Proof of the Landau–Zener formula

Abstract : We consider the time dependent Schrodinger equation in the adiabatic limit when the Hamiltonian is an analytic unbounded operator. It is assumed that the Hamiltonian possesses for any time two instantaneous non-degenerate eigenvalues which display an avoided crossing of finite minimum gap. We prove that the probability of a quantum transition between these two non-degenerate eigenvalues is given in the adiabatic limit by the well-known Landau–Zener formula.
Document type :
Journal articles
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01222730
Contributor : Ariane Rolland <>
Submitted on : Friday, October 30, 2015 - 2:06:16 PM
Last modification on : Thursday, March 15, 2018 - 4:56:05 PM
Document(s) archivé(s) le : Friday, April 28, 2017 - 5:22:12 AM

File

plz.pdf
Publisher files allowed on an open archive

Licence


Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Identifiers

Collections

Citation

Alain Joye. Proof of the Landau–Zener formula. Asymptotic Analysis, IOS Press, 1994, 9 (3), pp.209-258. ⟨10.3233/ASY-1994-9302⟩. ⟨hal-01222730⟩

Share

Metrics

Record views

907

Files downloads

133