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Abstract

The discovery of the generalized cosmological red-
shift and of universe expansion is the foundation of
modern cosmology, but also a challenge for determining
distances. The distance of a celestial body measured in
our telescopes is not the distance at the time of light
emission, nor at the time of reception because space ex-
pands ahead of and behind the light front. In addition,
the correspondence between these different distances and
the redshift depends on the mode of expansion. Instead
of starting from universe models and hypothetical causes
of expansion, the inverse approach used here is to sys-
tematically examine the relations between redshift and
distances expected in all the scenarios of expansion pos-
tulated in the course of universe maturation, regardless
of their rationale: proportional to cosmic time, power
law or exponential, and for different assumptions about
the origin of the redshift: kinematic, relativistic and
wave stretching effects. None of these combinations
gives the same results in terms of redshift, of horizon,
of distances and of deviation from the Hubble law. This
compendium thereby extends the mathematical toolbox
for distinguishing cosmological hypotheses.

Keywords: Universe expansion; cosmological redshift;
cosmological distances; informational horizon.

1 Introduction

Distances and redshifts are the basic observational
ingredients of cosmology, but their use is delicate. Am-
biguities about the Hubble law [1] have long been pointed
by Harrison [2], such as the common confusion between
the redshift-distance and velocity-distance relationships.
It would also be preferable to know what we measure ex-
actly. What is the distance perceived, using parameters
such as luminosity and magnitude, through a telescope?
It is not the distance of the celestial body when the light
was emitted since it was shorter, nor the actual distance
because the space separating us from the star continued

to expand during the time of travel of light. In addi-
tion for distant objects, several modes of expansion could
have succeeded during the long journey of light. Other
mathematical twists are necessary to establish and inter-
pret the famous distance-redshift Hubble diagram, the
black box of the universe in which are inscribed the past
modes of expansion. The determination of redshifts is
reliable compared to other types of measurements and
the distance-redshift diagram is drawn with increasing
accuracy thanks to technical progress and to objects
which are both distant and bright such as supernovae
and gamma ray bursts; but to fully exploit this diagram,
the tools for its analysis must be clearly established. The
distance-redshift diagram is sometimes used to define the
instruments necessary for its own reading or to select
convenient parameters (such as Ω and appropriate forms
of matter and energy), to adjust the theoretical curves
of the mainstream model ΛCDM. Theories are based on
observables and conversely certain measurements make
use of accepted theories, such as when distances are de-
duced from redhifts, thereby introducing circular distor-
tions in the reasoning. The present study does not favour
a specific pre-designed model, but is aimed at listing ba-
sic mathematical relationships preliminary to modeling
and curve fitting, such as the dependence of redshifts
on the mode of expansion and the true distance of light
sources deduced from their measured distance. Instead
of starting from Friedmann equations as usual, all cases
of expansion are examined using minimalist and original
mathematical approaches applied to flat spaces devoid of
gravitational influences. Let us start with the basics: the
origin of the redshift.

2 The main hypotheses on the
origin of the redshift

2.1 Redshift without expansion

General relativity would be sufficient to cause distant
objects to appear redshifted as a consequence of an ap-
parent slowing of time. This attractive possibility will
not be examined here and space will be approximated
as globally flat and not shaped by gravity. Another hy-
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pothesis, called ”tired light”, assumes that the longer is
its flight, the more the light loses its energy by inter-
action with particles encountered along its path (which
can come from the quantum vacuum). As the tired light
theory is not based on simple optical rules, it will not be
treated here, but note that this theory curiously uses the
same law as the simple exponential expansion [3], which
can of course give it a misleading success. This case will
be indirectly treated when studying exponential expan-
sion.

2.2 The redshift caused by expansion

The prevailing view is that the cosmological red-
shift is related to space expansion, but divergences exist
about this relation. Two interpretations of the redshift,
Doppler effect and wave stretching, which have been con-
sidered equivalent [4], will be compared.

2.2.1 The redshift interpreted as a kinetic
Doppler effect

The Hubble Redshift is frequently, perhaps erro-
neously, interpreted as a Doppler effect. An observer sees
a red shift if the light source moved away from him. In
case of expansion, the distant stars move away from each
other, but passively. The objects can not ”feel” accelera-
tion and the mutually receding galaxies can belong to the
same inertial reference frame. The question is therefore
whether a passive speed can generate a Doppler effect.
With uniform motion, the redshift corresponding to the
classical Doppler formula is z = v/c and the relativistic
redshift based on the Doppler formula of Einstein [5] is

zr =

√
c+ v

c− v
− 1 (1)

where v is the recession velocity. This equation is
little used in astrophysics in which recessional velocities
can be superluminal [6]. In addition, this formula has
been built in special relativity, whereas recession veloci-
ties vrec are generally supposed not uniform.

