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Moutard transform for the generalized analytic
functions *

P.G. Grinevich T R.G. Novikov*

Abstract

We construct a Moutard-type transform for the generalized ana-
lytic functions. The first theorems and the first explicit examples in
this connection are given.
1 Introduction
We consider the equation
O:¢) = up in D CC, (1)

where u = u(z) is a given function in D, D is open in C. The functions
1 = 1(z) satisfying (1) are known as generalized analytic functions in D. In
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this article the notation f = f(z) does not mean that f is holomorphic. In
the literature it is usually assumed that

ue L,(D), p>2, if D isbounded, (2)
we L,»(C), p>2 if D=C, (3)
where

L,,(C) denotes complex-valued functions w such that

uw € Ly(Dy), w, € L,(Dy), where u,(z) = L u (1) , (4)

|2
Dy ={zeC: |z| <1}

The theory of generalized analytic functions is presented in [2], [12]. How-
ever, to the best of our knowledge, algebraic Moutrad-type transforms, going
back to [6] were not yet considered in the framework of this theory. On the
other hand, the Moutard-type transforms are successfully used in studies of
integrable models in dimension 2+1 and in the spectral theory in dimension
2; see [3], [5], [7], [8]-[11] and references therein.

The Moutard-type transforms correspond in quadratures to coefficients
and related solutions of an appropriate linear PDE (and its conjugate) on the
plane new coefficients and related solutions for this PDE (and its conjugate).
In this article we show that this approach is applicable to equation (1). In
particular, it allows to study equation (1) in some important cases when u
has strong singularities (e.g. contour poles), and, as a corollary, assumptions
(2), (3) are not valid at all. It is quite likely that the known methods of the
generalized analytic functions theory dot not admit appropriate generaliza-
tions for the aforementioned cases.

In addition, our interest to the generalized analytic functions with strong
singularities was, in particular, strongly motivated by studies going back to
4].

Note that the present work was stimulated by recent articles [9], [10]
by I.A. Taimanov on Moutard-type transforms for two-dimensional Dirac
operators with applications to integrable systems in dimension 2+1 and to
differential geometry.

The results of the present work can be summarized as follows:

e We construct Moutard-type transforms for equation (1) considering
this equation as a particular case of the two-dimensional Dirac system

Oz = uhy, 0. =y in D CC, (5)



where D is the same that in (1). Related algebraic and analytic results
in this connection are presented in Section 2.

e Explicit examples of generalized analytic functions obtained by the
Moutard-type transforms from usual holomorphic functions are given
in Section 3. These examples include generalized analytic functions
with contour poles.

2 Moutard transform

We consider the two-dimensional Dirac system (5) and the conjugate system

O = —vip, 0.5 = —uypl in D CC. (6)
If
v =, (7)
then system (5) is reduces to (1). More precisely, in this case:
: : Yo | _ | Y . ‘
if ¢ satisfies (1), then = satisfies (5); (8)
(e (G
. | U . 1 = 1 - :
if ¥ satisfies (5), then ¢ = 5(1/)1 +19) and ¢ = ?(1/11 —1h9) satisfy (1).
2 i

In addition, if (7) holds, then the conjugate system (6) is reduced to the
equation )
Ot = —ap*t in D CC. 9)

In the theory of generalized analytic functions equation (9) is known as
the conjugate equation to the initial equation (1); see [12].
Let

o Uiz, 7) ] oy [ UNEN)) ] :

— e - Dl i=1,... N, (10
v(J) { gy |7 V0 : j (10)
denote a set of fixed solutions of systems (5) and (6), respectively.

