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Abstract
Discovery of efficient anti-cancer drug combinations is a major challenge, since experimen-

tal testing of all possible combinations is clearly impossible. Recent efforts to computation-

ally predict drug combination responses retain this experimental search space, as model

definitions typically rely on extensive drug perturbation data. We developed a dynamical

model representing a cell fate decision network in the AGS gastric cancer cell line, relying

on background knowledge extracted from literature and databases. We defined a set of logi-

cal equations recapitulating AGS data observed in cells in their baseline proliferative state.

Using the modeling software GINsim, model reduction and simulation compression tech-

niques were applied to cope with the vast state space of large logical models and enable

simulations of pairwise applications of specific signaling inhibitory chemical substances.

Our simulations predicted synergistic growth inhibitory action of five combinations from a

total of 21 possible pairs. Four of the predicted synergies were confirmed in AGS cell growth

real-time assays, including known effects of combined MEK-AKT or MEK-PI3K inhibitions,

along with novel synergistic effects of combined TAK1-AKT or TAK1-PI3K inhibitions. Our

strategy reduces the dependence on a priori drug perturbation experimentation for well-

characterized signaling networks, by demonstrating that a model predictive of combinatorial

drug effects can be inferred from background knowledge on unperturbed and proliferating

cancer cells. Our modeling approach can thus contribute to preclinical discovery of efficient

anticancer drug combinations, and thereby to development of strategies to tailor treatment

to individual cancer patients.

Author Summary

Fighting cancer with combinations of drugs increases success of treatment. However, due
to the large number of drugs and tumor variants, it remains a tremendous challenge to
identify efficient combinations. To illustrate this, a set of 150 drugs corresponds to more
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than 10.000 possible pairwise drug combinations. Experimental testing of all possibilities
is clearly impossible. We have developed a computational model that allows us to identify
presumably effective combinations, and that simultaneously suggests combinations likely
to be without effect. The model is based on specific cancer cell biomarkers obtained from
unperturbed cancerous cells, and is then used to perform extensive automated logical rea-
soning. Laboratory testing of drug response predictions confirmed results for 20 of 21
drug combinations, including four of five drug pairs predicted to synergistically inhibit
growth. Our approach is relevant to preclinical discovery of efficient anticancer drug com-
binations, and thus for the development of strategies to tailor treatment to individual can-
cer patients.

Introduction
It has long been envisaged that future anticancer treatment will adopt combinatorial
approaches, in which several specific anti-cancer drugs together target multiple robustness fea-
tures or weaknesses of a specific tumor [1–3]. The effectiveness of combinatorial anti-cancer
treatments can be further maximized by exploiting synergistic drug actions, meaning that dif-
ferent drugs administered together exhibit a potentiated effect compared to the individual
drugs. Drug synergy is attractive because it allows for a significant reduction in the dosage of
the individual drugs, while retaining the desired effect. Synergies therefore hold the potential to
increase treatment efficacy without pushing single drug doses to levels where they lead to
adverse reactions. Hence, synergies identified in preclinical studies represent interesting candi-
dates for further characterization in cancer models and clinical trials.

Current efforts to identify beneficial combinatorial anti-cancer therapies typically rely on
large-scale experimental perturbation data, either for deciding on specific patient treatment
[4], or for pre-clinical pipelines to suggest new drug combinations [5–8]. This work, however,
faces challenges posed by the large search space that needs to be supported by experimental
data, making systematic searches for efficient combinations challenging. Moreover, the num-
ber of conditions for testing dramatically increases when considering higher-order combina-
tions, multiple drug dosages, temporal optimization of drug administration, and diversity of
cancer cell types and patients. Thus, workarounds must be sought to reduce the experimental
search space of drug combinations and their application modes in order to obtain a qualified
repertoire of combination therapies for clinical trials, and ultimately to support delivery of per-
sonalized treatment.

Computational models are increasingly used to predict drug effects [6,9], with the aim to
rationalize and economize the experimental bottleneck. In order to enable substantial reduc-
tion of the number of relevant conditions that need to be tested, such models would ideally be
constructed without the need for massive experimental drug perturbation data. Approaches
where the formulation of predictive models can be based on molecular data from unperturbed
cancer cells are therefore attractive.

We decided to focus on Boolean and multilevel logical models, as they enable a relatively
straightforward formalization of the causalities embedded in molecular networks, such as sig-
nal transduction and gene regulatory networks. Moreover, logical model simulations can be
used to automate reasoning on network dynamics, even with scarce knowledge of kinetic
parameters [10–15], and have been used to describe and predict the behavior of molecular net-
works affected in human disease [13,14]. Such modeling efforts have contributed to the under-
standing of mechanisms underlying growth factor induced signaling in cancer cells and the
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selection of candidate target proteins for novel anti-cancer treatment [16–23]. While previous
studies have demonstrated the power of logical models to predict single drug actions, we extend
the use of logical modeling to predict effects of combinatorial inhibition of two or more signal
transduction components.

