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Abstract—We propose a new coding scheme for the dis-
crete memoryless two-user multi-access channel (MAC) with
rate-limited feedback. Our scheme combines ideas from the
Venkataramanan-Pradhan scheme for perfect feedback with
ideas from the Shaviv-Steinberg scheme for rate-limited feedback.

Our achievable region includes the Shaviv-Steinberg achiev-
able region and this inclusion can be strict. For general MACs
and for sufficiently large feedback rates, our scheme outperforms
the Shaviv-Steinberg scheme as it achieves the same rate region
as the Venkataramanan-Pradhan scheme for perfect feedback
(which cannot be achieved by the Shaviv-Steinberg scheme).
Furthermore, we numerically evaluate our achievable region
with a specific (Gaussian) choice of random variables for the
memoryless two-user Gaussian MAC. Our simulation results
show that for some parameters of the Gaussian MAC and the
feedback rate, our scheme achieves a strictly larger sum-rate
than the Shaviv-Steinberg scheme.

I. INTRODUCTION

Gaarder & Wolf [1] showed that perfect instantaneous
output-feedback1 can increase the capacity of the two-user
memoryless multiple-access channel (MAC) by enabling co-
operation between the transmitters. The capacity region for
general MACs with feedback is still unknown even for only
two users. (A notable exception being Ozarow’s capacity result
for the two-user Gaussian MAC with perfect feedback [2].)

The Gaarder-Wolf scheme has been extended by Cover &
Leung [3] who introduced the ideas of block-Markov coding
and superposition coding. Specifically, in the Cover-Leung
scheme, in each block b, the transmitters send independent
fresh data superposed on common update information belong-
ing to the previous block (b� 1). After observing the outputs
in block b, the receiver creates a list of all possible pairs of
block-b fresh data that is compatible (jointly typical) with these
outputs. It also decodes the common update information. This
common update information describes resolution information
that allows the receiver to resolve its block-(b�1) list, and thus
to identify the fresh data that was sent in block (b�1). In order
to be able to compute and send the block-b common update
information, the transmitters have to decode each other’s fresh
data sent in block (b � 1) and calculate the receiver’s block-
(b � 1) list. They perform these tasks using their block-
(b � 1) input signals and the block-(b � 1) feedback signals.
(In case of perfect feedback, the latters correspond to the

1By perfect instantaneous output-feedback we refer to a model where each
transmitter observes all previous channel outputs before it has to produce the
next input. We henceforth refer to it also as perfect feedback.

receiver’s channel outputs.) For some MACs with perfect
feedback the presented Cover-Leung scheme is optimal and
achieves capacity [4]. For others, for example for the Gaussian
MAC [2], it is strictly suboptimal [2], [5], [6].

The Cover-Leung scheme has been improved by relaxing
the requirement that after the transmission of each block, the
transmitters have to decode each other’s fresh data sent in
this block [5], [6]. Instead, the decoding at the transmitters
(and also at the receivers) is delayed, allowing the transmitters
to gain more information about each other’s message before
decoding. This results in less stringent rate-constraints as
compared to the original Cover-Leung scheme. To implement
this idea, Bross & Lapidoth [5] proposed to append to each
block a two-way transmitters-exchange phase and to delay the
transmitters’ decoding thereafter. Venkataramanan & Pradhan
[6] suggested to delay the transmitters decoding of the fresh
data by an entire block. In their scheme, in each block b
the transmitters send two sorts of resolution information,
common receiver-side resolution information to resolve the
receiver’s uncertainty about the block-(b� 2) fresh data, and
correlated transmitters-side resolution information to resolve
each transmitter’s uncertainty about the other transmitter’s
block-(b� 1) fresh data.

Coding schemes were also presented for the MAC with
generalized, noisy, or rate-limited2 feedback. Carleial [7] pro-
posed a coding scheme for general discrete memoryless MACs
with generalized feedback, which combines the Cover-Leung
scheme with an optimal nofeedback scheme through rate-
splitting. Lapidoth & Wigger [8] proposed a scheme for the
two-user Gaussian MAC with noisy feedback. Their scheme
can be viewed as a robustification of Ozarow’s capacity-
achieving perfect-feedback scheme [2] to noisy feedback.