2.2.2 The redshift interpreted as a stretching of
waves during their travel

Before the publication of Hubble [1], Lemâıtre had
shown that wavelengths should follow expansion [7]. For
an interval of universe

ds2 = dt2 − a(t)2dσ2 (2)

where dσ Is the element length of a space of radius
equal to 1, the equation of a light beam is

σ2 − σ1 =

∫ t2

t1

dt

a
(3)

where σ1 and σ2 are the coordinates of a source and
an observer. A beam emitted later at t1+δt1 and arriving
at t2 + δt2 undergoes a shift such that

δt2
a2
− δt1
a1

= 0 (4)

giving

z =
δt2
δt1
− 1 =

a2

a1
− 1 (5)

where δt1 and δt2 can be considered as the periods
at emission and reception respectively [7]. If a proces-
sion of walkers regularly spaced crosses a stretching rub-
ber band, on arrival their spacing will obviously been
stretched in the same ratio as the rubber band. The same
reasoning applies to a series of wave crests. In his arti-
cle, Lemâıtre called this effect a Doppler effect [7]. This
term is acceptable if broadly defining the Doppler effect
as a wave distortion, but this is not the classical Doppler
effect related to the speed of the source. It will be shown
here that both mechanisms give different results regard-
less of the type of expansion. In the wave stretching
effect of Lemâıtre, the ratio between the reception and
emission wavelengths simply follows the increase of the
distance between the source and the receiver which took
place during the light flight between the time point of
emission (source and receiver spaced by DE) and that of
reception (source and receiver spaced by DR):

λapp

λ
=
DR

DE

(6a)

The corresponding redshift zs is the relative distance
increase

zs =
DR −DE

DE

(6b)

3 Relationships between Doppler
effects and distance changes in
uniform motion

The simple case of uniform motion is sufficient to per-
ceive the symmetric nature of relative motion and the
absence of a static medium. Imagine that a source and
a receiver can move relative to one another and in addi-
tion, can move relative to an hypothetical static medium
supporting light propagation at speed c. The source and
the receiver recede form each other at speed v. At time
tE, when spaced from the receiver by DE, the source emits
a light beam propagating towards the receiver.

3.1 In an immobile medium

Different results are obtained depending on whether
this is the source or the receiver which moves relatively
to the background medium (Fig.1).
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Figure 1. A light pulse is emitted by a source (S) when

spaced from a receiver (R) by DE. Just like a ball thrown

between two football players, light travels through a static

medium relatively to which either S (middle line) or R (bot-

tom line), is considered immobile.

3.1.1 The receiver is considered immobile rela-
tive to the background medium

Light reaches the receiver at time tR after crossing a
distance DE (bottom scheme of Fig.1). Hence, the dura-
tion of the light travel is

tR − tE = DE/c (7a)

At tR, the new spacing between the source and the re-
ceiver has become

DR = DE + v(tR − tE) (7b)

Replacing the duration in Eq.(7b) by its value given by
Eq.(7a), yields a distance ratio corresponding to a clas-
sical Doppler effect

DR

DE

= 1 +
v

c
(7c)

Distance increases in the same ratio that the classical
Doppler effect. In case of collinear approach, the same
reasoning gives

DR

DE

= 1− v

c
(7d)

3.1.2 The source is considered immobile relative
to the background medium

In this case, light is expected to reach the receiver af-
ter crossing a distance DR (middle scheme of Fig.1). The
duration of the light travel is

tR − tE = DR/c (8a)

Replacing the duration in Eq.(7b) by its value given by
Eq.(8a), yields a conjectural Doppler formula

DR

DE

=
1

1− v

c

(8b)

In case of collinear approach, the same reasoning gives

DR

DE

=
1

1 +
v

c

(8c)

These contradictory results suggest that the notion of
immobility in a static space should be ruled out. Interest-
ingly, the geometric means of the two extreme results ob-
tained by postulating the static medium (Eqs (7c)/(8b)
and Eqs (7d)/(8c)), is the relativistic Doppler effect. For
the recession: 〈

DR

DE

〉
=

√
c+ v

c− v
(9a)

and for the approach〈
DR

DE

〉
=

√
c− v
c+ v

(9b)

3.2 Without background medium

In the special relativity theory, uniform motion can-
not be attributed specifically to one of the relatively mov-
ing frames. The total distance crossed by light is not DR

nor DE, but

DL = c(tR − tE) =
c

v
(DR −DE) (10)

The precise relationships between DR, DE and DL will be
calculated later.