We report the construction of a logical model encompassing molecular mechanisms central
to controlling cellular growth of the gastric adenocarcinoma cell line AGS. After an initial
assembly of a comprehensive signaling and regulatory network from general signal transduc-
tion knowledge, the logical rules associated with each of the 75 model components were refined
using baseline data obtained from actively growing AGS cells. The resulting logical model was
used to assess drug synergy potential among 21 pairwise combinations of seven chemical inhib-
itors, each targeting a specific signaling component. Model simulations suggested five combi-
nations of inhibitors to be synergistic, four of which could subsequently be confirmed in cell
growth experiments. Importantly, none of the combinations predicted by the model to be non-
synergistic displayed synergistic growth inhibitory effects in our cellular assays, i.e. no false
negatives were observed. Our results demonstrate that our logical model, constructed without
the use of initial large-scale inhibitor perturbation data, recapitulates key molecular regulatory
mechanisms underlying growth of AGS cells in a manner that allows successful prediction of
the synergistic effect of inhibitor combinations in experimental cell cultures. Guided by the
model, we identified two established synergistic drug interactions and discovered two synergies
not previously reported.

Results

Overall strategy for the prediction and validation of drug synergies
In order to discover combinatorial drug treatments synergistically exerting inhibition of cancer
cell growth, we developed a workflow combining computational and experimental analyses to
predict and validate drug synergies (Fig 1).

Our modeling procedure integrates a priori biological knowledge on intracellular signaling
pathways with baseline data from AGS gastric adenocarcinoma cells. The design principles of
our analysis are guided by the premise that growth of cancerous cells is largely driven by mech-
anisms which enable these cells to exploit a wide range of growth promoting signals from
the environment. This aspect of intrinsic, sustained multifactor-driven cancer proliferation
[1] is accommodated by constructing the regulatory network as a self-contained model: we
include only nodes that are regulated by other nodes in the model. The chosen design avoids
the need to model effects of specific growth factor receptors, considering instead the integrated
responses from a multitude of growth promoting stimuli, as observed when assessing the activ-
ity of signaling entities (proteins and genes) included in the model. It follows from this that the
de facto growth promoting configuration of such a self-contained model can be established by
observing baseline biomarkers measured in the cancer cells.

After a model reduction step, where nodes and logics pertaining to drug targets and pheno-
typic outputs are retained, the model is used for exhaustive simulations of the effect of pairwise
node inhibitions using seven known chemical inhibitors. Finally, the growth inhibitory effects
of these drug combinations on AGS cells are tested experimentally.

Logical modeling of gastric adenocarcinoma cell fate decisions
Construction of a regulatory graph encompassing key signaling pathways. AGS cells

harbor mutations in numerous genes encoding key signaling components known to be de-
regulated in gastric adenocarcinoma, for instance components of MAPK, PI3K, Wnt/β-catenin
and NF-κB pathways [24,25]. Based on knowledge gathered from databases and scientific
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publications, we have integrated information about the MAPK pathways (JNK, p38 MAPK
and ERK), the PI3K/AKT/mTOR pathways, the Wnt/β-catenin pathway, and the NF-κB path-
way, as well as crosstalk between these pathways (see Fig 2, Materials and Methods, and S1
Text). The resulting network comprises 75 signaling and regulatory components (proteins,
protein complexes and genes) and 149 directed interactions. Two readout nodes (outputs),
named Prosurvival and Antisurvival, are included to represent cell fate phenotypes. The regula-
tory graph with annotations is available in SBML format (see S1 Dataset and S1 Table).

Construction of a logical model. The regulatory network was converted into a logical
model, where the local activity state of each component (node) was represented by a Boolean
variable (taking the values 0 or 1). A few nodes were associated with multileveled variables: the
two output nodes, Prosurvival and Antisurvival, each taking four values (0, 1, 2, 3), and their
immediate upstream nodes, Caspase 3/7 and CCND1, each taking three values (0, 1, 2). These
multilevel variable nodes are only used for nodes governing the outputs of the model, and
enabled us to model graded growth promoting/inhibitory effects (see Materials and Methods
and S1 Text). A logical formula was associated with each component, defining how its activity
level is controlled by those of its regulators. Our default approach was to combine all activating
regulators of a target with the Boolean operator OR, and inhibitory regulators of a target with
the operator AND NOT (as in [21]). This implies that any activator can fully activate the target

Fig 1. Workflow of model construction and synergy prediction followed by experimental validation.
We started with a signaling network built from general database and literature knowledge (upper left), which
was refined with published experimental data on protein activities in AGS cells (upper right) to generate the
logical model. Next, we generated a formally reduced version of the logical model, focusing on the drug target
nodes and valid for systematic simulations of combinatorial inhibitions. Predicted synergies were challenged
with observations from AGS cell growth experiments. Cartoons on the right refer to each of the Figs 2–5
further down.

doi:10.1371/journal.pcbi.1004426.g001
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node in the absence of inhibitory activity. Furthermore, the action of any inhibitory regulator
can fully inhibit the target, even in the presence of activating input from one or more activators.
On the basis of biological knowledge and literature reports, more specific rules were defined
for some components of the model (see S1 Text). For the β-catenin pathway in particular, we
refined logical rules of nodes representing activity of β-TrCP (the β-catenin destruction com-
plex), TCF (a target of β-catenin activity), and the node representing activity of β-catenin itself.

At any time, the global state of the system is represented by a discrete vector containing the
Boolean or multilevel activity values for all network components [26]. As all node states are
iteratively updated in simulations the model converges to its attractors, represented by single
global fixed states in simple attractors, or sets of states repeatedly traversed in complex attrac-
tors. Based on the regulatory graph and logical rules defined above, we used a powerful algo-
rithm implemented in GINsim to compute all stable states of the model.