In addition, for systems (5) and (6), we consider the potentials w;; =
w; k(%) defined as follows:

azwj,k = @Z)l(J)@Df(k), aiwj,k - —¢2(])¢;(k) in D g C; j?k = ]-7 s 7Na
(11)



under the assumption that D is simply connected. Note that
0:0:wjn = (0:41(5)) Ui (k) +41(5) (941 (k) = uiba(j) ¥ (k) —ven (5) ¥3 (K),

0.0:wjk = —(0:4a(4)) Wy (k) —1ba(j) (9:45 (k) = —vii(4) ¥y (k)+usba(5) ¥y (K),
and, thus,
aiazwj,k = azaiwj,k- (12>

Therefore, definitions (11) are self-consistent, and the integration constants
may depend on the concrete situation.
Let us introduce N x N matrix Q = (4;(2)) = (w;x(2)):

W1,1 W21 ... WN;1
W1,2 W22 <. WNhN2

Q= (13)
wWi,N WoN ... CL)NJ\[

Theorem 1 Suppose that ¥(j), v (j), j =1,...,N, (see (10)) are formal
solutions of systems (5), (6), respectively, for given coefficients u = u(z),
v = v(2), and that detQ # 0, where Q is defined by (11)-(13). Let the
transform

{u,v} — {a, v}, . (14)
{1(0),¥4(0)} = {4(0),9*(0)} (15)
be defined as follows:

5 (1)
G=u+ (1) ... y(N)] Q! : : (16)

5 (V)]

(1)
b=v— [1h(1) Pa(N) Q7 : ; (17)

YT ()

O] _ O] [ea()) oo W] g |

o) = o)~ ) e M]’ .




@H | ], (19)

WN,0

§8)-

where J(O), JJF(O) are some formal solutions to systems (5), (6), respectively,
wo,; and wjo are defined as in (11), but in terms of ¥(0), Y7 (j) and ¥ (j),
¥t (0), respectively, and the symbol t in (19) stands for the matriz transpo-

sition. Then the transformed functions 1(0), ¥+ (0) solve the transformed
Dirac equations:

D=1 (0) = @y (0), 9,15(0) = o1 (0) in D, (20)
Dz (0) = =3 (0), 013 (0) = —aghyf (0) in D. (1)

Historically, transformations like (14)-(15) go back to the paper [6], and
are known in the literature as Moutard transforms or Moutard-type trans-
forms. For the two-dimensional Dirac operators the Moutard transforms were
considered many times in the literature, see, for example, [5], [9], [10] and
references therein. Nevertheless, for completeness of exposition, we present
the proof of Theorem 1 in Section 4.

The point is that the Moutard-type transform (14),(15) admits the follow-
ing reduction to the case of equations (1), (9), i.e. to the case of generalized
analytic functions.

Let

¢(]):¢(z>])7 ¢+(J):¢+(Z'J)a ]:LaNa (22)
denote a set of fixed solutions of (1) and (9), respectively. Then we can define
w;kr = w;k(z) as imaginary-valued functions satisfying

Qowir = ()t (k), Owjr=—0()t(k) in D, jk=1,...,N, (23)

where (23) is the reduction of (11) corresponding to

Ui(g) =), (i) =v(), Ur()=v70), ¥0)=vT()-  (24)

Remark 1 [t is interesting to note that real-valued function ¢ = wg’i"'

v —1, for some fized j, k, is known in the generalized analytic functions
theory as a potential for equation (1); see [12].

7Z:



Theorem 2 Suppose that ¥(j), v (5), j=1,..., N, (see (22)) are formal
solutions of equations (1), (9), respectively, for a given coefficient u = u(z),
and that det Q # 0, where Q) is defined according to (13), (23) with imaginary-
valued wj,. Let the transform

u — 1, (25)
{£(0),7(0)} — {¥(0),¥7(0)} (26)
be defined as follows:
P (1)
a=u+ W) ... op(N]Q ], (27)
U (N)
BO) = w(0) — [p(1) .. vt ¢ | (28)
ROy =0t 0) — [6r(1) et @ Y| | (0

where ¥ (0), ¥ (0) are some formal solutions to equations (1), (9), respec-
tively, wo; and w;jo are imaginary-valued and are defined as in (23), but in
terms of ¥(0), ¥ () and ¥ (j), 1 (0), respectively, and t in (29) stands for
the matriz transposition. Then the transformed functions (0), 1" (0) solve
the transformed generalized-analytic function equations:

0:15(0) = @1 (0) in D, (30)
=0 (0) = —aepr(0) in D. (31)

To our best knowledge, Moutard-type type transforms like (25), (26) were
not yet considered in the generalized-analytic function theory.