4 Influence of expansion on signal
connection

4.1 Validity of the simplistic analogy
with the walker on an elastic

The theory of Lemâıtre recalled above gives results
equivalent to a light travel on an elastic medium. In
spite of frequent reprobations, this equivalence is per-
fectly valid because for light following geodesics (s = 0),
the metric of Friedmann-Robertson is very simple. By
rewriting the interval of Eq.(2) in Cartesian coordinates,
this metric reads

ds2 = (cdt)2 − a(t)2(dx2 + dy2 + dz2) (11)

where a(t) is the spatial expansion factor depending on
time only [8]. For a light beam oriented along the x axis,
this line element reduces to

dx

dt
=

c

a(t)
(12)
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This formula is equivalent to a relative speed intro-
duced below in this study, if adding a unit of distance.
Furthermore, a dimensionless equation (time−1), is ob-
tained with the Friedmann-Lemâıtre-Robertson-Walker
approach giving dχ/dt = c/a(t) where χ is an angle
(without dimension) and a(t) is a distance, more appro-
priately written R(t) for universe radius. It is therefore
legitimate to adopt the minimalist treatment used in this
article, according to the recommendation of Gibbs: ”One
of the principal objects of theoretical research in any de-
partment of knowledge, is to find the point of view from
which the subject appears in its greatest simplicity”. Fol-
lowing Gibbs and a proposal of Eddington, light will be
compared to a walker on an expandable substrate similar
to a rubber band.
Imagine that you want to join your house located at the
end of a stretchable road on which you walk at velocity
c. The road stretches in front of you so that your house
moves away at speed v. You legitimately ask several
questions: do you walk fast enough to reach your home?
Is this just possible if v > c? According to the theory
of wave stretching, you realize that your legs themselves
are elastic, so that your stride lengthens in the same ra-
tio as the road. So you are first reassured because the
number of steps necessary to reach the house remains
unchanged. But another rule is imposed on you: you
must walk at a constant speed. As your stride is longer,
you should slow down your pace. So you will arrive late
at home, perhaps much later, if ever; it depends on the
initial path length (DE) and especially, as we shall see,
on the expansion function. This metaphor is analogous
to the expansion of the universe, if comparing the walker
to a light beam progressing at a constant speed, a wave-
length corresponding to a couple of strides. The speed
of light can be expressed in term of wave parameters as
follows

c = λ meters/T seconds (13)

where λ is the length of a stride (wavelength) and T
is the stride pace (period). Dilating λ while maintaining
the speed c constant, imposes to increase T (decrease ν)
in the same ratio, thereby generating a redshift. Before
returning to the main two competing interpretations of
the redshift, it is useful to determine whether or not you
can reach your home. These results will be obtained be-
low for different modes of expansion (uniform, geometric
and exponential) and using a classical treatment, with-
out recourse to the usual relativistic approaches.

4.2 Uniform expansion

Several authors have suggested a mode of universe
expansion called a ∝ t, which simply follows the cosmic
time [9, 10, 11]. When a(t) = ct, ȧ = c and H = 1/t,
expansion follows the age of the universe according to

D(t)

DE

=
t

tE
(14)

In fact, with a linear cosmic time, this expansion sim-
ply corresponds to the uniform expansion at constant
speed v. Indeed, Eq.(14) can be re-written

D(t)

DE

= 1 +
t− tE
tE

(15a)

or

D(t) = DE +
DE

tE
(t− tE) (15b)

that is

D(t) = DE + v(t− tE) (15c)

