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New Models for Efficient Authenticated Dictionaries

K. Atighehchi, A. Bonnecaze, G. Risterucci

Aix Marseille University, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France

Abstract

We propose models for data authentication which take into account the behavior of the
clients who perform queries. Our models reduce the size of the authenticated proof
when the frequency of the query corresponding to a given data is higher. Existing
models implicitly assume the frequency distribution of queries to be uniform, but in
reality, this distribution generally follows Zipf’s law. Our models better reflect reality
and the communication cost between clients and the server provider is reduced allowing
the server to save bandwidth. The obtained gain on the average proof size compared
to existing schemes depends on the parameter of Zipf law. The greater the parameter,
the greater the gain. When the frequency distribution follows a perfect Zipf’s law, we
obtain a gain that can reach 26%. Experiments show the existence of applications for
which Zipf parameter is greater than 1, leading to even higher gains.

Keywords: Authenticated dictionary, Data structure, Merkle tree, Huffman code,
Zipf, Time series

1. Introduction

Authenticated dictionaries are used to organize and manage a collection of data
in order to answer queries on these data and to certify the answers. They have been
heavily studied recently and have many applications including certificate revocation in
public key infrastructure [1, 2], Web mail search results [3], geographic information
system querying, or third party data publication on the Internet [4, 5]. This last appli-
cation is of great interest with the advent of cloud computing and Web services. For
example, it is important that a user who consults a Web page can be confident of the
authenticity of that page (or some of its contents).

Classical schemes involve three actors [6, 7]: a trusted source which is generally
the owner of the data, an untrusted provider also called directory and a set of users
(also called clients). The directory receives a set of data from the source together
with authentication information. These contents are stored by both the source and the
directory but only the latter communicates with users. Therefore, as shown in Figure 1,
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Figure 1: The three-party authentication model

users communicate directly with the directory to query the authentication information
on a given data. This information contains a cryptographic proof and allows the users to
authenticate the data. Note that the source and the directory are not necessarily hosted
on two distinct machines.

Most of authenticated dictionaries use Merkle trees, red-black trees or skip-lists
as data structures. These structures are closely equivalent in terms of cost of storage,
communication and time [6]. They are well adapted as long as no distinction is made
between data. However, in some situations, it may be useful to manage data as a
function of some parameters. In the case of publications on the Internet, some pages
are accessed more frequently, depending on user behavior. Some pages have a better
reputation than others, and it may prove useful to order them following this criterion.
In fact, any behavioral criterion could be taken into account.

In this paper, we introduce authenticated dictionary schemes which take into ac-
count the frequency of data being accessed. As regards Web traffic, it is well known
that its frequency distribution follows Zipf’s law [8, 9]. More precisely, most traffic
follows this law except for the traffic residue corresponding to very low frequencies.
In fact, there is a drooping tail, which means that for these frequencies, the distribution
decreases much faster than Zipf’s law. Zipf law depends on a parameter (also called
exponent). When this parameter is equal to 1, Zipf law is so-called perfect and the
greater the parameter, the greater the gain.

The paper is organized as follows. Section 2 contains background information
regarding data structures and the dictionary problem. Section 3 briefly presents the
main types of existing dictionaries. In Section 4, we introduce the notion of frequency
and we show its importance to optimize the efficiency of the dictionary, in particular in
terms of authentication proof size. Since the frequency distribution varies over time, the
way of updating the content of the data structure represents a major issue. A possible
solution is to regularly reconstruct the structure. Another solution is to make some
updates without reconstructing the whole structure. In the case of a reconstruction, a
(current) frequency distribution must be considered since the structure depends on it.
This frequency distribution can be calculated based on the preceding frequencies, either
directly or using a predicting function. Section 5 focuses on the data structures that
have to be used in order to take into account the frequency parameter. In Section 6, we
propose the construction of a dictionary based on append/disjoin-only data structures.
In Section 7, we introduce Huffman trees to improve efficiency. When the frequency
distribution follows a perfect Zipf’s law, we obtain a gain that can reach 26% on the
average proof size compared to existing schemes. The use of an adaptive Huffman
tree is discussed in Section 8. The decision of completely rebuild or just update the
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structure depends on the nature of the dictionary and its desired efficiency properties.
In Section 9, we consider two use cases and we analyze the obtained gains. The first
experiment gives non significant gains since Zipf law parameter is less than 1, whereas
the second experiment exceeds the expected gains of a perfect Zipf law because the
parameter is equal to 1.4.

2. Authenticated Dictionary Problem

2.1. Dictionary features and efficiency

The authenticated dictionary problem has already been defined in the literature, for
example in [6, 10]. In this section, we summarize the main features of an authenti-
cated dictionary. The source has a set S of elements which evolves over time through
insertion and deletion of items. The directory maintains a copy of this set and its role
is to answer queries from the users. A user may request a given element or may per-
form a membership query on S in order to know whether an item belongs or not to S.
The user must be able to verify the attached cryptographic proof (in particular, public
information about the source must be available).

Efficiency makes the difference between a good dictionary and a bad one. This
efficiency can be measured in terms of computation cost, which is the time taken by
the computation together with the cost of the hardware (memory space and bandwidth)
used by the entities. The size of the proofs is perhaps the most important parameter
since it plays a significant role on the interface bandwidth of the directory. Moreover,
it may reduce the time for a user to verify the answer to a query. The time spent by
the directory to answer a query is also an important parameter when the number of
users is very large. Space used by the data structure as well as source to directory
communication should be optimized. Finally, the time to perform an update should
also be optimized.