To calibrate the model with respect to actively growing AGS cells, we compared node state
predictions against AGS baseline biomarker observations reported in the literature. We
reviewed 72 scientific publications and found 219 experiments with proliferating AGS cells
providing information on the activity of proteins represented in our model (see S1 Text and S2
Table). We chose a subset of 21 proteins for which the activity data was supported by several
independent but consistent reports. Using these experimental observations as guidelines for
“gold standard” protein activities in actively growing AGS cells, we compared the state of each
of them with their level in the computed attractor of the model. To obtain a single stable state
containing activity levels of all model components, the logical rules of components of the ERK
pathway (SHC1, SOS, Raf, MEK and ERK) were defined to reflect the observation that ERK is
active in proliferating AGS cells (see S1 Text and S2 Table). After these modifications, the
model proved to be optimized: the observed attractor of the unperturbed model was a stable
state thoroughly corroborated by experimental observations in unperturbed growing AGS

Fig 2. Prior knowledge network representing the cell fate decision network governing growth of AGS gastric adenocarcinoma cells. The network
receives no external input but encompasses two outputs Antisurvival and Prosurvival (phenotypic readouts, colored in red for Antisurvival and green for
Prosurvival). Activating regulations are denoted by green arrows, while red T arrows denote inhibition. Signaling component nodes (proteins, protein
complexes or genes) associated with Boolean variables (taking the values 0, 1) are represented by ellipses, while rectangles depict nodes encoded with
multilevel variables. Yellow nodes represent drug targets and are subjected to inhibitory perturbations during simulations.

doi:10.1371/journal.pcbi.1004426.g002
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cells, as the values of all the 21 nodes that we were able to check match reported protein activi-
ties (see S1 Text, S3 and S4 Tables). In addition, the value of the readout nodes Prosurvival was
at its maximum, and Antisurvival at its minimum, representing strong proliferation (Prosurvi-
val = 3, and Antisurvival = 0). This model stable state is thus consistent with published knowl-
edge about molecular states in actively growing AGS cells. This model also complied with
results from published perturbation experiments of AGS cells (see S1 Text and S6 Table). The
resulting logical model, encoded with the software GINsim v2.9, is shown in Fig 2. The corre-
sponding GINsim file is provided as S2 Dataset.

In silico simulations predict five inhibitor synergies
In order to assess combinations of inhibitions for synergy, we focused on the systematic inhibi-
tion of seven model nodes and their 21 pairwise combinations. These seven nodes (labelled
with thick borders in Fig 2) were chosen because potent and specific chemical inhibitors were
available for targeting the corresponding protein kinases in biological experiments (Table 1).

Using an asynchronous updating policy (see Materials and Methods), we simulated the
effect of chemical inhibitions by forcing the state of specifically targeted model nodes to be 0
(inactive), and then computing the resulting attractor. Each inhibition of single nodes or pairs
of nodes led to a unique attractor. In a few cases the system reached a complex attractor, in
which a subset of states is traversed repeatedly (see Materials and Methods and S1 Text). The
computation of potential complex attractors is challenging because of the combinatorial explo-
sion of states for large logical models. To cope with this problem, we used a model reduction
method to obtain a compressed model preserving the selected drug targets, and compacted the
state transition graphs in a hierarchical manner (see Materials and Methods and [14]). The
reduced logical model (see Fig 3 and S3 Dataset) was obtained by iteratively removing compo-
nents not targeted by drugs, and was sufficiently small to allow exhaustive asynchronous simu-
lations and thorough characterization of both stable states and complex attractors, thereby
enabling the analysis of all single and pairs of inhibitions.

To ease interpretation, we defined the overall response growth, by subtracting the value of
Antisurvival from the value of Prosurvival readout nodes (each multi-valued with state ranging
from 0 to 3), with a value range from -3 to +3. If the attractor contained a unique stable state,
the computation of growth was straightforward. In the case of complex attractors we used the
mean values of the difference Prosurvival–Antisurvival over all states belonging to the attractor.
We inferred synergy whenever the combination of two inhibitors produced a value for growth
lower than the smallest value of the inhibitors individually:

Table 1. Chemical inhibitors and their corresponding protein kinase targets.

Chemical inhibitor Target name Target HGNC symbol GI50*

(5Z)-7-oxozeaenol TAK1 MAP3K7 0.5 μM

AKTi-1,2 (AKT inhibitor VIII) AKT1/2 AKT1, AKT2 10 μM

BIRB0796 p38 MAPK MAPK14 N/A (5 μM used) **

CT99021 GSK3 GSK3A, GSK3B N/A (5 μM used) **

PD0325901 MEK MAP2K1, MAP2K2 35 nM

PI103 PI3K PIK3CA 0.7 μM

PKF118-310 β-catenin CTNNB1 150 nM

* Experimentally determined concentration that inhibits AGS cell growth by 50% (GI50).

** For the two inhibitors BIRB0796 and CT99021 no GI50 could be obtained, and 5 μM was chosen as a concentration that is expected affect their target

in our experimental setup, based on observed effects in similar cell systems [27]. See S1 Text for further documentation of inhibitor properties.

doi:10.1371/journal.pcbi.1004426.t001
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growth (perturbation1 & perturbation2)<Min (growth (perturbation1), growth
(perturbation2)),

where perturbationN is the perturbation of component N.
For example, growth (perturbationMEK & perturbationAKT) = 0.5; which is a value lower

than observed with perturbations of either MEK or AKT: growth(perturbationMEK) = 1.5;
growth (perturbationAKT) = 2.

The simulations predicted five synergistic combinations (<25% of the 21 possible pairs).
Three of these combinations involve MEK, together with PI3K, AKT or p38. The two remain-
ing synergies involve TAK1 with either PI3K or AKT (Fig 4).