Theorem 2 follows from Theorem 1 in the framework of reductions (7),
(24). In this case using also that Q = —( one can see that the transform
(14), (15) preserves symmetries (7), (24).

The algebraic result of Theorem 2 admits, in particular, the following
analytic realization:



Theorem 3 Let D be an open simply-connected bounded domain in C with
Ct-boundary and u satisfy (2). Let ¥(j) € W'P(D) and ¥+ (j) € W'?(D),
j=1,...,N, be solutions of equations (1) and (9), respectively, and det ) #
0 in DUOD, where §2 is defined according to (13), (23) with imaginary-valued
w; k. Let the Moutard transform be defined according the formulas (25)-(29)
as in Theorem 2.

Then the transformed coefficient @ satisfied (2) as well as the initial u.

In Theorem 3, WP denotes the standard Sobolev space.

Theorem 3 follows from formula (27) and from the properties that ¢ (j),
(), j=1,...,N, and w;g, 1 < j,k < N, and det2 are continuous in
D U 0D. Note that, in order to obtain the aforementioned continuity of
¥(j), wF(j), we use that, under our assumptions on D, if f € W1P(D) then
f € C¥(DUOD), where C* denotes the standard Hélder space, a = (p—2)/p
(see [1]). Finally, the continuity of w; follows from the continuity of ¢(j),
Yt (k) and from formula (11).

3 Explicit examples

In this section we present explicit examples illustrating the Moutard-type
transforms for generalized analytic functions, i.e. transforms (25)-(29).
Let

u=0, N=1, ¢(1)=f(2), ¢*(1)=f"(2), (32)
7,/)(0) - ¢(z7 0)7 ¢+(0) = ¢+(Z7 O))
where f, f* and ¢(0), 1" (0) are holomorphic on D. Then:

1. For imaginary-valued w; ; and wq 1, wi o of (23) and (28), (29), we have

w1’1(2> = Fl,l(Z) — Fl,l(z) + C1.1, (33)

wo(z) = Fo1(2) — Foa(z) + co1, wio(2) = Fio(z) — Fio(2) + c1p,

where F ; and Fp 1, Fi o are holomorphic functions on D such that

0:F11(2) = f(2) [T (), (34)
0.Fo1(2) = ¥(2,0)fT(2), 0.F10(2) = f(2)¢(2,0),

and ¢ 1, ¢p1, €10 are pure imaginary constants;
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2. Formulas (27)-(29) take the form:

a0y = L )
w1 1(2)

B0 = 02, 0) = 1) 21 (36)

FH(2,0) = 7 (2,0) — f*(z) “20) (37)

wia(z)
In addition, equations (30), (31) for ¢(0), ¢*(0) are nontrivial already for
flz)=C#0, ff(2)=C"#0, (38)
where C, C" are complex constants. In particular, in this case
i cor
20 Im(CC*z) + 11

(39)

One can see that this @ satisfies (2) if (DUOD) C At or (DUOD) C A~
where
At ={z€C:Im (20C"z + ¢11) > 0}, (40)
A" ={z€C:Im(20CTz +c11) < 0}.

However, this @ does not satisfy (2) at all if D N L # (), where
L={2€C:Im (2CC* 2+ ¢1,1) = 0}. (41)

The point is that already the Moutard transform (25)-(29) for the case
(32), (38) yields generalized analytic functions with contour poles: with poles
on L in this particular case.

