Explain sentiments using Conditional Random Field and a Huge Lexical Network
Mike Donald Tapi Nzali, Joël Maïzi, Pierre Pompidor, Sandra Bringay, Christian Lavergne, Caroline Bascoul-Mollevi

To cite this version:
Mike Donald Tapi Nzali, Joël Maïzi, Pierre Pompidor, Sandra Bringay, Christian Lavergne, et al.. Explain sentiments using Conditional Random Field and a Huge Lexical Network. SIMBig: Symposium on Information Management and Big Data, Sep 2015, Cusco, Peru. hal-01222611

HAL Id: hal-01222611
https://hal.archives-ouvertes.fr/hal-01222611
Submitted on 28 Oct 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Copyright
Abstract

In this paper, we focus on a particular task which consists in explaining the source and the target of sentiments expressed in social networks. We propose a method for French, which overcomes a fine syntactic parsing and successfully integrates the Conditional Random Field (CRF) method and a smart exploration of a very large lexical network. Quantitative and qualitative experiments were performed on real dataset to validate this approach.

1 Introduction

In this article, we focus on a particular task of sentiment analysis which consists in explaining the target and the source of sentiments. For example, in the sentence "We like the green initiative", the sentiment is expressed by the verb "like", the target is "green initiative" and the source is "We". In (Bringay et al., 2014), we have proposed a method based on syntactic roles for English texts. Experiments have shown that our method is robust, even on the texts that are difficult to process : messages in health forums that contain misspelling and slang. Indeed, the method is not based on fine syntactic parsing. However, it is not possible to transpose this method directly to French because, to our knowledge, there is no resource available to explain semantic roles.

In this context, we propose a new approach based on machine learning methods and a very large lexical network, in French, issued from a contributory game JeuxDeMots1. The challenge is twofold: 1) Instead of using fine syntactic parsing, we use a statistical modelling method called Conditional Random Field (CRF), to extract candidates for targets and sources in large volumes of texts issued from poorly written social web messages 2) we also exploit the huge French lexical network JeuxDeMots (more than 300,000 nodes and 7,000,000 relations) to choose the best sources and targets among the candidates identified with CRF. This new method has been successfully exploited to analyse the sentiments expressed in the French tweets dealing with environment and climate change.

The paper is organized as follows. In section 2, we briefly present the state of the art. In section 3, we provide a description of our method. In section 4, we provide all the detail of the experiments carried out and the prime results. Finally in section 5, we conclude this work by providing the main perspectives associated with this work.

2 State of the Art

Since the early 2000s, sentiment analysis, also called “opinion mining”, has experienced growing interest. Many methods have been developed to extract emotional states expressed or implied in texts. To identify sentiments, many resources exist (e.g. list of words, phrases, idioms), which were built mostly for English and polarity (e.g. Linguistic Inquiry and Word Count (Tausczik and Pennebaker, 2010)) or emotions (e.g. NRC lexicon (Mohammad and Turney, 2010a)). Some methods extend these vocabularies to specific domains (Neviarouskaya et al., 2011). Others are not restricted to the use of lexicons as (Strapparava and Mihalcea, 2008) who implement learning approaches.

Two categories of approaches are used to link sentiments and potential target and source. 1) Methods that essentially implement syntactical aspects, represented by combinations of rules (Mudinas et al., 2012) as the polarity inverters (do not, just, very...), conjunctions (but, or), etc. The effectiveness of these methods is strongly linked to language style that impacts on the syntactic rules.

1http://www.jeuxdemots.org/jdm-accueil.php
to take into account and are not adapted to social web texts. 2) Methods that are based on different distance computations between words denoting sentiments and potential targets and source (as the proximity (Hu and Liu, 2004) or the position in the syntactic tree (Wu et al., 2009)). There are also many hybrid methods (Ding and Liu, 2007). In (Bringay et al., 2014), we proposed an efficient approach for English texts that requires a resource FrameNet\(^2\) and the SEMAFOR parser \(^3\) for explaining the semantic roles. To our best knowledge, such a resource does not exist in French. Consequently, we have proposed a method combining learning approach to find targets and sources candidates and a smart exploration of a large French lexical network to select the best one.