In the rest of the article, n represents the number of data elements (n := #S)
and H represents a cryptographic hash function. The unique identifier of an element is
denoted Idi for i ∈ {1, . . . , n}, its hashed identifier is uj = H(Idi) for j ∈ {1, . . . , n}
such that the values uj are ordered ascendingly. Its content is denotedCj and its hashed
value cj .

2.2. Data structures and authentication

Data structures represent a way of storing and organizing data so that searching,
adding or deleting operations can be done efficiently. A static structure has a size
that cannot be changed and therefore it is not possible to delete or add any data a
posteriori. However, the size of dynamic data structures can change allowing insertion
and deletion operations. In this paper, the term dynamic data structure refers to any
data structure which accepts insertion and deletion of data at any position. The term
append/disjoin-only data structure refers to any data structure which accepts insertion
and deletion at the end of the structure. Examples of dynamic structures [11] are hash
tables, trees like 2-3 Trees, B-Trees or red-black trees, or other random structures like
non-deterministic skip-lists [12].
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Authentication can be provided by multiple cryptographic primitives like hash func-
tions, digital signature algorithms or arithmetic accumulator functions. The simplest,
albeit not the most efficient approach consists in signing each element from the dictio-
nary with a standardized signature algorithm like ECDSA. In fact, the performance of
the system mainly depends on the type of cryptographic tools and the way to use them.

3. Existing Authenticated Dictionaries

In this section, we list the three main types of authenticated dictionaries. Many of
their performances are analyzed in the state of the art of Crosby and Wallach [13].

3.1. Signature Based Authenticated Dictionary

The easiest way for creating an authenticated dictionary is to sign and timestamp
each pair element (ui, ci) with a digital signature algorithm. However, in order to
also provide proof of non-existence, it is preferable to sign and timestamp each triplet
(ui, ui+1, ci). This signature, authenticating the pair (ui, ci), certifies that there is no
key in the interval ]ui, ui+1[.

The first drawback of this system is the number of signatures to generate, which is
in O

(
n
)
. Moreover, signatures have to be regularly recomputed, either for datation or

updating version (in the case of a ”persistent” dictionary) reasons. Thus, this system
is not to consider if the dictionary has a lot of elements and must be updated very
often [13]. In fact, the only benefit of this system is the size of the authentication
proof that has to be given to the user, since it is a single signature. In the context
of persistent authenticated dictionaries, a speculation technique [14] was proposed to
slightly improve the cost of an update, from O

(
n
)

to O
(
Cn1/C

)
signatures at the

counterpart of longer proofs, where C is a chosen parameter. In this paper, we focus
on “non-persistent” authenticated dictionaries.

In order to make efficient the access to a pair element, each element should be
referenced in an efficient data structure. Such data structure can be an array or a search
balanced tree which has a search operation cost in O

(
log n

)
. In case the dictionary is

dynamic, the data structure is also dynamic and a red-black tree or a 2-3 tree can make
efficient updates in O

(
log n

)
(Throughout the paper, log2 is denoted log).

3.2. Tree Based Authenticated Dictionary

In addition to their basic features, data structures can be used to construct authen-
ticating mechanisms, while reducing the number of signatures to be generated by the
authenticated dictionary. Data structures based on rooted graphs are well adapted to
deal with such mechanisms [6, 10, 15, 16] since authenticating all the data covered
by the graph just requires one single signature and some hash computations. An
example of authenticated data structure is the static Merkle tree [17, 18] of which
the number of leaves is a power of 2. There exist variants accepting any number
of leaves. Although these variants can still be considered as static, they can also
be considered as append/disjoin-only data structures since structural changes can be
done at the right side of the tree. This type of structure is suitable for time stamp-
ing [19, 20]. In the following, we briefly detail one of these variants [19]. It is an
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almost balanced tree in which values of the internal nodes are calculated in the fol-
lowing way. Let (e1, e2, . . . , en) be the values of the leaves at the base of the tree.
Values of nodes at the previous level are (H(e2i+1, e2i+2)i=0...(n−2)/2) if n is even,
and (H(e2i+1, e2i+2)i=0...(n−3)/2, en) otherwise. This process is repeated until a sin-
gle value is obtained (this is the root node value). Adding an element e∗ after en is
a very simple operation. The value v of the root of the smallest (perfectly) balanced
subtree to where en belongs is changed to v′ = H(v, e∗). Then, values of the internal
nodes on the path from this root to the root of the tree are updated. The disjoin opera-
tion is just the inverse operation. Note that this structure is equivalent to a deterministic
skip-list. Finally, one might add that static structures should always be preferred for
their better complexity when there is no need for complex operations.

3.3. Accumulator Based Authenticated Dictionary

While tree constructions allow authentication and updating to be done at best in
logarithmic costs, some accumulators allow these operations to be done in constant
time. Two types of accumulators can be distinguished: those which are based on an
arithmetic problem like the RSA accumulator [21] or pairing based accumulators [22],
and those which are based on other problems like the Nyberg accumulator [23] or the
Bloom filter [24], based on probabilistic data structures. While similar, Bloom filter
and Nyberg accumulator come from different domains. The first one comes from the
domain of data structure whereas the later one as well as the RSA accumulator were
introduced in a cryptographic context.

In order to implement an authenticated dictionary system, an accumulator alone is
not enough. As with a hash tree, an accumulator is just an intermediary authentication
system that has to be authenticated by another mechanism such as a digital signature
or a more elaborated system.