Uniform expansion means at constant intervals, but
not necessarily slow expansion, as the speed can be un-
limited. With uniform expansion, even at gigantic super-
luminal speed, and given sufficient time, the walker will
inevitably reach his home, whatever his walking speed
(eg walk at c = 4 km/h while the road stretches at v =
1,000 km/h). This result is so counterintuitive that it has
been popularized as a mathematical game [12]. Speed
calculations on an elastic road is an uncomfortable gym-
nastics due to lack of fixed coordinates. To visualize the
phenomenon, let us create a landmark in the form of a
television screen on which the entire road always appears
complete and fixed. This can be achieved with a movie
camera zooming out to exactly compensate the exten-
sion of the road. On the screen, we would see the walker
move forward more and more slowly but finally reach
the house. The relative speed of the walker (time−1) in
the fixed frame of the TV screen coordinates (unit size)
can be defined in two manners using the correspondence
D(t) = DE(t/tE) = DE + vt

dx(t)

dt
=

ctE
DEt

=
c

DE + vt
(16)

whose integration gives a unitless relative position x,
starting from x(tE) = 0, of

x(t) =
ctE
DE

ln
t

tE
=
c

v
ln

(
1 +

vt

DE

)
(17)

These functions without ceiling indicate that the
walker continues its merry way and necessarily reaches
the other end of the screen (when x(t) = 1), even with
a very high stretching rate v. Signals cannot be discon-
nected in the universe. The journey can however be very
long as its duration follows

∆t =
DE

v
(ev/c − 1) (18)

If photons are like this walker in an expanding uni-
verse, whatever the relative values of v and c, there is
no disconnection between the different parts of this uni-
verse. To try to stop this persistent walker, one must
change the mode of stretching.
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4.3 Speculative interlude

Uniform expansion, even at enormous speed, cannot
disconnect signals. So how can we disconnect the differ-
ent regions of the universe? This question can be of prac-
tical interest for a clever universe designer. Imagine such
a creator who seeded the universe with all the ingredients
necessary for the onset of life. She knows that the main
danger threatening life, that’s life itself, with its lack of
regard for life forms seen as inferior. If communication
was unrestricted in the universe, a bonus would be given
to the rapidly developing forms, but in fact slowly emerg-
ing, more complex forms could ultimately be the most
effective if sufficient time was given them. The natural
solution to this problem is to partition, at least temporar-
ily, the world into regions disconnected from each other
by informational borders. If disconnection limits are con-
veniently adjusted to the probabilities of life emergence,
all forms of life could blossom and grow at their own ki-
netics, without risk of competition with more advanced
forms. The recipe for such a fragmentation is the expan-
sion of the space, provided a mode of expansion prevents
the signals from reaching other life outbreak sites. As a
consequence, if on average, a maximum of one form of life
is expected in a connexion sphere, our efforts to not feel
alone in the universe may remain in vain. Incidentally,
the scale of such fragmentation could also be adjusted to
make undetectable any curvature of the universe. Let us
examine first a widely used mode of expansion of astro-
physics, the geometric progression called ”power law”.

4.4 Power law expansion

This mode of expansion, predicted by calculations
based on the theoretical constituents of the universe, sat-
isfies

D(t) = DE

(
t

tE

)u
(19)

where u can take different values depending on the
maturation stage of the universe described in astro-
physics courses: 1/2 for the radiation-dominated era, 2/3
for the matter-dominated era, 1/3 for the stiff fluid, u = 2
for a minimal condition of inflation satisfying ä/a > 0,
etc. As the strategy of the relative position on our TV
screen seems efficient, let us use it again. The relative
position of the walker (photon) on the screen is obtained
by integration between tE and t

x(t) =

∫ t

τ=tE

c

DE

(
τ

tE

)−u
dτ

=
c

(1− u)

tE
DE

[(
t

tE

)1−u

− 1

] (20)

Things get interesting:

— (i) For u < 1, x(t) increases continuously with t
and therefore can exceed 1 without problem. As
for the previous modes of expansion, the universe
is revealed in its entirety.

— (ii) For u > 1, we finally succeed in stopping the
walker on the television screen. Even if he con-
tinues to run at speed c, the walker cannot cross
a virtual limit on the screen that can be called a
horizon at

x(t∞) =
c tE

DE(u− 1)
(21)

The success of the connection depends on the initial
conditions: the time of departure (tE) and the distance
to be covered as it is at this time (DE). Now let us try
another accelerated mode of expansion in which time is
not raised to a power, but is itself an exponent: the ex-
ponential expansion.