To choose the best candidate, we use the Games with a purpose JeuxDeMots, created in 2007 (Lafourcade and Joubert, 2012), to build a huge lexical network for French. For example, the game asks the player ideas associated with term climatic change. The player freely associate terms such as bear. Other players have already faced the same term. The player wins credits if the proposed term has already been proposed by another player. The more the proposal is specific, the more points he obtains. The lexical network generated with this game is a directed graph, with terms (nodes) and typed and weighted relations (edges) between the terms. There are more than 50 types of relationships. To weight the edges, JeuxDeMots is based on crowdsourcing. Each relation is weighted by a strength of association, denoted \(C_{jdm}\), representing the number of players who have associated two terms by the same relation. A first challenge is to explore the network to link terms in the sentences (sentiment and target/source) and explain these relations. The second challenge will be to exploit this very large network that includes more than 300000 terms and more than 7000000 relations.

3 Methods

The method is organised into 3 steps:

Step 1: Corpus. The corpus we used and annotations have been made in the Ucomp project\(^4\). These tweets deal with climate change. Table 1 and 2 present detailed statistics on the corpus.

Step 2: candidates generation with CRF. The CRF model was developed with domain independent surface and lexical features for the text tokens:

- The original token from the text (word form);
- Surface features: capitalization of the token (all in upper/lower case, combination of both), and punctuation mark in the token (PUNCT, NO_PUNCT);
- Lexical features: n-grams, number of consecutive repeats. Token frequency was computed based on the entire training corpus.
- Brown clustering: we used Percy Liang’s implementation of Brown clustering (Brown et al., 1992), which is an HMM-based algorithm. In our work, we partition words into a base set of 100 clusters, and induces a hierarchy among those 100 clusters.
- Emotion lexicon: We built semi-automatically a new lexicon of French sentiments (Amine et al., 2014) by translating and expanding the English NRC lexicon (Mohammad and Turney, 2010b). This lexicon is free to download \(^5\). For each tokens, the corresponding feature takes the value “Yes” if the token appear in the lexicon and “No” otherwise. As a source and a target are usually surrounded by a sentiment token, we also consider the apparition of the sentiment in the neighborhood of the token (e.g. two tokens before or after the current token).

We experimented with standard tokenization (provided by TreeTagger) and custom tokenization (Tapi-Nzali et al., 2015) of French TreeTagger by

\(^2\)https://FrameNet.icsi.berkeley.edu/
\(^3\)http://demo.ark.cs.cmu.edu/parse
\(^4\)http://www.ucomp.eu/
\(^5\)http://www.lirmm.fr/~abdaoui/FEEL.html

<table>
<thead>
<tr>
<th>Class</th>
<th>Learning step</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
</tr>
<tr>
<td>Source target</td>
<td>2448</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>7867</td>
<td>55</td>
</tr>
</tbody>
</table>

Table 1: Distribution of source and target in the corpus used
adding some segmentation rules (e.g. apostrophe: l’image is segmented into l’ and image).

Step 3: Lexical network construction of each sentence. The purpose of this step is to extract a part of the lexical network JeuxDeMots representing the relationship between the meaning of the word and the candidates identified in Step 2. The intuition of the algorithm is the following one. We cross the lexical network from node to node. We stop when we no longer encounter new words or if we reach a maximum depth. Two other constraints are used to limit the expansion of the graph.

Constraint 1. To consider only the parts of the network related to our topic (environment and sentiment), we expand a node to another if the new one belong to these two predefined lexical fields chosen via Larousse thesaurus\(^6\). If there is no node in the lexical field, we expand to all neighboring nodes.

Constraint 2. We use the association strength \(C_{jdm}\) weighting the edges and consider only the relations frequently instantiated by players. A threshold is set by default.

