A. Agrachev, Some open problems In Geometric control theory and sub-Riemannian geometry, pp.1-1349040

A. Agrachev, D. Barilari, and U. Boscain, Introduction to Riemannian and Sub-Riemannian geometry from Hamiltonian viewpoint (Lecture notes). 2017
DOI : 10.4171/163-1/1

Z. M. Balogh, Size of characteristic sets and functions with prescribed gradient, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.2003, issue.564, pp.63-83, 2003.
DOI : 10.1515/crll.2003.094

Z. M. Balogh, C. Pintea, and H. Rohner, Size of tangencies to non-involutve distributions, Indiana University Mathematics Journal, vol.60, issue.6, pp.2061-2092, 2011.
DOI : 10.1512/iumj.2011.60.4489

G. Barbatis and A. Tertikas, On the Hardy Constant of Some Non-convex Planar Domains, pp.15-41
DOI : 10.1007/978-3-319-02666-4_2

D. Barilari and L. Rizzi, Abstract, Analysis and Geometry in Metric Spaces, vol.1, pp.42-57
DOI : 10.2478/agms-2012-0004

F. Baudoin, Sub-Laplacians and hypoelliptic operators on totally geodesic Riemannian foliations In Geometry, analysis and dynamics on sub-Riemannian manifolds. Volume I, pp.259-321
DOI : 10.4171/162-1/3

URL : http://arxiv.org/abs/1410.3268

F. Baudoin and M. Bonnefont, The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds, Mathematische Zeitschrift, vol.58, issue.7, pp.647-672, 1189.
DOI : 10.1007/s00209-008-0436-0

URL : https://hal.archives-ouvertes.fr/hal-00779370

F. Baudoin and B. Kim, Sobolev, Poincar??, and isoperimetric inequalities for subelliptic diffusion operators satisfying a generalized curvature dimension inequality, Revista Matem??tica Iberoamericana, vol.30, issue.1, pp.109-131
DOI : 10.4171/RMI/771

URL : http://arxiv.org/abs/1203.3789

F. Baudoin and J. Wang, The subelliptic heat kernel on the CR sphere, Mathematische Zeitschrift, vol.91, issue.2, pp.135-150
DOI : 10.1007/s00209-012-1127-4

F. Baudoin and J. Wang, The Subelliptic Heat Kernels of the Quaternionic Hopf Fibration, Potential Analysis, vol.2, issue.2, pp.959-982
DOI : 10.1007/s11118-014-9403-z

H. M. Brezis and M. Marcus, Hardy's inequalities revisited. Ann. Scuola Norm, Sup. Pisa Cl. Sci, vol.25, issue.412, pp.217-237, 1997.

L. Capogna, D. Danielli, and N. Garofalo, The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Communications in Analysis and Geometry, vol.2, issue.2, pp.263-268, 1994.
DOI : 10.4310/CAG.1994.v2.n2.a2

L. Capogna, D. Danielli, S. D. Pauls, and J. T. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Progress in Mathematics, vol.259, pp.2312336-1138, 2007.

S. Chanillo and P. C. Yang, Isoperimetric inequalities & volume comparison theorems on CR manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci, vol.8, issue.52, pp.279-307, 1176.

Y. Colin-deverdì-ere, L. Hillairet, and E. Trélat, Spectral asymptotics for sub-Riemannian Laplacians. I: quantum ergodicity and quantum limits in the 3D contact case. ArXiv e-prints, 2015.

C. B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Annales scientifiques de l'??cole normale sup??rieure, vol.13, issue.4, pp.419-435, 1980.
DOI : 10.24033/asens.1390

URL : http://www.numdam.org/article/ASENS_1980_4_13_4_419_0.pdf

C. B. Croke, A sharp four dimensional isoperimetric inequality, Commentarii Mathematici Helvetici, vol.59, issue.1, pp.187-192
DOI : 10.1007/BF02566344

C. B. Croke and A. Derdzi´nskiderdzi´nski, A lower bound for ??1 on manifolds with boundaryon manifolds with boundary, Commentarii Mathematici Helvetici, vol.62, issue.1, pp.106-121, 1987.
DOI : 10.1007/BF02564440