4.5 Exponential expansion

With an exponential expansion of rate H, the length
of the road stretches according to D(t) = DE eH∆t and
the relative speed of the walker is

dx(t)

dt
=

c

DE

e−H(t−tE) (22)

whose integration between tE and t, gives his relative
position on the television screen

x(t) =
c

HDE

(
1− e−H∆t

)
(23)

This position tends asymptotically to a maximum
c/HDE, which means that for given values of H and c,
the success of the walker in his crossing depends on DE.
To reach the goal, c/HDE must exceed 1, so DE must
be lower than c/H. The critical distance c/H is a dis-
connection point in the stretching universe of the walker,
that is unreachable because the time of travel

∆t =
1

H
ln

 1

1− HDE

c

 (24)

would become infinite, and at t infinite, the relative
speed dx(t)/dt is zero. The walker stops on the tele-
vision screen, even if in reality he goes imperturbably
forward at speed c. As there is no particular point in a
homogeneous elastic universe, this distance is universal
and valid from any starting point.
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4.5.1 Consequence of the Hubble law vrec = HD

The proportionality between the recession velocity
and the distance can be written dx/dt = Hx, where H
is the slope of a straight line. As the slope of a straight
line is a constant, the unique solution of the Hubble law
is x(t) = x(0)eHt. This expansion is often called a model
(of de Sitter), but in addition to be a model, it is also just
the only possible mathematical solution of vrec = HD,
as long as H is constant. It is recommended in astron-
omy to write vrec = H0D to clearly indicate that H(t)
may have been different in the past. Interesting ques-
tions are: how much of the universe we can see and how
far we have to look for seeing a H different from H0.

4.5.2 Specificities of the exponential mode of ex-
pansion

— (i) It is an infinite mode of expansion without
big bang, because a(t) = a0eHt (Hubble law) has
no root. Setting a0 = 0 implies that for all t,
a(t) = 0. So a universe exponentially expanding
only has always existed. This property is particu-
larly interesting in the case of an infinite universe,
because getting an infinite space by stretching a
finite space is a pure mathematical impossibility.

— (ii) This mode of spatial expansion is a direct
consequence of the proportionality between ve-
locity and distance dx/dt = Hx, which implies
x(t) = x(0)eHt. This is the flat version of the
universe of de Sitter [13] (for k = 0), towards
which converge at long times the positively curved
version (x(t) = x(0) coshHt for k = 1), and the
negatively curved version (x(t) = x(0) sinhHt for
k = −1). After a period of success, the model of
exponential expansion of de Sitter was disqual-
ified because it has been shown to not satisfy
theoretical predictions based on assumptions of
pressure and density of the universe. It is how-
ever supposed to be the present mode of expan-
sion driven by vaccum energy since we entered
the ”dark energy-dominated era” in which H0 is
a constant H0 =

√
Λ/3, where Λ is the cosmo-

logical constant. Note that H constant no way
means that recessional velocities are constant in
the sense of uniform motion.

5 Tools and observables

5.1 Nomenclature

The traditional nomenclatures should be adapted to
cosmology because astrophysicists use the suffix 0, not
for the initial condition as in most usual treatments, but
for the final condition (present). The following symbols
are therefore used to avoid misunderstanding:

— tE is the date of light emission (initial, generally
written t0 in other scientific contexts). This date
can not be measured directly.

— tR is the date of reception of the light (final). This
is the present age of the universe, written t0 by
cosmologists. Of course if running time backward,
an acceleration becomes a deceleration and vice
versa, which may induce some misunderstandings.

— DE is the initial distance between the star and the
telescope (which did not exist yet!) at tE. DE is
not known a priori.

— DR is the distance between the source and the tele-
cope when light enters the telescope.

— DL is the distance crossed by light between its
emission and its reception. Hence, DL/c = tR− tE.
DL is smaller than DR because the fraction of
space already crossed by light continued to stretch
until reception.

5.2 Quantities measurable in our tele-
scopes

In the theory of Lemâıtre, the redshit is given by the
ratio DR/DE (Eq.(6)), but none of these distances are
directly measurable. Only the distance crossed by light
(DL) can be estimated through certain parameters of the
object, such as the luminosity and magnitude. The same
light received at tR is used to measure both the redshift
and the distance.

