Product Markovian quantization of an R^d -valued Euler scheme of a diffusion process with applications to finance

Abstract : We introduce a new approach to quantize the Euler scheme of an $\mathbb R^d$-valued diffusion process. This method is based on a Markovian and componentwise product quantization and allows us, from a numerical point of view, to speak of {\em fast online quantization} in dimension greater than one since the product quantization of the Euler scheme of the diffusion process and its companion weights and transition probabilities may be computed quite instantaneously. We show that the resulting quantization process is a Markov chain, then, we compute the associated companion weights and transition probabilities from (semi-) closed formulas. From the analytical point of view, we show that the induced quantization errors at the $k$-th discretization step $t_k$ is a cumulative of the marginal quantization error up to time $t_k$. Numerical experiments are performed for the pricing of a Basket call option, for the pricing of a European call option in a Heston model and for the approximation of the solution of backward stochastic differential equations to show the performances of the method.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01222936
Contributeur : Abass Sagna <>
Soumis le : vendredi 24 mars 2017 - 08:34:07
Dernière modification le : jeudi 27 avril 2017 - 09:46:08
Document(s) archivé(s) le : dimanche 25 juin 2017 - 12:24:09

Fichiers

MarkovProdQuantV2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01222936, version 3
  • ARXIV : 1511.01758

Collections

Citation

Fiorin Lucio, Gilles Pagès, Abass Sagna. Product Markovian quantization of an R^d -valued Euler scheme of a diffusion process with applications to finance. 2017. 〈hal-01222936v3〉

Partager

Métriques

Consultations de
la notice

181

Téléchargements du document

28