Experimental validation of model predictions
To assess the validity of our model predictions, a real-time cell assay was used to test chemical
inhibitors of the seven proteins (Table 1) for their ability to limit AGS cell growth in single and
combinatorial formulations.

The effect of chemical inhibitors was analyzed using a strategy based on Loewe’s definition
of synergy [28], which states that a synergistic interaction performs better than the expected
additive effect observed when an inhibitor is combined with itself in a ‘zero-interaction’ experi-
ment. To quantify synergistic interactions, a combinatorial index (CI) was calculated [29],
based on growth measured 48 hours after adding inhibitors. CI values range from zero to infin-
ity, and values below 1 indicate synergistic interactions.

Four of the five synergies predicted by our logical model were confirmed experimentally,
with CI values well below 0.5, which indicates strong synergy. Indeed, a profound effect on

Fig 3. Reduced logical model obtained by semi-automated reduction of the comprehensive logical
model shown in Fig 2. The reduced model encompasses all seven drug targets (yellow) and the two
phenotypic outputs (red for Antisurvival and green for Prosurvival). In addition the ERK node (blue) had to be
preserved to maintain dynamical consistency with the large model. Activating regulations are denoted by
green arrows, while red T arrows denote inhibition. The blue arc with both arrow and T head (p38alpha to
Antisurvival) indicates a dual regulation, i.e. activating and inhibiting, depending on context. In some contexts
p38alpha inhibition will increase Antisurvival, while in others p38alpha inhibition will decrease Antisurvival
(see S1 Text, S7 and S8 Tables). Note that after model reduction two members of theWnt/β-catenin
pathway, β-catenin and GSK3, became non-regulated and fixed at either the on-state (β-catenin) or off-state
(GSK3).

doi:10.1371/journal.pcbi.1004426.g003
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AGS cell growth was found when MEK or TAK1 inhibitors were combined with PI3K or AKT
inhibitors. The corresponding growth curves (Fig 5) indicate that cell growth in the presence of

Fig 4. Effects of combined inhibitors on cell growth. Synergistic (yellow) and non-synergistic (blue) combinations are shown both as predicted by model
simulations (upper panel of boxes, value of model parameter “growth”) and as verified by cell growth experiments (lower panel of boxes; combinatorial
indexes (synergy indicated by CI < 1) or “n” when non-synergy was observed).Synergy was proposed whenever the predicted growth for a combination of
inhibitors was lower than the modeled effect of single drug perturbations, shown in the outer diagonal (grey, value of model parameter “growth”).

doi:10.1371/journal.pcbi.1004426.g004
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two inhibitors combined, each at half their GI50 concentrations (purple curves) is markedly
lower than growth in the presence of either inhibitor alone at its full GI50 concentration (green
and blue curves). In contrast, the combination of MEK and p38 inhibition could not be con-
firmed in the cell growth experiments. Importantly, we observed no false negative predictions,
meaning that the remaining inhibitor combinations, predicted to lack synergetic effects, indeed
failed to display synergy in our cellular assays. Taken together, our model simulations proved
to be highly accurate, correctly predicting the effects of 20 of the 21 combinations.

Synergies of PI3K-MEK or AKT-MEK inhibitions have already been observed in a variety
of tumor cells [6,30–34], thus providing further confidence to the synergies of TAK1-PI3K and
TAK1-AKT inhibitions. Hence, these novel combinatorial inhibitions are promising candi-
dates readily amenable to experimental testing in a range of cancer cell types.

Model suggests a key role for FOXO in growth inhibition synergy
Understanding the signaling mechanisms underlying synergistic inhibitions is of high interest
because it can contribute to the identification of biomarkers informative of treatment response,

Fig 5. Experimentally confirmed synergies, where the effect of combining two inhibitors at half GI50 concentrations (violet) outperforms each of
the single inhibitor at the full GI50 concentration. A) AKT inhibitor (green) and TAK1 inhibitor (blue). B) MEK inhibitor (blue) and AKT inhibitor (green). C)
MEK inhibitor (green) and PI3K inhibitor (blue). D) PI3K inhibitor (green) and TAK1 inhibitor (blue). Cells growing in the absence of inhibitors are shown in
red. One standard deviation is indicated by error bars. Inhibitors (and concentrations) used: MEK inhibitor PD0325901 (35 nM), TAK1 inhibitor (5Z)-
7-oxozeaenol (0.5 μM), PI3K inhibitor PI103 (0.7 μM) and AKT inhibitor AKTi-1,2 (10 μM). See Materials and Methods and S1 Text for all growth curves of
combinations of inhibitors, and dose-response curves of individual inhibitors.

doi:10.1371/journal.pcbi.1004426.g005
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which may serve as guides to select from an arsenal of established drug synergies the right
treatment for the individual patient.

Examination of simulated perturbation effects with our AGS logical model revealed that
FOXO, representing pro-apoptotic transcription factors inactivated by phosphorylation [35],
was synergistically activated by combined MEK and PI3K or MEK and AKT inhibition (see S1
Text). Interestingly, single inhibitory perturbation of MEK, PI3K or AKT did not change
FOXO activity (see S1 Text for more details). These observations match experimental findings
in human umbilical vein endothelial cells (HUVEC), where inhibitors targeting MEK and AKT
are reported to synergistically activate FOXO [36], which suggests that our model simulations
can provide a basis for biologically relevant hypotheses on molecular effects downstream of
specific inhibitors.

