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A thinning algorithm is a process that peels iteratively a binary shape while
preserving its geometrical and topological features. The relaxation of such al-
gorithm leads to a skeleton, which is a classical shape representation scheme.

The popularity of thinning algorithms comes mainly from the regularity and
localness of the operations, that make them easy to implement, cheap in terms
of computational resources, and well suited to data parallel implementations. In
compliance with the digital geometry framework, they make the early assump-
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Abstract

We present new thinning algorithms to compute the digital skeletons
of binary 2D images. Starting from a physical characterization of the
thinning process, we show that the mere incorporation of discrete topol-
ogy preservation conditions leads to the Boolean definition of different
parallel thinning algorithms, depending on the topological and metrical
properties that can be basically desired in the square grid. The com-
plete Boolean definition of every algorithm is provided through a coherent
set of removing and non-removing conditions. For every algorithm, logic
minimization is addressed, and the implementation on a Boolean cellular
automata grid is proposed. Beyond the implementation, we stress the
advantages of Boolean concision in terms of complexity reduction. Some
results are shown and discussed.

Introduction

tion of the discrete nature of computers.
Nevertheless, thinning approaches have considerable drawbacks:

o their ill-posedness rules out a sheer definition of the digital skeleton. Algo-
rithmic definitions are proposed instead, but they can be very numerous,
as witnessed by a huge bibliography [6], [7]. Thinning algorithms are de-
fined by a set of rules which are often not justified, and whose properties

are often not studied but experimentally.



e the metrics of the resulting skeleton depends on the precise nature of
the iterations over the discrete mesh. As a consequence, some desirable
properties like invariance to rotation and homothety are very difficult - if
not impossible - to obtain.

In contrast, here are the features of the collection of thinning algorithms pro-
posed in this paper:

e they are grounded on a physical basis, as they are defined from the dis-
cretization of the evolution equation of a monotonous propagating front.
The different algorithms are obtained by logic minimization of the topol-
ogy preservation constraints, in the different connectivity models of the
square grid, and for different parallelization schemes (Section 3).

e the computational costs of the algorithms have been precisely quantified
(Section 4).

e their metrical properties have been studied, and for some algorithms, the
very nature of the median axis has been identified [10].

The paper is organized as follows: In a self-contained fashion, Section 2 recalls
the main existing theoretical results about thinning algorithms in two dimen-
sions. Section 3 presents the construction of the family of algorithms, referred
to as MB. The proof of validity of every algorithm is provided. Section 4 pro-
vides the complete cellular implementation of the algorithms and addresses the
problem of their computational complexity. Results and preliminary discussions
about a further study of metrical and combinatorial properties in a companion
paper [10] are presented in Section 5.

2 Topological issues in 2D thinning

In the continuous framework, i.e. for a subset X of R2, the skeleton S(X) is a
purely metrical notion, coinciding with the median azis, which is the locus of
the maximal ball centers:

S(X) = [J{z € X;¥(y,r') €K’ x R, B(x,7) C B(y,r') C X = (z,7) = (y,1)}

r€ER

Where B(z,r) denotes the ball of center z and radius r. When the metrics is
the Euclidean distance ., the skeleton has the following properties: (1) It is
invariant with respect to rotation and homothety i.e. for any similitude o of

—N
R?, S(o(X)) = o(S(X)), (2) Its interior is empty: S(X)= 0, (3) If X is an
open set, X and S(X) have the same topology (i.e. same number of connected
components and same number of holes), and (4) X is reconstructible from S(X)

weighted with the distance to the border: X = U B(z,d¢(z, X°)).

z€S(X)
It is straightforward to adapt the notion of median axis in a digital mesh for
any discrete distance §. Furthermore, the discrete median axis is then the local



maxima of the distance to the border:

S(X)=U{r € X;(y € X0(z,y) = 1) = 6(z,X°) > 0(y, X°) }.
Nevertheless, the discrete median axis lacks many of the nice properties of its
continuous counterpart and, in particular, it does not preserve the topology of
the initial shape. For this reason, topological issues must be addressed in the
discrete framework.

