From Sensorimotor Experience To Speech Unit - Adaptation to altered auditory feedback in speech to assess transfer of learning in complex serial movements

Tiphaine Caudrelier, Jean-Luc Schwartz, Pascal Perrier, Christophe Savariaux, Amélie Rochet-Capellan

To cite this version:
Tiphaine Caudrelier, Jean-Luc Schwartz, Pascal Perrier, Christophe Savariaux, Amélie Rochet-Capellan. From Sensorimotor Experience To Speech Unit - Adaptation to altered auditory feedback in speech to assess transfer of learning in complex serial movements. Annual meeting of the Society for Neuroscience (Neuroscience 2015), Oct 2015, Chicago, United States. hal-01221491

HAL Id: hal-01221491
https://hal.archives-ouvertes.fr/hal-01221491
Submitted on 28 Oct 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
From Sensorimotor Experience To Speech Unit

Tiphaine Caudrelier, Jean-Luc Schwartz, Pascal Perrier, Christophe Savariaux, Amélie Rochet-Capellan

Goal: Study transfer of learning in speech production to better understand the nature of speech units

Speech is described as a sequence of units. These units could be representations of syllables stored in a mental directory (5) or mnemic traces of words.

Intro – An approach associating motor control and psycholinguistics

Method – Transfer of sensorimotor learning paradigm in order to study speech units

Results – Transfer of learning and after-effect depend on the condition

Conclusion: Links between speech units and speech articulation are at multiple levels.

The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Program (FP7/2007-2013 Grant Agreement no. 339152)