Step 4: Identification of shortest paths. The objective of this step is to identify in the graph generated in step 3, the paths that must correspond to a compromise between the shortest paths, with a little depth, most reliable according to strength of association \(C_{jdm}\). We have therefore redefined weights \(w_{rt}\) to foster some relationships like synonymy or significant semantic roles such as patient and agent. To identify the paths, we have adapted the shortest path algorithm and used the weights computed according to formulas 1 and 2. The weight \(w_1\) foster relationships that interest us with \(w_{rt}\) while taking into account the strength of association \(C_{jdm}\). In equation 1, we verify a balance between \(w_{rt}\) and \(C_{jdm}\) terms. In equation 2, the term \((n - 1)^2\) enables to penalize depth. We only consider paths which contain at least one agent or patient relationship. The path with the best score is proposed to the user to explain the link between the sentiment and the target or source.

\[
w_1 = \frac{1}{1 - \frac{1}{C_{jdm}}} + w_{rt}
\]

\[
w_n = (\max(w_{n-1}) \cdot \frac{1}{1 - \frac{1}{C_{jdm}}} + w_{rt}) \cdot (n - 1)^2
\]

4 Experiments

Our experiments were carried out using 10-fold cross-validation. To do this, the training corpus was divided into 10 folds. To build our model, we need a training, development and test corpus. Cross-validation has been distributed as follows: The model is built on 8 folds, the optimization of the construction is performed on the ninth part (development) and the model evaluation performed on the last fold (test).

To perform our experiments, we use Wapiti\(^7\) (Lavergne et al., 2010). It is a very fast toolkit for segmenting and labelling sequences with discriminative models. For the iterative estimation of the model parameters, we used the algorithm RPROP (Riedmiller and Braun, 1992).

Table 3 presents the results obtained by different CRF models on training set by cross validation. The features of four bests configurations are:

- **Configuration 1**: Part Of Speech tagging + lemmatization + lowercase
- **Configuration 2**: Part Of Speech tagging + lemmatization + lowercase + brown clustering
- **Configuration 3**: All (Part Of Speech tagging + lemmatization + lowercase + brown clustering + emotion lexicon
- **Configuration 4**: Part Of Speech tagging + lemmatization + lowercase + emotion lexicon

<table>
<thead>
<tr>
<th></th>
<th>Training</th>
<th>Test</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tweets</td>
<td>3,001</td>
<td>1,783</td>
<td>4,784</td>
</tr>
<tr>
<td>Tokens</td>
<td>78,771</td>
<td>48,612</td>
<td>127,383</td>
</tr>
<tr>
<td>Source</td>
<td>1,131</td>
<td>604</td>
<td>1,735</td>
</tr>
<tr>
<td>Target</td>
<td>3,954</td>
<td>2,251</td>
<td>6,205</td>
</tr>
</tbody>
</table>

Table 2: Description of the corpus

The results of the evaluation are reported in terms of precision (the number of source and target correctly extracted over the total number of source and target extracted), recall (the number

\(^6\)http://www.larousse.fr/dictionnaires/francais/thesaurus/77857

\(^7\)http://wapiti.limsi.fr
5 Conclusions and Future Work

A combination of CRF and huge lexical network exploration seems promising for explaining sentiments in social networks. By experimenting with the CRF model, we found that the results varied depending on the features. The best results are obtained with the features: lemmatization, cluster ID and Part Of Speech tagging.

The first advantage of this method is that we can detect multiple tokens (e.g. parc eolien terrestre, La France). Another advantage of this method is that it is efficient even if the sentence contains misspelling. For example, the system identify modèle de développement durable (sustainable development model) even if the word développement is misspelled. Finally, the main advantage of this contribution is not to restrict sentiment, source and target identification to the case in which sentiment word is present. Indeed, in most cases people express sentiments implicitly without using these sentiment words. An emotion cannot be limited to something a person feels about a fact and not the sentiment that a person expresses about this fact. Thus, it could be common to explicitly express sentiments about things, but it is more common to feel emotions without expressing them explicitly. Our method take into account this fact and try to identify source and target beyond the explicit cases.

The principal limitation of our method is the length of the sentences in the considered corpora (size of the tweets). In many sentences, there is no source or no target. Results are significantly reduced. Moreover, a quantitative study has to be performed on step 3 and 4 to evaluate the quality of the computed relations between sentiment and targets/sources.

Prospects associated with this work are numerous. First, in this work we focus only on the targets/sources expressed in sentences and we now have to focus on inter-sentence relationships at paragraph level. In future work, we are going to use the best model we obtained on health forum messages with longer sentences. We will also compare our method to identify relations between sentiments and source/target with the methods of the state of the art. We will also adapt CRF to extract directly relations. Finally, we will present to users the part of the network used to identify relations in order to help their interpretation.
References

