1794λ16+8190λ17+5824λ18+1365λ19

(1−λ2)9

6 (16) 660λ16+660λ17

(1−λ2)12
+ 3795λ16+4125λ17

(1−λ2)11
+ 390λ16+10725λ17+8190λ18

(1−λ2)10

+ 2730λ17+10920λ18+7735λ19+1820λ20

(1−λ2)9

6 (17) 700λ17+700λ18

(1−λ2)12
+ 4375λ17+4725λ18

(1−λ2)11
+ 910λ17+13230λ18+9870λ19

(1−λ2)10

+ 3955λ18+14280λ19+10080λ20+2380λ21

(1−λ2)9

6
...

...

6 (79) 3180λ79+3180λ80

(1−λ2)12
+ 118455λ79+120045λ80

(1−λ2)11
+ 1715985λ79+1824684λ80+48279λ81

(1−λ2)10

+ 5310690λ80+9015006λ81+6086080λ82+1502501λ83

(1−λ2)9

6 (80) 3220λ80+3220λ81

(1−λ2)12
+ 121555λ80+123165λ81

(1−λ2)11
+ 1804726λ80+1896741λ81+30030λ82

(1−λ2)10

+ 5599594λ81+9489480λ82+6405399λ83+1581580λ84

(1−λ2)9

6 (81) 3260λ81+3260λ82

(1−λ2)12
+ 124695λ81+126325λ82

(1−λ2)11
+ 1896830λ81+1970670λ82+10270λ83

(1−λ2)10

+ 5900115λ82+9982440λ83+6737120λ84+1663740λ85

(1−λ2)9

7 (82) 3300λ82+3300λ83

(1−λ2)12
+ 127875λ82+129525λ83

(1−λ2)11
+ 1981320λ82+2046495λ83

(1−λ2)10

+ 11060λ82+6212560λ83+10494360λ84+7081560λ85+1749060λ86

(1−λ2)9

7 (83) 3340λ83+3340λ84

(1−λ2)12
+ 131095λ83+132765λ84

(1−λ2)11
+ 2057440λ83+2124240λ84

(1−λ2)10

+ 34020λ83+6537240λ84+11025720λ85+7439040λ86+1837620λ87

(1−λ2)9

7 (84) 3380λ84+3380λ85

(1−λ2)12
+ 134355λ84+136045λ85

(1−λ2)11
+ 2135484λ84+2203929λ85

(1−λ2)10

+ 58671λ84+6874470λ85+11577006λ86+7809885λ87+1929501λ88

(1−λ2)9

7
...

...