Next, we consider the example when

u=0, N=2, ¢(1)=fi, v () =f, ¥(@2)=/fo, v7(2)=1f (42)
¢(O> - ¢(Z’O)7 ¢+<O) = 1/J+(Z,0),

where f1, i, fa, fi are complex constants, and +(0), 1+ (0) are holomorphic
functions on D. In this case:



1. For imaginary-valued w; of (23), (28), (29), j,k € {0, 1,2}, we have
wirlz) = fififz = FifiT 2+ e (43)
wo() = Ui = W) f +cops wiol2) = 97 (2) = [T(2) + ¢,
where j,k = 1,2, ¥, U are holomorphic functions on D such that

0.V (2) = ¥(2,0), 9.V (2) =¥ (2,0), (44)
and c;j are pure imaginary constants, j, k& = 0,1, 2;

2. Formulas (27)-(29) take the form:
f1f1 C22 — f2f1 C12 — f1f2 Co1 + f2f2 C1, L

i(z) = det O (49)
U(z,0) = ¥(z,0) — (det Q)" x (46)
X ([( flf2f2 + f2f1f2 ) Z+ ficoo — f201,2] wo.1(2)+
[( VoSt — f2f1f1+> Z— ficon + f201,1] w072(2)> ;
UH(2,0) = ¥F(2,0) — (det Q)" x (47)
< ([(FRIF + FRIT) 7+ firens = S ea| wro(2)+
+ [(ﬁﬁ - f;ﬁ) Z— fireg+ f;cl,l] W2,0(2)> :
where
det @ =2Re [(Lff Fiff = fifi Fof7 ) 22+ (48)

+ <C2,2f1f1+ + i fofs —cafofi — 02,1f1f2+) Z] + C1,1C22 — C21C1 2,

2 is the matrix defined according to (13) for N = 2.
Note that if

confifi +anfofs —canfofi —cnfifd =0, (49)
flECQQ - f2EC1,2 — f1EC2,1 + f2EC1,1 # 0,
Re (£ofi fuf5 = hfF RFE) #0.



then 4 in (45) is spherically-symmetric and non-trivial. In addition, assuming
that
C11C22 — C21C

1,1C2,2 — €2,1C1,2 (50)

2Re (Rofi1f5 = AT RIT)

o >0, where 0 =—

we have that: @ has a pole on
S, ={2€C:|z*=r}, where 7* =o0; (51)

w(z) = O0(]z|™%) as |z| = . (52)

For example, assumptions (49) are fulfilled if

fi=1, ffr =1, fo=1, f2+ =1, Ci,1 = €22, C12 = —Ca1, \61,1\2—1-’01,2’2 # 0.
(53)

One can see that the Moutard transform (25)-(29) for the case (42), (49),
(50) yields again generalized analytic functions with contour poles: with
poles on S, in this particular case.

Actually, our Moutard-type transforms (25)-(29) give a method for de-
veloping a proper theory of generalized analytic functions with contour and
point poles of some natural class. This issue will be developed in the subse-
quent work.

4 Proof of Theorem 1

Using (11),(13) we obtain:

P (1)
0.0 = : [v1(1) ... (N)], (54)
P (N)
Py (1)
0:Q = — : [02(1) ... ¥a(N)], (55)
Y5 (N)
P (1)
o0 =-Q7" | | (i) ... (V)] Q7 (56)
YT (N)



s (1)

9.0 =q! { [0a(1) ... ()] Q7 (57)

UE(N)
Using (18) and (5), (11), (56), (57), we obtain:

0:11(0) = 0z11(0) — [0=1(1) ... O=n(N)] Q7 { 57 ] +

¥y (1)
: P2(0)—
Uy (N)

+W1(1) ¢1(N)] ot

;(1) wo,1
—[¢1(1) %(N)} Ql|: : }[2/12(1) 1/12(]\7)} Ql|: : ]

HV)
H(N) )

x (%(0) [Wa(1) ... (M) Q7 { 5’ D _

v ()
= [u+[i(1) ... (] Q| 2(0); (58)
3 (N)

Wo,N
5 (1)

_ (u—i— [¥a(1) ... (V)] Ql{

azquZ(()) = 3z¢2(0) - [az¢2(1) s 827702(]\[)] Qil |: ’ ] -
(1)

— (1) ... w(N)] Q7 : ¥1(0)+
(V)

11



(1) Wo,1
+[2(1) ... (V)] Q7 { : ] [a(1) ... (V)] Q7 l : ] =

(1)

= [v—=[a(l) ... (V)] f X
(V)

y (¢1(0)— [Wi(1) ... e(N)] Q! { ;7 D _

st |
: ¥1(0). (59)
Formulas (58), (59) and (16), (17) imply (20).