5.3 Additional recipes

tR, the present age of the universe, is not known but
can be replaced by a constant because it is common to
all our measurements.
Finally, a useful tool in the present calculations is the
fractional distance x(t) crossed by the front of light be-
tween the transmitter and the receiver (introduced pre-
viously with the TV analogy). This function is defined
by

x(t) =

∫ t

τ=tE

c

D(τ)
dτ

where D is the source-receptor distance. Then, the date
of arrival tR is simply obtained by solving

x(tR) = 1

6 Redshift-Distance relationships
expected for the different
modes of expansion

Let us examine successively the different modes of ex-
pansion and for each one, the two hypothetical causes of
redshift : Doppler effect and wave stretching.
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6.1 Power-law expansion

6.1.1 Classical Doppler effect

DE = DR

(
tE
tR

)u
(25a)

The speed of the source at emission can be deduced from
the distance at reception

zd =
1

c

dDE

dtE
(25b)

that is, taking DR and tR as constants

zd =
uDR

c

tu−1
E

tuR
=
uDE

ctE
(25c)

replacing tE by tR −DL/c and DR or DE by their values
deduced from x(tR) = 1,

zd =
u

1− u

[(
1− DL

ctR

)u−1

− 1

]
(25d)

where tR can be considered as a constant at our time
scale.

6.1.2 Wave stretching

The result is straightforward

DR

DE

=

(
tR
tE

)u
=

(
1− DL

ctR

)−u
(26a)

and

zs =

(
1− DL

ctR

)−u
− 1 (26b)

6.2 The particular case u = 1 (a ∝ t)

As explained previously, this case merely corresponds
to uniform expansion.

6.2.1 Doppler effect

Classical Doppler effect
The recession velocity for this mode of expansion is

simply D/t, where D and t vary proportionally,

DE

tE
=
DR

tR
= v

and
zd =

v

c
(27)

Relativistic Doppler effect
Using special relativity, the redshift is

zr =

√
c+ v

c− v
− 1 (28)

6.2.2 Wave stretching

By definition for this mode of expansion,

λapp

λ
=
DR

DE

=
tR
tE

(29)

and by solving x(tR) = 1,

tR
tE

= eDR/ctR = ev/c (30)

zs = ev/c − 1 (31)

The two postulated causes of redshift give different
results, which are similar only near 0 (for v << c). Both
predict distance-independent redshifts, which clearly dis-
qualifies this mode of expansion.

6.3 Exponential expansion

6.3.1 Doppler effect

Classical Doppler effect
The speed of the source at the time of light emission is

dDE

dt
= HDE (32)

whose value is obtained by solving x(tR) = 1,

zd =
HDE

c
= 1− e−HDL/c (33)

As zd is always lower than 1, the hypothesis that the
redshift results from a classical Doppler effect only can
be eliminated for the exponential expansion.

Relativistic Doppler effect

zr =

√
c+HDE

c−HDE

− 1 (34)

6.3.2 Wave stretching

The wavelengths are stretched according to

λapp

λ
=
DR

DE

= eH∆t = eHDL/c (35)

so that

zs = eHDL/c − 1 (36a)

whose reciprocal is

DL =
c

H
ln(1 + zs) (36b)
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6.4 Mixing Doppler and stretching ef-
fects for the exponential expansion

The above results can be combined in a variety of
manners. Let us examine only the case of the exponen-
tial expansion. The Doppler and wave stretching redshift
functions established above display opposite behaviors
near 0, clearly visualized by their series expansion. For
the classical Doppler effect,

zd ≈
H0DL

c
− 1

2

(
H0DL

c

)2

(37a)

and for the wave stretching effect,

zs ≈
H0DL

c
+

1

2

(
H0DL

c

)2

(37b)

Hence, by comparison with the traditional redshift
formula z = H0D/c, the Doppler effect seems to in-
clude an acceleration parameter, while the wave stretch-
ing effect seems to contain a deceleration parameter. For
nearby galaxies, the so-called peculiar or ordinary ve-
locities can not be neglected because they can either in-
crease, decrease or cancel the cosmological redshift. This
fact poses technical problems for studying expansion-
restricted redshifts, but clearly demonstrates that several
causes of redshift can really interfere. After all, a reces-
sion velocity, though passive, remains a velocity and as
such, one wonders why it could not give a kinetic Doppler
effect contributing to the redshift. Hence, for complete-
ness, let us cumulate the two effects. In addition to take
the two hypotheses on the origin of the redshift into ac-
count, two ways to bring them together will be consid-
ered.