From now on, we consider the discrete plane Z2, and (binary) images as sub-
sets of Z2. A point x € Z2 is a discrete cell or pizel. Pixels are spatially
distributed over a square grid, where two distinct topologies can be defined:
(1) The 4-connectivity, where a pixel has 4 neighbors, corresponding to the four
closest - or direct - neighbors in the cardinal directions {N,E,w,s}. (1) The
8-connectivity, where a pixel has, in addition to the 4 direct neighbors, 4 other
neighbors corresponding to the four diagonal directions {NW,NE,SE,sw}. Con-
sidering that two neighbors are distant of 1 unity, these two topologies induce
two different metrics, respectively the /-distance d4, and the 8-distance ds.
If = (z1,22) and y = (y1,y2), then dy(z,y) = |21 — y1| + |z2 — 2| and
ds(z,y) = max(|z1 — y1|, [z2 — ya)-

For a given topology and a set X, the relation “is a neighbor of” between pix-
els in X is a reflexive and symmetric relation called adjacency. The transitive
closure of adjacency corresponds to the existence of a connected path between
two pixels in X ; it is an equivalence relation whose classes are called connected
components (cc).

The topology preservation issue for the thinning algorithm is the problem of
transforming a set X in a set Y C X without separating one cc of X in two or
more ccs in Y or making vanish a cc of X, and without merging two or more
ccs of X¢ (the holes) in one single cc of Y¢, or making appear a new hole in Y.
A clean definition of the notion of hole implies the discrete counterpart of the
Jordan’s theorem, which stands that a closed single arc (function « : [0,1] —
R? such that (z < yy(z) = v(y)) & (z = Oy = 1)) separates the plane in
two disconnected parts: the interior (the hole), and the exterior. To get such
a property in the square grid, however, different adjacency relations have to
be considered for an image X and for its complementary X¢. So, working in
K-connectivity (K = 4 or 8) means that we consider the K-connectivity model
for the image X (represented by convention with black pixels), and the K-
connectivity model (K = 12 — K) for the complementary X¢ (represented by
convention with white pixels). We may now recall definitions regarding the dis-
crete topology preservation:

If A C B, Ais K-homotopic to B iff: (1) every K-cc of A is contained in one
K-cc of B exactly, and (2) every K-cc of A° contains exactly one K-cc of B¢.
Let X C A X is K—simple in A iff A\ X is K—homotopic to A. For a pixel
z € A, we will write that z is K-simple in A if {z} is K-simple in A.

An important result is that the simpleness of a pixel can be determined locally
[6]: If we denote by Ng () the set of K-neighbors of z in Z2, z € X is K-simple
in X iff: (1) (Nk(z) \ {z}) N X is a K-connected set, and (2) Ni(z) N X¢ #
(. An explicit analytical characterization has been proposed through the K-
connectivity numbers [14]. We present an equivalent geometrical (or pattern-



based) characterization.
Let (a) be a binary pattern, i.e. a couple {am,apn} of two disjoint sub-
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Figure 1: Non simple patterns and exceptions.

sets of Z2. We say that a pixel z matches (a) in X, or z € X X a, if

U {r+y} C X and U {z +y} C X°. By convention, the elements of

yEag yeEam
am (resp. ap) will be represented by black (resp. white) pixels, and the

origin of the pattern will be outlined in red. As the patterns will often be
considered up to rotation, we will note that x € X X a when z matches
(a) or one of its m/2 rotated versions, in X. The pattern-based characteri-
zation of simpleness is then the following one, using the patterns shown on
Figure 1: (1) [“z is not 4-simple in X” OR z € X K £] is logically equivalent to
[ze (X RYYUXKRLIU(XKRCU (XK. (2) [“zis not 8simple in X” OR
x € X W k] is logically equivalent to [z € (X Kv) U(XKB)U(X KU (X Xu).
This remark, essentially due to C. Arcelli [1], will henceforth be referred to as
the “Arcelli’s property”.