Nyberg accumulator and Bloom filter are not competitive compared to hash tree
in terms of efficiency. Similarly, Crosby and Wallach show in [13] the limits of the
RSA accumulator in terms of calculations and communication. However, in 2008 Pa-
pamanthou et al. [25] propose a cryptographic construction based on RSA accumula-
tors which exploits the efficiency of hash tables. In 2009, the same authors (in [26],
published in 2015) proposed to combine the RSA accumulator with a pairing one in
a nested way over a tree of constant depth. Asymptotically the client can optimally
authenticate operations on hash tables with constant time and communication com-
plexities. However, the cost for performing an update is much higher than the cost
induced by using Merkle trees or their equivalent.

In summary, an authenticated dictionary based on a balanced hash tree still repre-
sents a good solution in terms of calculation cost. Its implementation and updates are
faster. As stressed in the study of Crosby et Wallach, its drawback is the size of a proof,
which is logarithmic in n, when compared with the first method based on signatures.
Overall, if the number of requests between two updates is huge, the first solution based
on a unique signature can be considered. Otherwise, the second solution using hash
trees is more efficient. In this paper, we will always consider solutions based on tree
structures.
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4. Frequency Distribution Parameter

4.1. Frequency Notion
So far, authentication schemes have relied on data structures like Merkle trees or

skip-lists. These data structures allow us to obtain small sizes of proof. In this sense,
they seem to be optimal whenever each data has the same probability to be queried.
However, in real life, users can make more queries on a given data than another. This
means that the frequency of queries may be far from uniform. In the case of publication
on the Internet, some Web pages are consulted more frequently than others. In order to
take into account this frequency notion, our aim is to introduce a scheme in which the
size of authentication proof answering a query is smaller when the frequency of this
query is higher. We obtain the following benefits:
• For the directory, we minimize on average the LAN/WAN interface bandwidth

usage. This interface bandwidth represents a critical aspect because the number
of simultaneous queries may be high.

• If the directory caches proofs which are frequently queried, the number of proofs
being cached will be higher, improving at the same time efficiency.

• On average, for a given user, the LAN/WAN interface bandwidth and the number
of calculations to verify a proof is reduced.

When the frequency distribution is uniform, it is preferable to use an almost balanced
tree (or an equivalent data structure). However, when the frequency distribution is not
uniform, there is no reason to use such a data structure. Rather, we should look for
unbalanced tree structures in order to improve efficiency, in particular on the size and
construction of proofs.

It is well known that the distribution of requests mainly follows Zipf’s law. This
distribution curve is close to the vertical axis for high frequency events whereas it is
close to the horizontal axis for the many very low frequency events.

4.2. Freshness of the Frequency Distribution
The tree structure needs to change according to the fluctuations of frequencies.

Statistics are maintained during an interval which can either depend on a number of
elements or be temporal. This interval is called a window and elements are key-value
pairs. We can indeed estimate the frequencies on a fixed length window rather than
upon the full sequence from scratch. An element which enters (respectively exits) the
window has a frequency incremented (respectively decremented) by 1. Frequencies of
elements entering the window are then increased, while frequencies of exiting elements
are decreased. The window works as a first in first out (FIFO) queue. The length of
the window is chosen in order to obtain the best estimation of the current distribution.
When the length of the window is equal to a fixed number of elements, the frequency
of a key-value pair is bounded by the window size and this window is moving at a
variable speed, depending on the fluctuation (over time) of the number of accesses to
the dictionary elements.

Galager [27] has proposed a method to age frequencies by multiplying them by a
value α < 1, that is, either every X accesses to the dictionary, or every t time units,
according to the chosen convention. Frequencies are not reset to 0 but they are lowered
before being incremented afresh, either after X accesses or t time units. This method
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raises several problems including the need to entirely reconstruct the authentication
tree each time we want to age past events. Therefore, it can not be used frequently if
the tree construction is expensive (when the dictionary is huge), and so X or t should
not be too large. Conversely the method should not be used too rarely otherwise it loses
much of its relevance.

A better solution, from Cormack et al. [28], is to age past events relatively to
current events, in the following way. We choose a value s > 1, close to 1, for instance
s = 1.01. To increase a frequency, the next power of s is added to it. For example, the
first element accessed has to be incremented by 1, the second has to be incremented
by s, the third by s2, and so on. When there is danger of arithmetic overflow for a
large power of s, all frequencies are divided by this power of s. Then we continue the
process from the beginning, incrementing by 1, then s, and so on. This method allows
the weight (i.e. frequency) of recently accessed elements to be increased, moving them
up near the root. This method was introduced by Cormack et al. [28] for real time
compression of data. It is well adapted when accesses are consecutive. In the case of an
authenticated dictionary, accesses can be simultaneous, and as a result, slightly changes
have to be made (for example, simultaneous accessed elements can be incremented by
the same power of s).

We propose another solution, much simpler, which consists to use a temporal win-
dow. This method allows the window to move at a constant speed and in this case,
neither the frequency of an element nor the number of elements are bounded by the
window size. We need to define some notations:
• tc is the tree construction time. This time is a function of the number of elements

to authenticate and the computer capabilities;
• tf is the time interval in which we measure the frequencies to take into account

for the next tree construction. Frequencies are then reinitialized when we start
again to accumulate the number of accesses;

• ∆t is the time interval between two consecutive (completed) constructions of T ;
• T (i) denotes the tree T constructed using the measures of the i-th time inter-

val tf .
The time unit has to be defined during practical tests. We necessarily have the

constraint ∆t ≥ max(tc, tf ). Note that T (i) can be obtained either by completely
reconstructing the tree or by updating it in order to reflect the changes between the
(i − 1)-th and the i-th measurement period. We can use either a window, as shown
in Figure 2a, or a sliding window scheme, as shown in Figure 2b, which will slide the
measurement period every tc time units. In this case, after the first construction, we
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have the constraint ∆t ≥ tc if tc ≤ tf .