To further investigate the mechanisms involving FOXO we simulated the inhibitor pertur-
bations in a FOXO knock-out model, and found that combined inhibition of MEK and PI3K
displayed no enhanced growth inhibitory effect compared to their corresponding single inhibi-
tion. This indicates that the MEK-PI3K synergy indeed depends on FOXO. For the combined
MEK and AKT inhibition, the FOXO knock-out model simulations showed only a minor
reduction of the synergistic effect of combined MEK and AKT inhibition. The synergy between
MEK and AKT inhibitors thus appears to be less dependent on FOXO. Taken together, these
simulation results suggest potentially interesting differences between pro-apoptotic signaling
events when comparing MEK-AKT inhibition versus MEK-PI3K inhibition.

The mechanistic basis of the synergies observed when inhibiting TAK1-AKT, or TAK1-
PI3K, is unknown. Interestingly, AGS model simulations show that FOXO is activated when
TAK1 is inhibited in combination with either PI3K or AKT, but not by single inhibitions. Acti-
vation of FOXO is thus a potential mediator also for the synergies involving TAK1. In support
of this, simulations showed that both TAK1-PI3K and TAK1-AKT synergies were abolished
when FOXO is knocked-out, similarly to the finding of MEK-PI3K inhibition (See S1 Text).
Potentially, ERK could be involved in signaling downstream of TAK1. In that case the MAP
kinase cascade could represent a common mechanism implicated in the synergies involving
MEK-PI3K and MEK-AKT, and those involving TAK1-PI3K and TAK1-AKT. However, our
AGS model simulations predict that ERK is still active after combined inhibition of TAK1 and
PI3K or of TAK1 and AKT. This may indicate that MEK/ERK is not involved in the down-
stream effects of the inhibitory perturbations involving TAK1. Another kinase could poten-
tially function as a point of crosstalk for TAK1 and PI3K/AKT signaling. In this respect, NLK
(Nemo-like kinase) is an interesting candidate as it is known to act downstream of TAK1 [37],
mediating inhibitory phosphorylation of FOXO [38].

The model-based suggestion that FOXO activation may be important for synergistic growth
inhibition does find experimental support in numerous accounts of FOXO proteins acting as
mediators of cytotoxic chemotherapeutic drugs [39]. This suggests that the dynamical behavior
of our logical model recapitulates generic properties that may be relevant for a range of differ-
ent tumor types.

Discussion
The development of novel anti-cancer medication predominantly focuses on drugs directed
against specific molecular targets. However, clinical applications have often been disappoint-
ing, resulting only in transient responses followed by drug resistance which hinders therapy
benefits. This has led to the consideration of therapies based on combinations of drugs target-
ing different signaling pathways or cellular processes, with the aim to restrain the evolution of
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drug resistance and at the same time allow for a reduction in drug dosage, to lower drug-
induced toxic effects [2,3,40,41].

These strong incentives for combinatorial drug treatment are challenged by the numerous
combinations to consider and by the fact that the efficacy of a given drug combination is
dependent on the nature of the specific tumor. Thus, to discover apt drug combinations at a
pace compatible with the vast search space posed by the many drugs and diverse cancer cell
spectrum, it is mandatory to develop efficient strategies to predict beneficial combinatorial
treatment for individual cancers.

Current efforts to come to a rational choice of drug combination therapy by using primary
tumor cell cultures and xenograft studies are confronted by high costs and a variable rate of
success in tumor cell growth inhibition, and struggle to obtain highly accurate predictions
within the timeframe limited by disease progression [4,42–44]. While cancer cell line cultures
rarely allow for discoveries that can be directly transferred to a clinical setting, they do allow
for experimental investigation of mechanisms underlying biological diversity and robustness
and can thus be used to explore strategies to identify potentially effective drug combination
therapies. They can therefore contribute to establish a large arsenal of advantageous drug com-
binations accompanied by prognostic tools enabling the choice of the right combination for
the individual tumor. However, even in these cellular models, it is not feasible to test all poten-
tial drug combinations and application modes for a sufficient spectrum of cancer cell types. In
this context, computational modeling can be of great help to reduce the experimental search
space.

We have demonstrated how a logical model built from known signal transduction network
information can be tailored to a specific cancer cell system using baseline data, so that it can be
used to predict synergistic and non-synergistic combinatorial growth-impeding treatments.
Four of the five predicted synergistic combinations were confirmed experimentally with no
false negative predictions. With such a success rate, it would have been sufficient to test only a
quarter of the 21 possible drug combinations investigated and still not miss any synergistic
pair. Our results are encouraging in light of the success rate reported from the recent DREAM
challenge [7], where the best-performing method of synergy prediction would have allowed
halving the size of screening experiments. However, there are important differences between
our study design and that of the DREAM challenge: DREAM analyzed transcriptome changes
following broad-acting chemotherapeutic drug treatments, while we investigated the action of
inhibitors with specific targets, relying only on information from the unperturbed system.

Contrary to network-based strategies, which commonly use correlation analysis of large-
scale datasets from different disease phenotypes [45,46], or large-scale cell culture drug pertur-
bation data to train models for drug response predictions [6,7,9,47,48], our modeling-based
strategy exploits mechanistic molecular pathway knowledge, available in databases, along with
baseline data from the unperturbed cancer cells of the chosen experimental system. This means
that our approach allows for the selection of interesting candidates for efficient drug combina-
tions before performing actual drug perturbation experiments. To our knowledge this has not
been successfully demonstrated before.