When designing a thinning algorithm, it is desirable to remove a large set of
points in parallel, either because they must be removed simultaneously through
a computation on a parallel machine, or because they must be removed inde-
pendently of the scanning order, for the sake of geometry preservation. But a
union of simple points is not always a simple set, so the above results are not
sufficient to prove the validity of a parallel thinning algorithm.

If aset P C X can be ordered in a sequence, called simpleness chain {zg, ..., z,}
such that Vi € [0,...,n],z; is simple in X \ {zg,...,2;_1}, then P is simple.
But this property is too weak, because, as proved by C. Ronse [11], any simple
set can be ordered in a simpleness chain. A much stronger condition is to im-
pose that any ordering of the set P is a simpleness chain. G. Bertrand [2] has
shown that such property can be formally proven ; parallel thinning algorithms
respecting this condition for any removed set P are called P-simple.

C. Ronse has proposed explicit sufficient conditions for a parallel thinning al-
gorithm to preserve the topology, in 4 and 8-connectivity [12]. It has been
shown later that these conditions were equivalent to the P-simpleness. We now
present these conditions: a parallel reduction algorithm removing in parallel a
set of points P from a binary image X preserves the K-connectivity if, for any
X and P, the 3 following conditions are met: (1) every pixel z € P is K-simple,
(2) every pair {z1,z2} € P of K-adjacent pixels (and not 4-adjacent if K = 4)
is K-simple, and (3) if K = 8, P does not contain any cc of X included in a
2 x 2 block.



We can now present and valid the family of MB thinning algorithms.

3 The MB thinning algorithms

Physically, a thinning algorithm is expected to simulate the behavior of a
monotonous propagating front or interface, as in the grass fire analogy [3]. In
the continuous framework, the evolution of such interface is usually described by

an equation of the form: & = FN, with C = (2(t),y(t)) the parametric form

of a closed curve, N is the normal to the curve oriented toward the interior, F is
the propagation velocity. F is a function of (z,y,t) depending on the modeling,
with the only constraint F > 0 imposed by the monotonicity.

Of course, the object to be thinned must have some thickness to allow front

/ N i o a
/ 7 N\ -

Figure 2: The evolution of a monotonous propagating front (1) and the cor-
responding discrete evolution rules in the 4-neighborhood (2a), and in the 8-
neighborhood (2a and 2b).

propagation toward its interior. Then, the most naive discretization of such
evolving interface in the 4-neighborhood is to allow four elementary displace-
ments of the frontier, corresponding to the four cardinal directions of the 4-
connectivity, generated by the evolution rule shown on Figure 2(2a) and its
/2 rotated versions. In the 8-neighborhood four additional elementary dis-
placements are allowed, corresponding to the four diagonal directions of the
8-connectivity, and generated by the evolution rule of Figure 2(2b) with its /2
rotated versions.

In Figure 2(2a) and (2b), the black pixels with a yellow dot correspond to points
that would be an interior point in the continuous framework. For this reason,
we henceforth call them “interior” (within quotes) though it will become clear
only gradually what it means in the discrete framework. Actually, we shall now
determine the smallest pattern(s) surrounding the “interior” point, such that
the above evolution rules become sensible enough to yield adequate thinning
algorithms. We shall consider 3 independent thinning options: (1) The front



propagation may follow either the 4 (N,E,W,s) or the 8 (N,NE,E,SE,S,SW,W, NW)
cardinal directions. Accordingly, the algorithms will be denoted by suffices “-1”
or “-2”. (2) Either 4- or 8-connectivity may be considered for the topology
preservation. The corresponding algorithms will be denoted respectively “-4”
or “-8”. (3) Finally an algorithm may be either directional or fully parallel, de-
pending on whether the pixels are removed only from the border of one cardinal
direction, or from the whole border in all directions at the same time. This
choice is based on metrical considerations as we will see later. The correspond-
ing algorithms will be denoted respectively “-dir” or “-fp”. Those three binary
choices lead to 8 different algorithms that are presented on Figure 9. We now
detail their construction.
We first note that, for any of the conditions above, the so-called “interior” point
must be surrounded by at least one black pixel in the 8-neighborhood of the can-
didate to deletion ; otherwise it would allow the deletion of end-points. For the
sake of symmetry, we eventually impose, in the two deletion conditions corre-
sponding to the two evolution laws, that at least one of the two pixels 4-adjacent
to the “interior” point in the neighborhood of the candidate to deletion, is black
(see Figure 3, to be considered with all its /2 rotated versions).