— (v — [wa2(1) ... (V)] Q7 :
Using (19) and (5), (11), (56), (57), and the formulas

Ui (V)

aZ(Q—l)t — (aZQ—l)t’ aZ(Q—l)t — (aEQ—l)t7

we obtain:
B W10
0zf (0) = 047 (0) — [0 (1) ... O (N)[ () | ¢ |+
WN,0

Pa(1)

+[r @) ) @) 5 (0)—

o)

Pa(1)

— [y ... waVH<QUt{ ][w;u> . wJUVﬂ(QUt{ 5]

WN,0

()

(1)
= | —v+[vf (1) oM@ X
2(N)

12



X (w;m) (W3 (D) . ef)] @) [ ] D =

da(1) ]
— | v+ [of) et @Y 5(0);  (60)
Ua(N)

and

0.5 (\) = 845 (N) = [0:05° (1) .. 9 (V)] () { ] ] -

WN,0

(1)
[ e @ N el (0)+
(N)

Yi(1) w10
F ) e I@D ] @) (@) s | =
%(N) WN,0
Yi(1) ]
= | —u—[¥3(1) ... Yy(V)] @Y : X
P1(N))]

X (W(O) —[eF @) ... wf ()] Q7! [ 5’ _

WN,0

Ui (1)
: bF0). (61
Ui (N)

- (uwm Y@y

Formulas (60), (61) and (16), (17) imply (21).
This completes the proof of Theorem 1.

13



References

1]
2]

R. Adams, J. Fournier, Sobolev spaces, Academic Press, 2003.

L. Bers, Theory of pseudo-analytic functions, Courant Institute of
Mathematical Sciences, New York University, Institute for Mathematics
and Mechanics, 1953, 187 pages.

A. Doliwa, P. Grinevich, M. Nieszporski and P.M. Santini, Integrable
lattices and their sublattices: From the discrete Moutard (discrete
Cauchy-Riemann) 4-point equation to the self-adjoint 5-point scheme,
J. Math. Phys., 48 (2007), p. 013513.

P.G. Grinevich, S.P. Novikov, Two-dimensional ’inverse scattering
problem’ for negative energies and generalized-analytic functions. 1.
Energies below the ground state, Functional Analysis and Its Applica-
tions, 22 (1988), pp. 19-27.

V.B. Matveev, M.A. Salle, Darboux transformations and solitons,
Springer Series in Nonlinear Dynamics. Springer-Verlag, Berlin, 1991.

T.F. Moutard, Sur la construction des équations de la forme % B‘fgy =
A(z,y) qui admettenent une intégrale générale explicite. J. Ecole Poly-

technique, 45 (1878), pp. 1-11.

J.J.C. Nimmo, W.K. Schief, Superposition principles associated with
the Moutard transformation: an integrable discretization of a 241-
dimensional sine-Gordon system, Proc. R. Soc. London A, 453 (1997),
pp- 255-279.

R.G. Novikov, I.A. Taimanov, S.P. Tsarev, Two-dimensional von
Neumann-Wigner potentials with a multiple positive eigenvalue, Func-
tional Analysis and Its Applications, 48:4 (2014), pp. 295-297.

[LA. Taimanov, Blowing up solutions of the modified Novikov-Veselov
equation and minimal surfaces, Theoretical and Mathematical Physics,
182:2 (2015), pp. 173-181.

I.A. Taimanov, The Moutard transformation of two-dimensional Dirac
operators and Md&bius geometry, Mathematical Notes, 97:1 (2015), pp.
124-135.

14



[11] I.A. Taimanov, S.P. Tsarev, On the Moutard transformation and its
applications to spectral theory and Soliton equations, Journal of Math-
ematical Sciences, 170:3 (2010), pp. 371-387.

[12] LN. Vekua, Generalized Analytic Functions, Pergamon Press Ltd. 1962.

15