The majority of regulatory network modeling approaches focus on signaling events driven
by specific hormone receptors. This applies to studies investigating logical modeling to under-
stand consequences of interfering with specific growth factor signal transduction responses
[16,18,49–51], as well as to quantitative and semi-quantitative modeling approaches used to
predict the effect of synergistic signal transduction perturbations [6,31,52]. In contrast, our
approach demonstrates that it is possible to effectively use a model representing a cell fate deci-
sion network in actively growing cells without considering explicitly any external growth-pro-
moting stimulus (e.g. growth hormone). Indeed, we argue that using the attractor of a self-
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contained model of a proliferating cell as the reference point for drug synergy analysis provides
a good proxy for the state of actively growing cancer cells. Cancer cell growth is considered to
be driven by a multitude of growth promoting stimuli. Not only is the potential repertoire of
these signals substantial, relatively little detail about their signaling mechanisms is known. We
therefore assume that we can summarize their effect by considering this multitude of signals to
provide a context promoting robust growth and that we can therefore dismiss any further
detail. On this basis we accommodate a sustained multifactor-driven proliferation [1] by
employing a self-contained model, where all components included are regulated by other
nodes in the model. The configuration of component activities can then be inferred from base-
line biomarkers measured in cancerous cells. Together, these model design principles enable us
to generate a dynamic model tailored to specific cancer cells, yet not dependent on explicit
extracellular input from specific growth promoting agents (e.g. growth hormones) and without
the need for initial large-scale inhibitor perturbation data that would be difficult and costly to
obtain.

Our definition of drug synergy in experimental validation is based on Loewe additivity [28],
and synergies are quantified with the combinatorial index [29]. Several mathematical frame-
works have been proposed to determine drug synergy [53]. We chose the Loewe method as it is
extensively used, and it correctly handles the sham zero-interaction experiment where a drug is
‘combined with itself’. Regarding the predictions from the logical model, we identify potential
synergies by selecting drug pairs that have a more profound effect on the global output ‘growth’
than either of the single drugs. While the experimental synergy analysis allows quantifying the
degree of synergy, the logical model is discrete and cannot provide synergy quantifications.
Even though our definitions of synergy in experiments and simulations are not identical, our
model-based classification proved to be highly accurate with regard to synergies assessed
experimentally. Tentatively, a translation of logical variables into continuous ones could be
considered (see for example [54]), to estimate synergies in a manner more analogous to the
computation of experimental combinatorial indexes.

The AGS gastric adenocarcinoma cell line was chosen as a model system because its gene
expression profile is highly similar to profiles of gastric adenocarcinoma [55,56] (intestinal sub-
type, Lauren’s histopathological classification). Despite increased understanding of the molecu-
lar underpinning of gastric cancer, it remains the second leading cause of cancer death globally
and as such an austere reminder of the need for improved treatments [57]. In Western coun-
tries, two thirds of gastric cancer cases are discovered at a stage where radical treatment is not
feasible, and more than half of the patients who can be radically treated will experience relapse.
For patients with advanced gastric cancer, the 5 year survival is less than 10% [58].

The synergy between PI3K and MEK inhibitors in AGS cells is in line with previously pub-
lished observations [6,30,31,33], and is currently being pursued in clinical trials for advanced
solid cancer (including pancreatic, breast, non-small cell lung cancer and colorectal cancer)
[59]. Similarly, the synergistic effect of MEK and AKT inhibitors has been previously observed
[32,34], and is currently investigated in clinical trials (including multiple myeloma, breast,
endometrial, colorectal, non-small cell lung cancer, pancreatic cancer, ovarian cancer) [60].
The novel growth inhibitory synergies between TAK1-PI3K and TAK1-AKT discovered here
are interesting candidates for further investigations.

Our knowledge concerning molecular regulatory mechanisms underlying cell fate decision
networks is rapidly increasing. This poses both opportunities and challenges to integrate many
details into an extensive understanding, enabling global mechanistic reasoning on regulatory
networks and construction of comprehensive models that can provide in silico predictions of
drug effects. Translation of these predictive capabilities to clinical settings is facilitated by the
increasing availability of patient omics data, which can provide biomarkers informative of
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cellular signaling status associated with disease and treatment response. The integration of bio-
marker information with models of combinatorial drug responses may provide important
clues to improve health care for patients who currently lack effective treatment.

Materials and Methods

Construction of the signaling network
We used pathway information from databases as a source of signaling components, and
included interactions for MAPK pathway (JNK, p38, ERK), the PI3K/AKT/mTOR pathway,
the Wnt/β-catenin pathway and the NF-κB pathway. Each protein was annotated with its offi-
cial gene symbol, Uniprot protein identifier, and mutational status in our AGS gastric adeno-
carcinoma experimental system. All interactions were substantiated by bibliographical
references documenting experimental evidence. The model was composed of 75 signaling com-
ponents and 149 directed interactions.

Logical modeling analysis and simulations
Logical modeling. To perform simulations, we used the logical formalism initially pro-

posed by René Thomas [61]. This approach starts with the definition of a regulatory graph,
wherein each node represents a model component, and each directed arc represents an (acti-
vating or inhibitory) interaction between two components.

The activities of all but four components are associated with Boolean variables (variables
taking only the values 0 or 1). The corresponding discretization reflects the “threshold effect”
of the regulatory interactions between components: a component is considered “active” (Bool-
ean variable equals 1) when its activity level (concentration or catalytic activity) is sufficient to
affect the activity of other components in the system. As long as this activity level is not suffi-
cient to exert an effect, the component is considered inactive (and the corresponding Boolean
variable equals 0).