4.3. Frequency Predictions
The current frequency distribution is calculated from the preceding frequencies and

can be determined in two ways. It can either use the preceding frequencies as they are
or use them in a predictive model. When the fluctuation of frequencies is important
between two time intervals (for example when considering a news website), the use of
a predictive model can be of interest. This is the subject of this subsection.

There exist many techniques of prediction like time series forecasting [29] and
more particularly the exponential smoothing [30] which makes use of the exponentially
weighted moving average, a method often used in computer networking to estimate
average round trip times, timeouts for TCP or queue lengths in routers.

More powerful models [29] are the ARIMA (Autoregressive Integrated Moving
Average), SARIMA (Seasonal ARIMA to take into account seasonality) or VARIMA
(Vector ARIMA for multivariate analysis) to name just a few. Notice that an approach
could be to use an univariate model for each key-value pair. In such a case, the Box-
Jenkins methodology [29] allows the model and its parameters to be selected correctly.
These last methods represent powerful tools for accurate predictions and can be used
to find the frequency distribution which will optimize the size of the authentication
proofs.

5. Adequate Data Structures

Our aim is to construct an authenticated dictionary with all the required features,
while reducing the size of the authentication proofs. In order to achieve this goal,
we use three tree structures. Authentication proofs use a structure T which cannot
be used for searching. In fact, T does not arrange data in order of key identifiers.
Thus, two other (non authenticated) structures are needed, one ordering all the data
according to key identifiers and the other one ordering data according to frequencies.
More precisely, our scheme relies on the following data structures.
• We assume the use of two efficient dynamic binary trees which serve to organize

and manage data. The first one, denoted A1, ranks the (ui)i=1...n in ascending
order and allows us to search a given ui and to retrieve a related information,
for instance its corresponding content, frequency or a pointer toward a node of
T . The second one, A2, is used to find a particular frequency and to retrieve its
corresponding pointers. The searching operations are done in O

(
log(n)

)
.

• Authentication proofs are constructed using the third data structure, T . As shown
earlier, Zipf’s distribution curve is close to the vertical axis for high frequency
events whereas it is close to the horizontal axis for the many very low frequency
events. The latter part of the curve (which corresponds to the lower tail) behaves
like a uniform distribution. Therefore, if we had to construct an authenticated
dictionary corresponding to the lower tail, we would certainly use a balanced
tree or any equivalent data structure (denoted T2). However, for the rest of the
distribution, we should use an unbalanced tree (denoted T1), having its leaves
ever closer to the root as frequency increases. Finally, in order to take into ac-
count the whole distribution, we propose to use a tree T whose root has T1 as left
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child and T2 as right child. We divide the data into two sets according to their
frequencies, and for example, according to the weighted median of the frequency
distribution.

Even though the system uses more data structures than existing authenticated dic-
tionaries, the global memory space taken by these structures is not significantly in-
creased. In fact, adding structures is mainly equivalent to adding pointers which do not
have a high memory cost.

In the next sections, we propose several possible structures for T1 which take into
account the frequency parameter. The first structure is presented in [31] and allows
the efficiency to be improved compared to existing schemes. The second one allows
efficiency to get closer to optimality and thus represents a better solution.

6. An Authenticated Dictionary Based on Append/Disjoin-only Data Structure

Intuitively, a good solution to our problem is to consider a tree T1 having its leaves
ever closer to the root as frequency increases, so as to reduce the size of proofs corre-
sponding to high frequency data. In [31], we have proposed to use for T1 an almost
balanced1 tree with internal leaves, as depicted in Figure 3b. In this paper, we simplify
a little by proposing to use a Merkle-like tree for T1 (thus T1 and T2 are both Merkle
tree). Such a simplification will allow us to obtain a more efficient procedure to update
frequencies with, as counterpart, a slightly reduced gain for the average proof size. We
call this simpler solution Solution MM and the one using internal leaves Solution IM.

6.1. Authenticated data structure construction

Notice that in order to construct its data structures the source needs information
about frequency of access. It receives these information from the directory. As already
introduced, {c1, c2, . . . , cn} is the set of hashed data. Let (f1, f2, . . . , fn) be the corre-
sponding list of n frequencies. We denote by Π the permutation in [1, . . . , n+ 1] such
that ui has a frequency fΠ(i).

In order to construct our tree T and its two children T1 and T2, we divide the data
into two sets according to their frequencies, or more precisely in our case, according
to the weighted median of the frequency distribution (see Figure 3a). Each data cor-
responds to a leaf. Leaves of T1 correspond to data having the highest frequencies
f1, f2, . . . , fk (ranked in descending order, where k is the smallest integer such that∑k
i=1 fi ≥ (

∑n
i=1 fi)/2. Leaves of T2 correspond to the rest of the data. In practice,

the number of leaves of T2, denoted Nr, is much larger than that of T1, denoted Nl.
The trees T1 and T2 are Merkle trees for standard authenticated dictionaries. We also
consider two special data, ±∞ both of frequency equal to zero which are used as sen-
tinels in order to chain data according to their identity. We set fΠ(n+1) = fn+1 = 0,
uΠ(n+1) = un+1 =∞ and u0 = −∞.