D. Danielli, N. Garofalo, and N. C. Phuc, Hardy???Sobolev Type Inequalities with Sharp Constants in Carnot???Carath??odory Spaces, Potential Analysis, vol.117, issue.12, pp.223-242, 1221.
DOI : 10.1007/s11118-010-9190-0

E. B. Davies, A review of Hardy inequalities, The Mazya anniversary collection MR1747888, Zbl 0936, pp.55-67, 1998.
DOI : 10.1007/978-3-0348-8672-7_5

M. Derridj, Sur un th??or??me de traces, Annales de l???institut Fourier, vol.22, issue.2, pp.73-83, 1972.
DOI : 10.5802/aif.413

T. Ekholm, H. Kova?ík, and A. Laptev, -Laplacians with Robin boundary conditions, Nonlinear Analysis, vol.128, pp.365-379
DOI : 10.1016/j.na.2015.08.013

URL : https://hal.archives-ouvertes.fr/jpa-00217541

R. H. Escobales and J. , Riemannian submersions with totally geodesic fibers, Journal of Differential Geometry, vol.10, issue.2, pp.253-276, 1975.
DOI : 10.4310/jdg/1214432793

L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Textbooks in Mathematics

A. M. Hansson and A. Laptev, Sharp spectral inequalities for the Heisenberg Laplacian In Groups and analysis, MR2528463, Zbl 1157, pp.100-115, 2008.

G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities. Cambridge Mathematical Library, 1988.
URL : https://hal.archives-ouvertes.fr/hal-01374624

S. Ivanov and D. Vassilev, The Lichnerowicz and Obata first eigenvalue theorems and the Obata uniqueness result in the Yamabe problem on CR and quaternionic contact manifolds, Nonlinear Analysis, vol.126, pp.262-323
DOI : 10.1016/j.na.2015.06.024

E. Le-donne, R. Montgomery, A. Ottazzi, P. Pansu, and D. Vittone, Sard property for the endpoint map on some Carnot groups, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.33, issue.6, pp.1639-1666
DOI : 10.1016/j.anihpc.2015.07.004

URL : https://hal.archives-ouvertes.fr/hal-01131591

J. M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, vol.218, pp.2013-2954043
DOI : 10.1007/978-0-387-21752-9

P. Lindqvist, A nonlinear eigenvalue problem In Topics in mathematical analysis, volume 3 of Ser, Anal. Appl. Comput. World Sci. Publ, pp.175-203, 1160.

F. Montefalcone, Some relations among volume, intrinsic perimeter and one-dimensional restrictions of BV functions in Carnot groups, Ann. Sc. Norm. Super. Pisa Cl. Sci, vol.4, issue.51, pp.79-12849022, 1150.

R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, volume 91 of Mathematical Surveys and Monographs, pp.1044-53022, 2002.

P. Pansu, Une inégalité isopérimétrique sur le groupe de Heisenberg, C. R. Acad. Sci. Paris Sér. I Math, vol.295, issue.2, pp.127-130, 1982.

L. Rifford, Sub-Riemannian geometry and optimal transport, SpringerBriefs in Mathematics
DOI : 10.1007/978-3-319-04804-8

URL : https://hal.archives-ouvertes.fr/hal-01131787

L. Rizzi and P. Silveira, Sub-Riemannian Ricci curvatures and universal diameter bounds for 3- Sasakian structures, J. Inst. Math. Jussieu

L. A. Santaló, Integral geometry and geometric probability. Cambridge Mathematical Library, MR2162874, Zbl 1116.53050. With a foreword by Mark Kac, 2004.

R. S. Strichartz, Estimates for Sums of Eigenvalues for Domains in Homogeneous Spaces, Journal of Functional Analysis, vol.137, issue.1, pp.152-190, 1996.
DOI : 10.1006/jfan.1996.0043

P. Tondeur, Foliations on Riemannian manifolds. Universitext, pp.934020-0643, 1988.
DOI : 10.1007/978-1-4613-8780-0

L. Yuan and W. Zhao, Some formulas of Santal??? type in Finsler geometry and its applications, Publicationes Mathematicae Debrecen, vol.87, issue.1-2, pp.79-101
DOI : 10.5486/PMD.2015.7044