The phenotypic output nodes Prosurvival and Antisurvival were allowed to occupy the four
levels from 0, 1, 2 and 3, to capture the relative effects of converging combinations of activators
and inhibitors. For example, if Caspase 9 (representing the intrinsic apoptotic pathway) is
active, while Caspase 8 (representing the extrinsic apoptotic pathway) and FOXO are inactive,
Antisurvival takes the value 1. If all three regulators (Caspase 8, Caspase 9, and FOXO) are
active, the value of Antisurvival will be 3. Furthermore, Caspase3/7 and CCND1, direct regula-
tors of the output nodes Antisurvival and Prosurvival, respectively, were associated with ter-
nary variables (taking the values 0, 1 or 2). The value of the variable associated with Caspase3/7
is given by the summation of those corresponding to Caspase 8 and Caspase 9. For CCND1 the
ternary variable represents the integration of RSK and TCF signaling.

Logical rules define the evolution of the activity level of a component depending on those of
its regulators, using formulae with classical Boolean operators AND, OR, and NOT. Our default
approach was to combine all activating regulators of a target with the Boolean operator OR,
and all inhibitory regulators of a target with the operator AND NOT (as in [21]). This implies
that any activator can fully activate the target node if no inhibitory interactions are active. Con-
versely, the activity of any inhibitory regulator can fully inhibit the target, even when the target
receives input from activators. To have a dynamical behavior consistent with available data, we
had to refine the rules determining activity of several components:

1. betaTrCP (representing the activity of the β-catenin destruction complex, which promotes
β-catenin ubiquitination and degradation): we used an AND operator to represent the fact
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that all components of the β-catenin destruction complex are simultaneously needed to lead
to β-catenin degradation [62].

2. betacatenin: the rule was refined to represent the fact that degradation can be protected by
phosphorylation by IKKA [63,64].

3. SHC1, SOS, Raf, MEK and ERK: inhibitory regulators were connected with OR NOT instead
of the default AND NOT, in order to reduce the impact of the negative regulatory circuit
present in the SOS/MEK/ERK pathway. With these refined rules, model simulation in the
unperturbed case leads to a single stable state with ERK active, which better matches pub-
lished experimental observations for AGS cells [65,66].

4. TCF: the impact of negative regulation by NLK was reduced so that TCF was active in the
unperturbed case, in line with published data [55,66].

A listing of all model components and logical rules is provided in S5 Table, along with a
model file to be opened with the software GINSIM v2.9 or newer (model in S2 Dataset).

Logical simulations. Using GINsim [67], we can compute the dynamical behavior of our
AGS model for any initial state. The state of each model component is then iteratively updated,
according to the logical formulae.

The resulting dynamics is represented in terms of a state transition graph (STG). The nodes
of the STG denote the states of the system, i.e. discrete vectors encompassing the activity values
of all components (Boolean variables, except for the four multi-valued components), while the
arcs connect successive states, denoting “state transitions”. Enabled transitions were defined
based on an asynchronous updating policy: whenever multiple components are called for a
change, all single value changes are considered, leading to the representation of all possible
asynchronous trajectories in a single STG.

The asymptotic behavior(s) of the system corresponds to the attractors of the dynamics (ter-
minal strongly connected components in graph theoretical terms). Since our AGS model is
finite, its dynamics contains at least one attractor. Two types of attractors may occur: stable
states (single state attractors) and complex (cyclic) attractors (sets of states from which the sys-
tem cannot escape). Stables states can be easily computed using Multi-valued Decision Dia-
grams [26]. To identify and characterize the complex attractors for such a large network, we
have combined a model reduction approach [26] with a method enabling the compaction of
state transition graphs into hierarchical transitions graphs [14].

Model reduction. The model reduction method consists of iteratively replacing selected
components of the network by an updated logical function of their target nodes [26]. Our
reduced model was configured to preserve the output nodes, the seven targets of experimental
perturbations, and the nodes involved in self-loops (self-loops may be introduced during the
reduction process). The stable states are conserved by this reduction. Furthermore, each com-
plex attractor of the original model is matched by at least one complex attractor in the reduced
model. However, as model reduction generally results in a simplified STG (elimination of tran-
sitions, considered as instantaneous), complex attractors may be split during the reduction pro-
cess, while attractor reachability might also be affected [26]. Such distortion of the dynamics
was assessed by checking the behavior of the original model or by using alternative reductions.
For all reduced instances of the model, we found either a single stable state or a single complex
attractor.

Hierarchical state transition graphs. The analysis of state transition graphs becomes
intractable as their size increases. To ease its interpretation and its manipulation, an STG can
be compressed into a hierarchical transition graph (HTG), which preserves its main structural
properties: as the STG is constructed, its nodes are gathered into groups of states sharing the
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same set of successors [14]. The resulting HTG displays all reachable attractors, and their
basins of attraction.

Simulation of model perturbations. Using the logical formalism and GINsim, it is rela-
tively straightforward to encode model modifications that account for different kinds of genetic
or pharmacological perturbations: Simulation of drugs blocking the activity of a component, or
knock-out of genes encoding specific components, is performed by fixing the activity value of
the drug target component to the Boolean value 0.

In short, each perturbation is encoded in terms of a well-defined rewriting of the logical rule
(s) of the corresponding component(s). In this respect, GINsim includes an interface enabling
the definition and the storage of single perturbations (mutations), as well as various combina-
tions thereof.