1We say that a tree is almost balanced if the maximum difference in depth between two leaves is in
O
(
logn

)
.
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Figure 3: Append/Disjoin-only data structures for authentication

The source constructs the following ordered sets

Lu = {(u1, fΠ(1)), . . . , (un, fΠ(n)), (+∞, 0)}

and
Lf = {(uΠ−1(1), f1), . . . , (uΠ−1(n), fn), (+∞, 0)}.

In the first list the values ui are ordered from the smallest to the largest, whereas the
second list is ranked according to frequency. From these lists, the source calculates
the tree T . Calculation of a leaf hi is done as follows: hΠ(1) = H(−∞, u1, c1),
hΠ(i) = H(ui−1, ui, ci) where i ∈ [2, . . . , n], hΠ(+∞) = H(un,+∞, 0), where 0
denotes empty content. Note that a pairwise chaining between the ui (and −∞, +∞)
is used when calculating the leaves, this device serves for constructing proofs of non-
existence.

We then construct two Merkle trees, a hashed tree T1 that authenticates the leaves
h1, ..., hk and a hashed tree T2 that authenticates the rest of the leaves. We recall that
the leaves are listed in descending order of frequency, with the tree T1 having the leaves
of highest frequency. Finally the root node of T is obtained by computing the hash of
the concatenation of the root nodes of T1 and T2.

When the tree T is calculated, the source transmits the list of elements
(Idi, Ci)i=1...n together with the timestamped signature of the root node of T to the
directory. Then, the directory is able to construct the data structures.
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6.2. Proof construction and verification algorithms

The authentication proof for a data of identifier u is similar to the one used in a
Merkle tree. The proof contains the list of hashed values which serve to calculate the
value at the root of T starting from the leaf of identifier u. It also contains the time-
stamped signature of the root. Let L be the list of leaves and nodes of T . The proof
construction is done using the list L while building a list P which is initially empty.
We add to P the hashed identifier directly preceding u in Lu. The process consists in
finding in L the leaf corresponding to identifier u and adding the value of its sibling
node in P . Finally, siblings of its ancestors have to be added until one of the two
children has been added. Finally, sibling of each successive ancestor have to be added
until the root has been reached.

At this point, P contains the hashed values representing the proof along with a bi-
nary code describing the path being taken in the tree.

The verification by the user of the authentication proof of an element of hashed
identifier uj consists of the following steps: (i) Compute cj from the downloaded con-
tent; (ii) Retrieve uj−1 in P and compute H(uj−1, uj , cj); (iii) Iteratively apply this
hash function on the rest of the data of P , in accordance with the path described in P ,
so as to compute the root of T . This step is performed in O

(
log n

)
hash function eval-

uations; (iv) Check the signature on this root. If it is valid, it means that the calculated
root is the correct one and the element of key uj is considered as authentic.

In case of a proof of existence of uj , the user does not download the associated
content and as a result, the value cj is added to the proof.

Lastly, if a hashed identifier u is not in the dictionary, a non-existence proof is
needed. It consists in finding the smaller index k in the list of ranked hashed identifiers
satisfying uk > u and constructing a proof of existence for uk, the chaining (uk−1, uk)
authenticated by the leaf hΠ(k) certifying the non-existence of u.

6.3. Updating algorithms

The source maintains its own copy of the authenticated dictionary and provides the
directory with the necessary information for updating. Such information contains the
type of operation to be made, the element (Id, C(Id)), and a signed timestamp of the
new value of the root node of T . When updating the dictionary, dynamic data structures
A1, A2 and T must be partially modified while maintaining the overall consistency of
the system.

Updating T consists of updating either T1 or T2 or both T1 and T2 and recomputing
the root node of T . We suppose that T1 and T2 are ”append/disjoin-only” Merkle trees
in which incremental insertions/deletions can be made efficiently on the right side of
the trees. We will see that in fact deletion and insertion at any position remain efficient
since, inside T1 or T2, the position of an element does not depend on any rank.

6.3.1. Insertion of an element
Insertion of a new pair element (Id, C) where H(Id) 6∈ (ui)i=1...n, is done

in T2 since we consider the data to have zero frequency (it has never been queried
before). The following operations must be done on T : (i) We first determine the
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largest index j such that uj < H(Id) < uj+1; (ii) The existing leaf hΠ(j+1) =
H(uj , uj+1, cj+1) is changed to hΠ(j+2) = H(H(Id), uj+1, cj+1); (iii) A new leaf
hΠ(j+1) = H(uj , H(Id), H(C)) is created on the right side of the tree; (iv) Internal
nodes corresponding to paths from each of these two leaves to the root node of T are
recomputed, leading to an overall computation time in O

(
log n

)
hash evaluations.

6.3.2. Updating an element
Here, we focus on the operation which changes the content of an existing element

(Id, C) to C ′. Let us denote c′ = H(C ′) the new hashed content. We first find j such
that uj = H(Id). Then, we set h′Π(j) = H(uj−1, uj , c

′). Finally, We recompute the
nodes of the path from the updated leaf h′Π(j) to the root node (these nodes may belong
to either T1 or T2). The overall computation time to perform this update is inO

(
log n

)
hash operations.

6.3.3. Content reordering
When the frequency of an element has changed, T must be updated. There are

three possibilities: (i) The leaf belongs to T1 and will stay in T1; (ii) The leaf belongs
to T1 and will move to T2; (iii) The leaf belongs to T2 and will move to T1.