6.4.1 Combined effects

On the one hand, the dilation of wavelengths caused
by kinetic Doppler effect (λdopp) is fixed at the emission
point and then remains unchanged during light flight.
On the other hand, the emission wavelength is expanded
during the trip, until received in the form λapp. So the
cumulative effect would logically read

λapp

λ
=

λapp

λdopp

λdopp

λ
(38)

using the classical Doppler effect,

zd+s = (1 + zd)(1 + zs)− 1 = 2zs (39)

Figure 2. Speculative curve fitting of the distance-redshift

supernovae distribution (dots) with an exponential expan-

sion model in which the Doppler effect predominates at short

distances while wave stretching predominates for long dis-

tances, corresponding to the arithmetic average function

z = 2 sinh(x)/(1 + x) with x = HDL/c (plain line). The

redshift data are from [15] and include 186 supernovae. The

fitting parameters are c = 3×108m/s and H = 3.23×10−18/s,

a value whose precision is poor due to the conversion of

Distance modulus (µ) in a non-logarithmic scale using the

relationship 101+µ/510−6 Mpc. The distance in the abscissa

should be undersood as the measured distance (written DL

here).

6.4.2 Additive effects

As wavelenths are lengths, they should perhaps be
handled as such. The extra-length caused by Doppler ef-
fect is zd and that caused by stretching is zs. If the two
kinds of redshift exist simultaneously

zd+s = zd + zs (40)

Using the classical Doppler effect,

zd+s = eHDL/c − e−HDL/c = 2 sinh
HDL

c
(41)

The redshift of dual origin of Eq.(41) gives a
straighter redshift-distance diagram compared to its indi-
vidual components (clearly illustrated by the cancellation
of the squared terms in Eq.(37)). But if for some reason
the Doppler effect predominates for nearby galaxies, a
bend would appear for low redshifts (around z = 0.5).
A comparison with the observed redshifts of supernovae
compiled in [15], is represented in Fig.(2), drawn in linear
coordinates because logarithmic scales are not convenient
to appreciate the straightness of a linear plot. By cumu-
lating the Doppler and stretching redshifts with constant
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H, the bend would have been an universal property of
the diagram, constant and always at the same distance
from any observer and at any cosmic time. This exercise
of redshift additivity is however purely formal because
the accepted explanation of this bend is a recent change
in the expansion regime [16] driven by dark energy, which
began at the level of galaxies of redshift below unity.

7 Distance of a source inferred
from its apparent distance

The observed distance of cosmic objects (DL) does
not correspond to any real distance. True distances can
however be deduced from this measured distance pro-
vided a mode of expansion is selected.

— For the uniform expansion:

Since DL = c∆t, Eq.(18) gives

DE = DL

v/c

ev/c − 1
(42a)

and since DR = DE + v∆t,

DR = DL

v/c

1− e−v/c
(42b)

These distances satisfy both the established dis-
tances relationship of Eq.(10) and the stretched
shift of Eq.(30).

— For the geometric expansion:

When x(tR) = 1, Eq.(20) gives

DE =
ctR −DL

1− u

[(
1− DL

ctR

)u−1

− 1

]
(43a)

so that

DR =
ctR

1− u

[
1−

(
1− DL

ctR

)1−u
]

(43b)

— For the exponential expansion:

When x(tR) = 1, Eq.(23) gives

HDE = c
(
1− e−H∆t

)
(44a)

with DL = c∆t,

DE =
c

H

(
1− e−HDL/c

)
=
czd
H

(44b)

and

DR =
c

H

(
eHDL/c − 1

)
=
czs
H

(44c)

8 Conclusions

A compendium of redshift, horizon and distance
rules, is presented here for pure modes of expansion. Ac-
cording to current cosmological models, different succes-
sive modes of expansion occurred in the past depending
on the maturation stage of the universe. The succession
and/or combination of pure modes of expansion requires
more sophisticated approaches not described here, but
the basic tools summarized in Table.1 could help discrim-
inating cosmological hypotheses. Some general lessons
can be drawn from these analyses.