It turns out that this single condition is almost sufficient to provide directional
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Figure 3: In order to prevent the removal of end points, at least one of the two
crossed pixels must be black in each condition.

algorithms. Indeed, as guaranteed by the Arcelli property, if a north-border
pixel (black pixel whose north neighbor is white) matches pattern (1) of Fig-
ure 3, then it is 8-simple (resp. 4-simple), unless it matches pattern (3) (resp.
(8")) of Figure 1, or its mirrored version. It is also true for a north-border
pixel matching pattern (1) or (2) (or its mirrored version) of Figure 3. The
same property is true mutatis mutandis considering east, south or west border
pixels. The other conditions of the Ronse’s theorem are obvious in the case of
directional thinning, since the deletion of non-end simple border points in one
single direction always preserve the topology [6]. We have thus defined 4 direc-
tional MB algorithms, corresponding to the 4 first lines of the table of Figure 9,
respectively MBdir1-8, MBdir2-8, MBdir1-4 and MBdir2-4. The table shows a
sub-iteration corresponding to the deletion of WEST border points: each algo-
rithm removes the pixels matching one of the patterns contained in the column
“removing condition”, provided that they do not match one of the patterns con-
tained in the column “non removing condition”. The corresponding thinning
algorithms are the relaxation of the thinning operators, alternating periodically
the four cardinal directions.



In the case of a fully parallel algorithm, some constraints must be added com-
pared with directional patterns. Theses constraints will show up through the
different configurations corresponding to conditions (2) and (3) of Ronse’s theo-
rem. We are going to show that, in the case of MBfp1-8, all the pixels 4-adjacent
to the “interior” point must be black. We will then prove that this characteriza-
tion of “interior” points as 4-interior pixels can be used for all the fully parallel
MB algorithms.

As our purpose is to determine the smallest set around the “interior” point,

E E
b [a N
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Figure 4: Construction of MBfp1-8: in the case of a fully parallel removal, the
three pixels denoted a, b and ¢ must be black. The role of a (resp. b) is to
avoid configurations (2) and (4) (resp. (3) and (5)) ; The role of ¢ is to avoid
configurations (6).

we begin by considering the 3 closest pixels of the “interior” point (except the
candidate to deletion). These are pixels a, b and ¢ of Figure 4. From the con-
struction of MBdirl-8, we already know that the candidate to deletion must not
match pattern (8), and that a or b must be black. Figure 4(1)-(6) represents
the different configurations of pair of 4-adjacent pixels matching the condition
shown on the left (or one of its m/2 rotated versions), where a or b is black.
We see that in the two cases (2) and (3), the pair is not simple. These config-
urations are made impossible if both a and b are black. This stronger condition
also avoids configurations (4) and (5), where the deletion of the pair could lead
to topology changes. Finally, considering configuration (6), it can be seen that,
for any values of a and b, the pair is not simple if no other values are imposed
outside the support of the pattern shown on the left. So the only way to address
that case without increasing the support is to make this configuration impossible
by imposing that pixel ¢ is black too. Finally, if the three pixels a, b and ¢ are
black, condition (2) of Ronse’s theorem is fulfilled. Condition (3) of the same
theorem is then obvious, since a cc contained in a 2 x 2 block cannot contain a
4-interior point. So the construction of MBfpl-8 is achieved: see line 5 of the
table of Figure 9. Note that MBfp1-8 is equivalent to the algorithm proposed
by U. Eckhardt et al. in [4]. For this algorithm, and the other fully parallel
MBs, the patterns are to be considered with all their 7/2 rotated versions.