In this paper, we focus on the third case, the two other cases are easier to deal with
and are left to the reader. For the sake of simplicity, we suppose that we just have to
move one element of frequency fm (m > i) between fi et fi+1. We avoid the use of
cyclic permutations since it would lead to update too many nodes (the cost would be
inO

(
(m− i) log(n)

)
). We describe an updating algorithm to maintain the frequencies

in a certain descending order. In fact, we allow the leaves to be in disorder in each
of the two trees but each leaf of T1 must have a frequency higher than each of the
leaves of T2. The leaf of frequency fm is inserted at the position of the leaf having the
lowest frequency in the tree T1 and this last leaf is moved down to the former position
of the leaf of frequency fm. Finally, nodes which are on the path of these two leaves
are recomputed back up the root of the tree. Since the height of T is in O

(
log n

)
, the

overall computation time to perform this exchange stays in O
(
log n

)
hash operations.

If more than one frequency has changed, this algorithm can be applied for each change,
albeit optimizations are possible but out of the scope of this paper.

This complexity has to be compared with the O
(
log2 n

)
hash operations required

when using the tree with internal leaves introduced in [31] (and depicted in Figure 3b).

6.3.4. Deletion of an element
Deleting an element consists of moving the right most leaf of Ti, i ∈ {1, 2} at the

place of the leaf corresponding to the element to delete. An updating of the pairwise
chaining is also required.

6.4. Proof size

We give here a summary about the authentication proof size. If we use a tree T1

with internal leaves (as depicted in Figure 3b), then the authentication proof is of length
3 in the best case, and of length dlog (n−m)e + 2 in the worst case, where m is the
Zipf distribution median. If we use a Merkle-like tree for T1, the authentication proof
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is of length dlog (m)e+ 2 in the best case and stays of length dlog (n−m)e+ 2 in the
worst case. If the queries are uniformly distributed in the set of elements, there is no
reason to divide the set in two parts. In this case only a standalone Merkle-like tree is
used in order to have an average size for the authentication proof tightly upperbounded
by dlog(n)e+ 1.

By contrast, when the queries are distributed according to a geometric distribution
of parameter p = 1/2 (which is close to a discrete equivalent of an exponential law),
it is best to use only T1 with its internal leaves. Indeed, by evaluating a geometric
series, one can deduce that in such a case the average proof size is asymptotically 4
hash values.

Zipf is based on harmonic series and therefore it is difficult to provide a bound
of complexity that closely reflects reality. Consequently, we give in Table 1 numerical
results by varying the dictionary size, along with the percentage gain compared to what
is obtained with the use of a standalone Merkle-like data structure.

Finally, we can see that the use of two subtrees instead of a single Merkle tree leads
to significant lower size of proofs. Besides, the (relatively small) gain brought by the
use of internal leaves in T1 is thwarted by a cost of content reordering operation which
is much more favorable with Solution MM.

Dictionary size Merkle-like struct. Sol. MM Sol. IM Improvement
103 9.97 8.26 8.05 17.1%−19.5%

5 · 104 15.61 12.49 12.25 20%− 21.5%
5 · 105 18.93 14.99 14.73 20.8%−22.1%

106 19.93 15.73 15.46 21%− 22.5%

Table 1: Average proof size and verification cost results. The first improvement corresponds to
Solution MM while the second one corresponds to Solution IM.

7. Authenticated Dictionary Based on Static Huffman Coding

The preceding solutions are more efficient than existing systems and can be im-
proved even further. In fact, reducing the authentication proof size is equivalent to
reducing in average the size of the corresponding leaf-root path in the tree. This is
therefore a lossless data compression problem and it is well known that Huffman trees
can produce codes of minimal average size. In this section, we introduce an authenti-
cated dictionary based on a static Huffman tree and we describe its properties. The tree
T is regularly rebuilt every ∆t to take into account frequency distribution. In order to
obtain a frequency distribution which is closer to reality, we propose to use a prediction
function. We therefore optimize the size of authentication proofs.

7.1. Authenticated data Structure Construction

In this solution, the difference between Solution IM and Solution MM is that T1 is
a Huffman tree. For a sequence of relative strictly positive frequencies, the height of a
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Huffman tree is bounded by (see [32]) min
{
n− 1,

⌊
logφ

(
φ+1

fn−1φ+fn

)⌋}
where φ is

the golden ratio. Considering the asymptotic estimation of the n-th harmonic number,
this means for Zipf’s law that the height of the tree is inO

(
log n

)
, which is comparable

to the asymptotic height of a Merkle tree. As previously seen, the lower tail of the page
access distribution of a Web site decreases faster than that of Zipf’s Law. If a real data
set deviates too much from this distribution, the height of the tree T must be monitored
to ensure that it does not exceed a certain value. It is always possible to define a
frequency threshold s such that frequency data that are greater than s are covered by
a Huffman tree and the rest of the data by a Merkle tree. If the dictionary contains n
elements, just choose s = P (n) where P (n) is the access probability of the n-th least
consulted element for a perfect Zipf’s law . Therefore, the root of T will have as child
nodes these two trees and its height will stay in O

(
log n

)
regardless of the data set

distribution. In practice, the number of leaves of T2, denoted Nr, is much larger than
T1, denoted Nl.

The construction of T uses the same objects than for Solution MM (namely the
sentinel ±∞, Lu and Lf ). The calculation of a leaf hi is also identical to the one of
Solution MM.

