New Mathematical approaches in Electrocardiography Imaging inverse problem

Nejib Zemzemi, Mark Potse, Laura Bear, Yves Coudière, Rémi Dubois, Jacques Henry, C Dallet, Josselin Duchateau, O Bernus, M Haïssaguerre

To cite this version:

Nejib Zemzemi, Mark Potse, Laura Bear, Yves Coudière, Rémi Dubois, et al.. New Mathematical approaches in Electrocardiography Imaging inverse problem. LIRYC scientific day, Jun 2015, Pessac, France. hal-01222406

HAL Id: hal-01222406
https://hal.archives-ouvertes.fr/hal-01222406

Submitted on 29 Oct 2015
New Mathematical approaches in Electrocardiography Imaging inverse problem

N. Zemzemi, M. Potse, L. Bear, Y. Coudière, Rémi Dubois, J. Henry, C. Dallet, J.Duchateau, O. Bernus, M. Haïssaguerre.

Inria Bordeaux Sud-Ouest, IHU-LIRYC, CHU-Bordeaux, Université de Bordeaux.

Context and objectives

Major objectives
- Improve ECGI inverse problem reconstruction
- Introduce new mathematical approaches to the field of the ECGI inverse problem
- Compare the performance of the new mathematical approaches to the state-of-the-art methods, mainly the MFS method used in commercial devices.
- In silico validation of the new approaches.
- Assessment of some simplification hypothesis: Torso inhomogeneity
- Propose some uncertainty quantification approaches to deal with measurements errors

Mathematical model

Forward model
If we know the heart potential we can compute the electrical potential
\[\text{div} (\sigma \nabla \psi) = 0, \text{in } \Omega, \]
\[\sigma \nabla \psi \cdot n = 0, \text{on } \Gamma_{ext}, \]
\[\psi = u_t, \text{on } \Sigma. \]

Inverse problem
If we know the electrical potential and the current density at the outer boundary of the torso and we look for the electrical potential at the heart surface
\[\text{div} (\sigma \nabla u) = 0, \text{in } \Omega, \]
\[\sigma \nabla u \cdot n = 0, \text{and } u = T, \text{on } \Gamma_{ext}, \]
\[u = u_r, \text{on } \Sigma. \]

MFS approach

Solve the linear system
\[\tilde{A} \tilde{a} = \tilde{b} \]
\[\begin{pmatrix} f(y_{(1)} - x) & \cdots & f(y_{(N)} - x) \\ f(y_{(1)} - y) & \cdots & f(y_{(N)} - y) \\ \vdots & \ddots & \vdots \\ f(y_{(1)} - y) & \cdots & f(y_{(N)} - x) \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_N \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_N \end{pmatrix} \]

Regularization with CRESO

Optimal control approach

Poincaré–Steklov variational formulation of the inverse problem.

Minimize the following energy functional
\[J(a) = \frac{1}{2} \int_{\Omega} (\nabla \psi(a) - \nabla \psi_0(a))^2 \]

Subject to
\[\text{div} (\sigma \nabla \psi_0(a)) = 0, \text{in } \Omega, \]
\[\psi_0(a) = u_t, \text{on } \Gamma_{ext}, \]
\[\psi_0(a) = \lambda, \text{on } \Sigma. \]

Descent gradient methods
\[\nabla J(a) = \sigma \nabla \psi_0(a) - \nabla \psi_0(a) \cdot n_n \]

Discretization with Finite elements method.

In silico gold standard

Anatomical data

Computational heart and torso anatomical model + electrodes position

Simulated cases
- 6 single and double stimuli
- 14 entry cases

Relative error and correlation coefficient

<table>
<thead>
<tr>
<th>Cases</th>
<th>metric</th>
<th>MFS + CRESO</th>
<th>O.C. integrated</th>
<th>O.C. refined data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single and double stimuli (6 cases)</td>
<td>RE</td>
<td>0.81±0.04</td>
<td>0.71±0.02</td>
<td>0.59±0.06</td>
</tr>
<tr>
<td>Re-entry (VT) (14 cases)</td>
<td>CC</td>
<td>0.97±0.07</td>
<td>0.76±0.03</td>
<td>0.84±0.04</td>
</tr>
<tr>
<td>All 20 cases</td>
<td>CC</td>
<td>0.99±0.07</td>
<td>0.72±0.04</td>
<td>0.84±0.04</td>
</tr>
</tbody>
</table>

Remarks
- Introducing the torso heterogeneity is natural with FEM, also anisotropy could be introduced
- The error is more important in the left ventricle

Conclusions

Main results and perspectives
- New mathematical approaches for solving the inverse problem in electrocardiography imaging based on optimal control
- Over all the 20 cases used in this study the optimal control method performs better than the MFS both in terms of relative error and correlation coefficient:
 - RE was improved from 0.79±0.06 to 0.59±0.05
 - CC was improved from 0.59±0.07 to 0.84±0.04
- Our results show that the heterogeneity in the torso has an impact on the accuracy of the solution both in terms of RE and CC.
- We are working on other new approaches for solving ECGI problem and also quantifying the effect of the torso conductivity uncertainties on the ECGI solution

Acknowledgment: This work was partially supported by an ANR grant part of "Investissements d’Avenir" program with reference ANR-10-IAHJ-04. It is also supported by the LIRIMA international lab thought the EPICARD team