The MBfp2-8 algorithm is deduced by taking the same characterization of “in-
teriority” for the patterns corresponding to diagonal propagation: so the dele-
tion condition now corresponds to the two patterns (ay) and (a2) of Figure 5,
whereas the non-deletion condition is the same as MBfp1-8. We now prove the
validity of this algorithm. Condition (1) of Ronse’s theorem has already been



proved, since this condition is stronger than the directional counterpart. Con-
dition (3) is obvious. To meet condition (2), we have to consider the different
configurations of 4-adjacent pairs that are removed by MBfp2-8. Up to the ro-
tation, there are three possible cases, shown in Figure 6. The first case (both
pixels match (aq)) has been treated already in the construction of MBfpl-8.
The second case (both pixels match (az)) is just a particular case of the first
one. In the third case (the right pixel matches (a4), the left one (as)), if the left
pixel is removed first, then the right pixel remain removable by the MBfp2-8
condition, so a fortiori the pair is 8-simple. This completes the proof of validity
of MBfp2-8.

As in the directional cases, the same deletion conditions can be used to con-

+ %

(al) (a2)

Figure 5: The deletion patterns for the fully parallel algorithms, to be considered
with all the 7/2 rotated version: in the directions of the 4-neighborhood (a;),
or in the directions of the 8-neighborhood (a; and as).
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Figure 6: Proof of MBfp2-8: the three possible cases of 4-adjacent pair removed
by MBfp2-8.

struct the algorithms in 4-connectivity. Thanks to the Arcelli’s property, it can
be seen that any pixel matching condition (a;) or (az) (see Figure 5) is 4-simple.
We are now going to see what constraints must be added to match condition
(2) of Ronse’s theorem, first for MBfp1-4, and next for MBfp2-4.

To check condition (2) in the case of MBfpl-4, we have to consider the different
configurations of diagonally adjacent pairs that are removed by MBfpl-4. Up
to the rotation, there are five possible cases, shown in Figure 7. Let us call
the two removable pixels a and b as shown on Figure 7. It is easy to check
that the pair {a,b} is simple except in two cases: in case (4), and in case (5)
when z is black. To avoid those cases, we note that the deletion of the pair
{a, b} make a (3 pattern appear in the two cases. The new constraint imposed
is then that the deletion of pixels should not make a f pattern appear. Now
a 3 pattern can appear if two diagonally pixels {a, b} match (a1), and the two
other pixels in the 2 x 2 block containing {a, b} are black and do not match



(a1). As there cannot be more than two pixels matching (a;) in a 2 x 2 block,
it is sufficient to check that the two other pixels are black. That leads to the
definition of MBfp1-4, see line 7 in the table of Figure 9. In the non deletion
condition, the white pixels with a red dot represent pixels matching the deletion
condition (pattern (c;)). This algorithm is equivalent to the thinning algorithm
proposed by L.J. Latecki et al in [8]. To get a thinner result, the authors of [8]
proposed to remove one of the two pixels in the critical cases. This correspond
to look for appearing 8 pattern in two directions only, instead of considering all
the /2 rotated version. We will follow this slight distorsion to isotropy in the
description of the algorithm.

Meeting condition (2) of Ronse’s theorem for MBfp2-4 brings 3 other con-
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Figure 7: Proof of MBfp1-4: the five possible cases of diagonally adjacent pair
removed by MBfp1-4.