The static construction of the Huffman tree T1 follows an iterative procedure and,
for practical reasons, it is deterministic. It involves the construction of a list L of nodes
(initially empty) having five fields: the parent identifier, the current node identifier,
the frequency of the current node identifier, the left child node and the right one. We
first consider a temporary list Lt containing leaf values ranked in ascending order of
frequency. The two elements of lowest frequency in Lt are added to L along with their
parent. The symbol ⊥ represents either a field that is not yet calculated or that has a
null value. The list L is now:

L = {(H1.2 := H(h1, h2), h1, f1,⊥,⊥), (H1.2, h2, f2,⊥,⊥),
(⊥, H1.2, f1 + f2, h1, h2)}

The first two elements are siblings and the third one is their parent node, which is
incomplete since the grandparent is not yet known. The frequency of the parent node
is the sum of the two children. Then, Lt is updated by deleting the two leaves already
being processed and by adding the parent node and we again consider the two smaller
frequencies of Lt (which is maintained ordered). We add to L (or complete) these two
elements along with their parent and repeat this process until Lt is a singleton. The
list L is then complete. When the tree T is calculated, the source transmits the list of
key-value pair elements together with the timestamped signature of the root node of T
to the directory. Then, the directory is able to construct the data structures.

The cost of an efficient algorithm to construct a Huffman tree is in O
(
n log n

)
if

frequencies are not sorted, and in O
(
n
)

otherwise (in fact O
(
n log n

)
comparisons

and swaps to sort the frequencies and O
(
n
)

creations of nodes). Then, the cost to
make a Huffman tree ”authenticated” is inO

(
n
)

hash operations, where the hash oper-
ations are relatively much more expensive in comparison to the basic operations used
to construct a Huffman tree. The construction of the authentication proof for a data
of identifier u is similar to the case of a Merkle tree. The tree being static, insertion
and deletion of an element are not possible. However, it is still possible to modify the

14



content of an element for a cost of O
(
log n

)
hash operations.

7.2. Proof size

Let us suppose that the n elements of S follow a perfect Zipf distribution (Zipf
exponent being equal to 1) and let Hn be the entropy of this distribution. We are in-
terested in the gain on the proof size when authenticating these elements by a hashed
Huffman tree T instead of a balanced Hash tree. We denote G = 1 − L/log2(n) this
proof size gain, where L is the average path length in such a Huffman tree. From the
Noiseless Coding Theorem [33], we have the well known bound Hn ≤ L < Hn + 1.
Thus, a bound for the gain is 1− Hn+1

log2 n
< G ≤ 1− Hn

log2 n
. For a finite number of ele-

ments, for example 103, 5 ·104, 5 ·105 and 106 elements and a perfect Zipf distribution
we can expect a reduction of the proof size of at least 14.8%, 20.7%, 24.7%, 26.9%
and 27.7% respectively. This kind of gain is to be compared to the 20% obtained using
our first solution based on append/disjoin-only tree structures. When n is fixed, the
gain is an increasing function of the Zipf exponent parameter.

Notice that the average proof length when using a Huffman tree for T1 and a Merkle
tree for T2 is given in Section 9, the threshold being defined as the weighted median.

8. Authenticated Dictionary Based on Dynamic Huffman Coding

When a dictionary has a lot of elements but not many accesses during ∆t, we may,
in some cases, opt for an update instead of a full reconstruction of T . The changes in the
data structures come from changes in the dictionary (adding or deleting elements) or
modification of frequencies. More precisely, adding an element in the dictionary corre-
sponds to inserting an element in T2 (at the right side) which supports append/disjoin-
only operations, for a cost of O

(
log n

)
hash operations. Removing an element from

the dictionary corresponds to delete an element from either T1 or T2. Changing the
frequency of an element corresponds to moving an element inside T .

Notice that a splay tree [34] or a treap [35] could be used to efficiently provide
insertion, deletion or modification. However, we prefer to make use of compression
techniques to minimize authentication proof size and to perform search operations with
an adjacent dynamic data structure like a red-black tree. In order to maintain an optimal
tree (with respect to size of proofs), updates can be done with an adaptive Huffman
coding algorithm. Recall that updates consist of changing the frequency of an element.
For an increment or a decrement by unity, the FGK Algorithm from Faller, Gallager
and Knuth [36] updates the Huffman tree in O

(
k
)

steps where k is the length of the
path from the corresponding leaf to the root node. Here, a step consists in a swap of
nodes, subtrees or both. For an increment or a decrement by any positive value, the
algorithm from Cormack et al. [28] updates the tree in O

(
k
)

expected time, although
this one has a particularly bad worst case. If we use this kind of algorithm to update
authenticated Huffman trees, we can count the expected number of hash operations in
the following way: In each step of the algorithm we need to update ancestor nodes
that have been exchanged. Consequently, the expected number of hash operations is in
O
(
k2
)
. Notice that in the case of a Zipf distribution, the length of a leaf-root path is in

O
(
log n

)
. Thus, the number of hash operations is in O

(
log2 n

)
.
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9. Experiments

Evaluations on Wikipedia. Our first application was to authenticate HTTP responses.
We made experimentations on Wikipedia France using a static dictionary of 3.6 · 105

elements. The statistics were collected on an hourly basis (tf = ∆t = 1 hour), the
finest granularity available on Wikipedia. We evaluated solutions MM, IM, and two
solution based on Huffman trees denoted H and HM. The solution H used an Huffman
tree whereas HM used a tree T composed of a Huffman tree T1 and a Merkle tree T2,
the threshold being the weighted median. Compared to a basic Merkle tree, we did not
obtain a significant average gain on the length of the proof size. When we simulated a
perfect prediction, we had an average gain of 5.6% with Solution H. These small gains
are due to the high entropy of the Wikipedia samples, which is far from the one of a
perfect Zipf’s law.

We also determined, over a 24-hour period, the average proof size improvement
depending on whether or not a perfect prediction function is used (see Figure 4a). The
peak of the curve between 0 am and 8 am shows that users behavior is more chaotic at
that time.