8.1 Comparison with the current astro-
physical laws

This study has the same goal as that of Harrison [2]:
to rationally derive the links between redshift and dis-
tance depending on the type of expansion. These rela-
tionships are then expected to help interpreting observa-
tional data. The traditional redshift formula z = H0D/c
is close to the exponential expansion found here (zs =
eH0DL/c − 1) only in the vicinity of D = 0. Internal
contradictions in the establishment of distance-redshift
diagrams, arise when their coordinates are obtained us-
ing non-independent methods. For example, results are
severely distorted when distances are deduced from red-
shifts (for distant objects) using preconceived redshift-
distance relationships whereas the final aim of the dia-
gram is precisely to establish this relationship. The for-
mula z = H0D/c is true only for the invisible actual
distance but not for the visible distance. Hence, esti-
mating short distances through luminosity and long dis-
tances through the redshift using the classical formula
would cause another distortion. Generally, the task of
astrophysicists is difficult to disentangle the different in-
terfering sources of redshift, including gravity and pecu-
liar velocities, and to determine the specific contribution
of expansion.

8.2 The different interpretations of the
redshift are not equivalent

Whatever the expansion modes, the results listed here
show that the two postulated origins of the redshift:
Doppler effect and wave stretching, always give different
results, as stated by Harrison [2]. If the universal redshift
is entirely due to wave stretching, the recession velocity
of galaxies mutually inert (”comoving”) is not really a
velocity. The mere existence of redshifts higher than 1 is
sufficient to rule out the Doppler effect as the sole cause
of redshift in the case of the exponential expansion.
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Table 1 – Summarized consequences of the modes of expansion on the redshift, the horizon and the source-receiver
distances. Vrec is the apparent source velocity at emission. zd and zs are the redshifts calculated as Doppler or
wave-stretching effects respectively. DE is the source-receiver distance at emission, DR is the source-receiver distance
at reception and DL is the apparent distance actually measured. tR is the present time, which can be approximated
as a constant as it is identical for all our measurements.

Mode a ∝ t (u = 1) Power law (u 6= 1) Exponential

D(t) = DE

(
t

tE

)
DE

(
t

tE

)u
DE eH(t−tE)

ȧ

a

1

t

u

t
H

Horizon No u < 1 : No u > 1 : for DE ≥
c tE
u− 1

for DE ≥
c

H

Vrec
D

t
= v

uDE

tE
HDE

zd
v

c

u

1− u

[(
1− DL

ctR

)u−1

− 1

]
1− e−HDL/c

zs ev/c − 1

(
1− DL

ctR

)−u
− 1 eHDL/c − 1

DE DL

v/c

ev/c − 1

ctR
1− u

(
1− DL

ctR

)[(
1− DL

ctR

)u−1

− 1

]
c

H

(
1− e−HDL/c

)

DR DL

v/c

1− e−v/c
ctR

1− u

[
1−

(
1− DL

ctR

)1−u
]

c

H

(
eHDL/c − 1

)

8.3 Rejection of the uniform mode of ex-
pansion

Another clear conclusion of this systematic survey is
that uniform expansion can be definitely ruled out. In
fact, whatever the origin of the redshift (Doppler or wave
stretching), it would give redshifts independent of dis-
tance, which is contradicted by observations since 1929
[1].

8.4 Expansion does not imply big bang

The exponential mode of expansion (synonymous to
V = HD) is elegant in that it does not imply an original
singularity. Rewinding the film of expansion intuitively
led to the idea of big bang in the scientific community.
But a less intuitive consequence of this hypothesis is that
running backward the linear cosmic time t (and discon-

necting it from our terrestrial calendar), would allow de-
termining the date of the big bang, for example on a
Monday afternoon of a given year. To get rid of this
hardly acceptable incongruity, one could recourse either
to a non-constant flow of cosmic time, or to an expo-
nential mode of expansion compatible with an eternal
universe.

8.5 Deviation from a linear Hubble plot

All the modes of expansion examined here give appar-
ent straight z = f(DL) plots only in the vicinity ofDL = 0
in a much wider universe. The redshifts at very long
distances will perhaps allow discriminating the different
behaviours predicted here. If the universe is much more
gigantic than it appears, most combinations of redshift-
distances listed in this article could be approximated as
straight lines. In this case, the most precise Hubble dia-
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gram would remain of little utility. But this apprehension
could be, hopefully, too pessimistic, based on the confi-
dent feeling of Werner Heisenberg that ”Nature is made
such that she can be understood”.

8.6 Horizon

The present calculations show that the only two
modes of expansion listed here which are capable of
generating disconnection barriers, are the exponential
expansion (Horizon at DE = c/H) and the geometric
expansion if u > 1 (Horizon at DE = ctE/(u − 1)). The
horizon is speculatively suggested to be the condition
for breaking causality in the universe and giving their
chance to all forms of life.
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