figurations, appearing in Figure 8. In the three cases, it is easy to check that
the pair {a,b} is simple. But there is a notable difference with the previous
algorithm, because, unlike MBfpl-4, there can be 3 pixels matching (a;) or
(a2) in a 2 x 2 block. In particular, in configuration (5) of Figure 7, z can
be a black pixel matching pattern (az). In that case, the deletion of the pair
{a, b} does not modify the topology, if = is removed as well. The definition of
MBfp2-4 appears on line 8 of Figure 9. In the non deletion condition, the white
pixels with a red dot represent pixels matching the deletion condition, whereas
the black pixels with a green square represent black pixels not matching the
deletion condition. Note that MBfp2-4 does not respect the condition (2) of
Ronse’s theorem, because in the case of Figure 7(5) with z black, the pair {a, b}
is not simple. Nevertheless, it is contained in a triplet {a,b,z} that is simple,
and then the algorithm preserves the topology. Note that MBfp2-4 is not a
P-simple algorithm, because the sequences < a,b,z > and < b,a,z > are not
simpleness chains.

The table of Figure 9 summarizes the 8 different algorithms that have been con-
structed ; the different columns give an overview of the different properties that
have been detailed or that will be detailed in Section 4. It can be noticed that in
the removing conditions corresponding to diagonal propagation, the white pixel
diagonally opposed to the “interior” pixel does not appear in the patterns. In
fact this pixel is useless in the 8-connected algorithms, because it is redundant
with the non-removing condition. In the case of 4-connected skeleton, we follow
Latecki et al. by imposing the well-shapedness of images, i.e. the input image
must have the same topology in 4- or 8-connectivity, and then must not contain
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Figure 8: Proof of MBfp2-4: the three other possible cases of diagonally adjacent
pair removed by MBfp2-4.

pattern (3). By construction of the MB 4-connected algorithms, pattern (5)
cannot appear during the thinning process, and then computation of the angle
white pixel of pattern (as) becomes pointless.

The physical characterization,together with fundamental constraints had lead
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Figure 9: The MB family parallel thinning algorithms.

to a family of well defined 2-dimensional skeletons. Now, what are the conse-
quences of the different properties that we have chosen to impose or relax ?
What is the relevance of the different alternatives in the MB family ? These
questions are formally addressed in [10]. The patterns appearing in Figure 9
show up the conceptual concision of the MB algorithms, which is the fruit of
the derivation principle. If this property implies naturally the simplicity of im-
plementation, the advantage in terms of computational complexity remains to

10



prove. This is done in the following section, where we present the complete
cellular implementations of the MB algorithms and discuss their combinatorial
properties.

4 Combinatorial properties of MB

This section is dedicated to the presentation of the complete implementations
of the different algorithms presented above. The computational model used is a
cellular Boolean massively parallel machine. The choice of this model is based
on the fact that the computation time of the cellular program is exactly the
number of Boolean binary operations performed per pizel. Although the com-
putation time depends on the implementation, this number is a fundamental
area-time complexity measure, because in any data parallel implementation,
the Boolean binary operation represents the energy quantum, consumed either
at the software or at the hardware level.

It is worth noting that the Boolean minimization in the cellular implementation
is not related to the support size of the Boolean function computed [5], as we
are going to see some functions with huge supports, computed with a compact
cellular program. This is due to the parallel decomposition of functions, which
is valuable not only in the cellular model, but also in other computation frame-
works, as it will be shown.

We describe now the computation model and the cellular program, that will
be given for readability purposes as graphical representations. The cellular ma-
chine is a square grid of Boolean processors. Every processor has n bits of digital
memory {bo,...,bn_1}, and has access to the memory of its 8 closest neighbors,
denoted in exponent by the cardinal directions. As elementary operation, every
processor can perform one binary Boolean operation between two bits of its own
memory or of the memory of one of its closest neighbors: b; = op(b;’-”, b42). Op-
erator op can be the logical AND, OR, XOR, or AND NOT, respectively denoted A,
V, @ and \. Directions d1 and d2 can be the 8 cardinal directions denoted Nw,
N, NE, E, SE, S, SW, W, or the ego position denoted “-”. The cellular programs
are graphically represented as shown on Figure 10. The nodes with two entries
represent the elementary operations, labeled with the corresponding operator.
The rectangles with different inputs labeled with cardinal directions represent
the values within a certain neighborhood for the same bit of information. As
an example, we are going to detail the program corresponding to MBdirl-4, at
the upper left of Figure 10, which is a WEST iteration of the thinning algorithm
appearing at line 3 of Figure 9:

\* bo: input data *\
b= (b5 \ b)) A (0" V 05 ");
\* by: points matching the removing condition *\
by = by \ bg;
by = by v b5;
\* b3: points matching the non removing condition s\

11



bo = by \ (b7 \ b3);
\* deletion of the points to be removed *\

All the working processors (which can be the whole grid, or a subset of active
processors) compute simultaneously the same sequence corresponding to the
above program. The computation time, or Boolean complexity of this iteration,
is then the number of elementary operations, i.e. the number of nodes of the
corresponding graph. As every iteration examines the 4-contour pixels in one
cardinal direction, 4 directional iterations will examine the 8-contour pixels in
all directions. The number of iterations of the directional algorithms is then 4
times the radius of the biggest ball of distance dg contained in the binary input
image. Let us call r this radius ; the Boolean complexity of algorithm MBdir1-4
is then 4 x 7 x r = 28r.

The cellular implementation of the other directional algorithms are shown on
Figure 10. The Boolean complexity of every algorithm appears in the table
of Figure 9. The support of the operator is also shown in the table ; for the
directional algorithms, the size of the support appearing between parentheses is
the support of the whole set of 4 directional iterations.

The implementations of the 8-connected fully parallel thinning algorithms are

MBdir2-8
MBdirl-8

Figure 10: Cellular implementations of the directional MB algorithms (WEST
iteration).

detailed in Figure 11. The four operators shown on top are the sub-operators of

12



the two algorithms, appearing at the bottom. From left to right: (1) computa-
tion of the 4-interior points (erosion by a d4 ball of radius 1), (2) computation of
points matching pattern (a), i.e. the points having a 4-neighbor 4-interior, and
a 4-neighbor white in the opposite direction, (3) computation of points match-
ing pattern (as), i.e. the points having a diagonal neighbor 4-interior, and the
two 4-neighbors white in the opposite directions. (2) computation of points
matching pattern (3) i.e. the non removing condition. The cellular programs
of MBfpl-8 and MBfp2-8, shown at the bottom, are then easy to understand.
Note that in the sub-operator denoted a3V as, the operator Ey is only computed
once. As every iteration examines the 4-contour pixels in all cardinal directions,
the number of iterations of the fully parallel algorithms is then the radius of the
biggest ball of distance d4 contained in the binary input image. Let us call p
this radius ; the Boolean complexity of algorithm MBdirl-8 (resp. MBdir2-8) is
then 18p (resp. 28p). The shape and size of the supports are shown on Figure 9.
According to [5], MBdir1-8 has the smallest support with central symmetry for
a fully parallel thinning algorithm.

The implementations of the 4-connected fully parallel thinning algorithms are

Figure 11: Cellular implementations of the fully parallel 8-connected MB algo-
rithms.

detailed in Figure 12. They use the operators that compute (a;) and (az), (see
Figure 11), and a restricted version of (8) (only two rotations of pattern (3)
are considered, see [10]). The important difference with MBfp in 8-connectivity
is that MBfpx-8 removes pixels matching (a) and not (8), whereas MBfpx-4
removes pixels matching () if their deletion does not create a () pattern. So
the two sub-operators are composed sequentially ; this appears in the shape of
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the graphical representations, where () and (8) are disposed vertically with
a sequential dependence, whereas they were disposed horizontally without de-
pendence in the case of MBfpx-8 (see Figure 11). That decomposition explains
the large size of the support (see Figure 9). But in spite of this, the Boolean
complexities of MBfp1-4 and MBfp2-4 are slightly inferior than the one of their
8-connected counterparts: 16p and 26p respectively.