During our tests 2, multiple trees were constructed using the aforementioned meth-
ods. The largest Huffman tree had around 1.2M leaves. The tree construction took an
average of 16 seconds. Notice that the construction time dropped to less than 2 sec-
onds when T was composed of left Huffman subtree and right Merkle subtree. These
construction times are compatible with dynamic sources even though the tree itself
is static. However, the use of an update method like FGK is not adequate given the
significant variation in the number of queries per hour.

(a) Improvement provided by prediction
(Wikipedia experiment)

tf = 5min H 34.8% IM 25.5%
HM 26.9% MM 25.4%

tf = 30min H 39.2% IM 27.5%
HM 29.8% MM 27.5%

Perfect H 54.7% IM 38.5%
Prediction HM 39.1% MM 38.3%

(b) gain on the length of the proof size, compared
to a Merkle tree, for the financial stock values.

Figure 4

Evaluations on Stock Exchange. The second application was to authenticate, for a
given stock, the trade confirmations of the transactions that have been carried out during

2The computer used to run our tests use an Intel Core i7-2600K CPU running at 3,4GHz and providing
eight logical cores. It has 8GB of DDR3 RAM and operates with a GNU/Linux OS based on the Linux kernel
version 3.16. The software used to perform our tests and comparisons was built with GCC 4.9.1 (Debian
version 4.9.1-19).

16



the previous minute. In particular, we authenticated the price, the volume and the time
of completion of the orders. We considered the number of transactions of the 163
financial values of the Paris stock exchange. In order to obtain the average day gain
on the length of the proof size compared with a basic Merkle tree, we considered the
IM, MM, H and HM solutions (see Figure 4b): T is either a 163 leaves Huffman
tree (Solution H) or composed of T1 and a Merkle tree T2, the threshold being the
weighted median (an other choice of threshold could have been considered, giving
different results). We used a window with tf = 5min then tf = 30min, and finally
we used a perfect prediction. For all cases, ∆t = 1min.

Interpretation of Results. When there is no prediction, the tree is constructed using the
distribution calculated during the previous tf interval and the average proof length is
calculated using the weighting given by the current distribution (established during the
current ∆t). Thus, when Solution H is considered, the expected gain is increased when
these two distributions are similar. This explains the large gain obtained in the second
experiment when using a perfect prediction. Notice than it may not be the case when
we consider the other methods (MM, IM, HM) since the cut at the weighted median is
not an optimal method. We also have to mention that the results greatly depend on the
curve distribution used to construct the tree. For the second experiment, the distribution
of the number of transactions may be treated as a Zipf distribution with an exponent
parameter greater than 1 (the parameter has been estimated using the software R at 1.4
compared to 0.8 for Wiki experiment). Therefore, we obtain better results than for a
perfect (exponent equal to 1) Zipf law. Solutions IM and MM cannot be significantly
differentiated because of the low number of leaves in T1. Nevertheless, this use case
highlights the benefits of our models.

Notice that the use of a prediction model makes more sense for stock exchange
experiment than for Wiki experiment since stock market behavior is more predictable.

10. Caching strategy and the proximity of pages

Between two updates of the dictionary, if a user receives several authentication
proofs, they are likely to share a common set of hash values. In particular, these proofs
contain with a greater likelihood values of nodes that are close to the root node. Thus,
it would be interesting to cache the content of the proofs in order to be partially reused
in responses to future queries. This simple optimization (a caching method) can be
applied to any tree structure but it seems particularly well suited to Huffman trees since
nodes located near the root are of higher frequency. We made an experimentation on a
Huffman tree of approximately 1.2 · 106 leaves. For three consecutive random requests
following Zipf’s law, we obtained an average gain of 33.3% on the overall number of
hash values of the proofs.

Web browsing may be likened to a graph traversal. In addition to access frequen-
cies, an other parameter called access conditional frequencies could be taken into ac-
count. In this case, the tree would have the additional following property: leaves that
are closer to the leaf x are those for which the probability is higher to be accessed
from x. However, we believe that the bandwidth gain would remain marginal com-
pared to the use of a Huffman tree with the simple optimization described above.
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11. Conclusion

We have proposed models for authenticated dictionaries which take into account
the frequency of queries with the aim of obtaining a smaller proof size. This contrasts
with the assumption made by existing dictionaries that the frequency distribution is
uniform. Our models can be used when the entropy of the distribution is smaller than
the one of a uniform law. In practice, this corresponds to a Zipf parameter greater
than 0.8. When comparing the models using a window of fixed length, a sequence
of tree updates is of interest if the overall cost is reduced by a factor log n compared
to the cost of a tree reconstruction. We have to distinguish between the number of
frequency changes between two consecutive measurement periods and the total sum of
the differences. We can state the following:
• If the number of changes is in O

(
n/ log3 n

)
, then Solution IM or a solution

based on the method of Cormack and Horspool [28] may be considered.
• If the sum of differences is in O

(
n/ log3 n

)
, then an adaptive (dynamic) Huff-

man based solution using the algorithm FGK [36] may be relevant.
• If the number of changes is in O

(
n/ log2 n

)
, then Solution MM may be consid-

ered if optimality of the proof length is not required.
• For all other cases, the use of a static Huffman tree provides the most adequate

solution.
Significant average gains can be expected when the distribution curve behaves like a
Zipf law with an exponent greater than 1. This is the case of the second experiment
which provides a gain of more than 39% with a window of 30 minutes. We also showed
by experimentation that caching techniques can further reduce bandwidth when using
Huffman trees.
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