Cells and reagents
AGS (human gastric adenocarcinoma, ATCC, Rockville, MD) were grown in Ham’s F12
medium (Invitrogen, Carlsbad, CA) supplemented with 10% fetal calf serum (FCS; Euroclone,
Devon, UK), and 10 U/ml penicillin-streptomycin (Invitrogen). Growth experiments were per-
formed with medium with 5% FCS.

Chemical inhibitors PI-103 (Merck), AKT-i-1,2/AKT inhibitor VIII (Merck), PD0325901
(Sigma-Aldrich), PKF118-310 (Sigma-Aldrich), BIRB 0796 (Axon), and CT99021 (Axon) dis-
solved in DMSO at stock concentrations of 20 mM, except PI103 which was dissolved in
DMSO at a stock concentration of 10 mM.

Growth measurements
Cell growth was measured without labelling, in real-time, with the xCELLigence RTCA SP
(96-well) or xCELLigence RTCA DP (16-well) growth assay (Roche Applied Science). This sys-
tem utilizes culture plates with gold electrode arrays at the bottom of each well in multi-well E-
plates (Roche Applied Science). Real-time measurements of the impedance across the gold
arrays were reported in the dimensionless unit of cell index which is taken to correspond to the
number of cells. In agreement with manufacturer’s instructions, cells were split 1:1 the day
before experiments to ensure that cells were in an exponential growth phase at the time of seed-
ing cells for xCELLigence analysis. First, complete medium was added to wells in 50 μl aliquots
to measure background signal, next 100 μl of cell suspension was added, at a seeding density of
5x103 cells per well. The well plate was then put back in the RTCA SP/DP instrument, where
cells are allowed to adhere overnight (20 hours). The well plate was then removed from the
instrument, and 50 μl aliquots of complete medium with chemical inhibitor of interest were
added to each well, to a total volume of 200 μl. Real-time monitoring of cell proliferation was
performed for 72 hours, at which time the effect of growth arrest was stable (see S1 Text).

Experimental assessment of inhibitor synergy
Determination of GI50. For each inhibitor a dose-response profile, including the 50%

growth inhibitory dose (GI50) was determined (see S1 Text).
In general, our results for AGS cells fit those found by other groups for the same or similar

cell lines (see S1 Text).
Analysis of combinatorial treatment. We used Loewe’s definition of synergy, which

states that a synergistic interaction is one that performs better than the expected additive effect
[28]. Taking the GI50 of each compound as the reference concentration in the assessment of
synergy, each combination of two inhibitors was tested. For two different drugs at equipotent
concentrations, the activity is additive if the combined effect of two drugs at half concentration
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restores the effect of either drug at the full concentration, and synergistic if the combined effect
outperforms the effect of either drug at the full concentration. All inhibitors were tested in
combinations of 0.5x GI50 concentrations, and two two-fold dilutions (0.25x and 0.125x
GI50). Single inhibitors were also tested in the same experiment at GI50 concentrations and
two two-fold dilutions (0.5x and 0.25x GI50). Whenever the combination of two drugs at 0.5x
GI50 was more effective than either of the single drugs at 1xGI50, a synergistic combination
was declared.

The combination index (CI) was calculated for each combinatorial experiment according to
Chou and Talalay [29], using the CompuSyn software [68]. CI was calculated from growth
measured at 48 hours after adding inhibitors, because at this point the growth inhibitory effect
had reached a stable level (see S1 Text). The combinatorial index is a mathematical description
of synergy, based on a median-effect plot made from specific dose-response data [68]. A CI
value of 1 is taken to indicate an additive effect. A CI value over 1 is considered to indicate
antagonism, and conversely a CI value below 1 is considered to indicate synergy.

Supporting Information
S1 Text. Supporting information. Details of curation of pathways and conversion to logical
model. Analysis of model compliance with literature-derived signal transduction data of AGS
cells. Cell growth experiments, with dose-response curves for each of the seven inhibitors, and
growth curves of 21 combinations of inhibitors. Description of model analysis of FOXO knock-
outs and its effect on predicted synergies.
(PDF)

S1 Dataset. SBML model. The model includes annotations for each node entity with Uniprot
IDs, official gene symbols, gene mutations in AGS, and mRNA in AGS. Node interactions are
referenced with publication IDs. The model was created with CellDesigner v4.3 (http://
celldesigner.org/).
(XML)

S2 Dataset. GINsim model. The model can be opened with the open-source software GINsim
(http://ginsim.org/). The model includes annotations for each node with Uniprot IDs, official
gene symbols, gene mutations in AGS, and publication IDs for published reports on state of
modeled protein in proliferating AGS cells. Node interactions are referenced with publication
IDs.
(ZGINML)

S3 Dataset. GINsim model. Reduced model file, obtained from the full model in S2 Dataset
using built-in model reduction capabilities of GINsim, and with logical rules as shown in S8
Table. The model reduction was configured to preserve nodes targeted by drugs, nodes
involved in self-loops, and the two phenotypic output nodes.
(ZGINML)

S1 Table. HGNC symbols. Conversion table for model node names and corresponding
HGNC symbols.
(XLSX)

S2 Table. Literature review of baseline signaling data in AGS cells. References to publica-
tions describing 219 observations of steady state signaling in AGS cells.
(XLSX)
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S3 Table. Comparison of stable state of logical model and literature-derived steady state
signaling.
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S4 Table. Summary of literature-derived steady state signaling observations.
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S5 Table. List of 77 logical equations encompassed by GINsim model.
(XLSX)

S6 Table. Literature review of perturbation experiments in AGS cells. References to publica-
tions describing 56 observations of signal transduction perturbation responses in AGS cells.
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