Is this advantage of decomposition meaningful independently on the data

N E W 3 % 5 W N E W SE
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Computation
of pattern =
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Computation
E of pattern @ ~
&6
]
Mecx @
with: { (@] € a(X)
o~

(M) MBfp1-4 B < xvax (] MBfp2—-4

Figure 12: Cellular implementations of the fully parallel 4-connected MB algo-
rithms.

parallelism of the cellular array ? The answer is yes, since a similar decompo-
sition can be performed in other paradigms (sequential, pipe-line, ...). Simple
instances of this property can be found in the separable computation of asso-
ciative Boolean operators (e.g. morphological erosion and dilation), or in the
recursive computation of large impulse response filters. We give hereunder a
less regular example through the computation of MBfp2-4.

From a geometrical point of view, MBfp2-4 is complex, as it is a not P-simple
thinning algorithm [2], [10]. From a combinatorial point of view, MBfp2-4 is a
very complex operator because of its huge support (38 points). A straightfor-
ward implementation with a whole examen of the neighborhood is not realizable,
because the Shannon theorem [13] predicts that the corresponding Boolean func-
tion has certainly more than 238/38 > 7 x 10° binary Boolean operators, and
because the size of its Look-Up-Table (or LUT, the list of the 38-tuples of bits
matching the function) would be approximately of 38 x 2% /2 bits, that is more
than 600 gigabytes. . . Nevertheless, the very compact cellular implementation of
MBfp2-4 suggest the decomposed implementation shown on Figure 13: first, the
erosion is computed (support size: 5), then the («) function (support size: 16),
and finally the restricted (8) function (support size: 8). In the typical case of a
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sequential LUT based implementation, the computation time depends roughly
linearly of the size of the LUT, as long as the LUT fits into the microprocessor
closest memory. It turns out that for such implementation on a processor with
64 kilobytes of internal cache, the decomposed computation of MBfp2-4 shown
in Figure 13 is significantly faster than the direct LUT implementation of an
average Boolean function of 17 variables.

To conclude this Section, it is important to stress that a large comparative

Direct computation of MBfp2—-4
= ISupp(Mbfp2-4)l = 38

Computation of
erosion

data: , data: , data:
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Figure 13: Decomposed implementation of MBfp2-4 inspired by the cellular
program.

study has been done on cellular implementations of other thinning algorithms
[9], which put the MB algorithms among the most compact.

5 Results and discussion

The compared results of the different algorithms are presented on Figure 14.
The first remark that can be made is that the choice of the topology does not
seem to affect fundamentally the geometry of the skeletons, as every -4 skeleton
is globally very similar to its -8 counterpart. In fact, this is the case for every
well-shaped image [8]. The main difference between the -4 and -8 fully paral-
lel algorithms is that the latter are perfectly symmetric with respect to the 4
cardinal directions (we refer to this property as “isotropy”), whereas, following
Latecki et al [8], a small anisotropy is introduced in the former algorithms, cor-
responding to look for appearing 8 pattern in two directions only, in order to
get a thinner skeleton.

Anyway, no fully parallel MBs lead to one pixel thick skeleton, this is a natural
outcome of the fundamental constraints we have chosen. The directional MBs
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are anisotropic by construction, as the ordering in the directions of deletion is
arbitrary, but they produce a one pixel thick skeleton.

But the more fundamental difference between the directional and fully paral-
lel MBs is geometrical: the MBdir skeletons show more horizontal and vertical
lines, whereas the MBfp skeletons show more diagonal lines. This is an impor-
tant metrical properties that is presented more formally in [10].

Finally, the MB-2 algorithms present less branches than their corresponding
MB-1, and in particular, they do not distinguish the squares from the disks,
and they generate the same skeleton for the two rotated versions of the square
(see Figure 14). This important features of the MB-2 algorithms lead to dif-
ferent properties with respect to noise immunity, rotation invariance and re-
constructibility, all of which being detailed in [10].

e

Original MBdirl1-8 MBdir2-8

X

_|_

MBdirl-4 MBdir2-4 MBfpl1-8

X

MBfp2-8 MBfpl-4 MBfp2—4

Figure 14: Compared results of the MB thinning algorithms.
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