The main focus of this paper is on rate-limited feedback. For
this model, Shaviv & Steinberg [9] proposed a coding scheme
based on Carleial’s extension of the Cover-Leung scheme
and on Heegard-Berger source coding [10] to communicate
over the feedback links. For sufficiently large feedback rates
their scheme achieves Cover & Leung’s achievable region
for perfect feedback [3] (which in this case coincides with
Carleial’s achievable region).

In this paper, we propose a coding scheme for the two-

2While for generalized [7] or noisy feedback the feedback signals are
“passively” produced in a memoryless way from the channel inputs and
outputs, in the model for rate-limited feedback the receiver can actively code
over the feedback links.



user discrete memoryless MAC with common rate-limited
feedback. Our coding scheme is based on the Venkataramanan-
Pradhan scheme and on Heegard-Berger source coding [10]
over the feedback links. Our new region includes the Shaviv-
Steinberg achievable region and this inclusion can be strict. For
sufficiently large feedback rates, our achievable region coin-
cides with the Venkataramanan-Pradhan achievable region.

II. CHANNEL MODEL

We consider the two-user discrete memoryless MAC with
rate-limited feedback. The setup is characterized by the triple
of finite alphabets (X1,X2,Y), the conditional probability
distribution PY |X1X2

, and a nonnegative feedback rate Rfb.
At each time t 2 N, if x1,t 2 X1 and x2,t 2 X2 denote the
signals sent by Transmitters 1 and 2, the receiver observes the
channel output yt 2 Y with probability PY |X1X2

(yt|x1,t, x2,t).
The goal of communication is that Transmitters 1 and 2

convey the independent messages M1 and M2 to the common
receiver. The messages M1 and M2 are uniformly distributed
over M1 = {1, . . . , b2nR1c} and M2 = {1, . . . , b2nR2c},
where R1 and R2 are the rates of transmission and n is the
blocklength.

We assume common rate-limited feedback from the receiver
to both transmitters. Specifically, upon observing Yt, the re-
ceiver can send a feedback signal Ft 2 Ft to both transmitters
where Ft denotes the finite alphabet of Ft. The feedback
signals F1, . . . , Fn are of the form

Ft =  
(n)
t (Y1, . . . , Yt) , t 2 {1, . . . , n}, (1)

for some feedback-encoding functions  (n)
t : Yt ! Ft. It is

assumed that both transmitters receive the feedback signals
perfectly whenever the former satisfy the rate constraint on
the feedback links:

|F1|⇥ . . .⇥ |Fn|  2

nRfb . (2)

(The present feedback rate constraint is rather weak. One could
imagine a stronger constraint where each sample Ft has to
satisfy H(Ft)  Rfb. It can be easily shown that the two
definitions are equivalent in terms of achievable rates.) Notice
that here the alphabets F1, . . . ,Fn are design parameters of
the coding scheme.

Transmitter i’s channel input at time t, Xi,t, for i 2 {1, 2},
can depend on Message Mi and the prior feedback signals
F1, . . . , Ft�1:

Xi,t = '
(n)
i,t (Mi, F1, . . . , Ft�1), t 2 {1, . . . , n}, (3)

for some encoding functions of the form '
(n)
i,t : Mi ⇥ F1 ⇥

· · ·⇥ Ft�1 ! Xi.
The receiver bases its guess of its desired messages on the

output sequence Y1, . . . , Yn. That is, it produces

(

ˆM1, ˆM2) = �(n)(Y1, . . . , Yn),

for a decoding function �(n) : Yn ! M1 ⇥M2. There is an
error in the communication whenever ( ˆM1, ˆM2) 6= (M1,M2).
The average probability of error is thus

P (n)
e , Pr

⇥
(

ˆM1, ˆM2) 6= (M1,M2)
⇤
. (4)

We say that a rate pair (R1, R2) is achievable over
the MAC with common rate-limited feedback if there
exists a sequence of encoding and decoding functions
{{'(n)

1,t }nt=1, {'
(n)
2,t }nt=1,�

(n)}1n=1 as described above, a se-
quence of feedback alphabets {Ft}nt=1 satisfying (2), and
feedback-encoding functions of the form (1) such that P

(n)
e

tends to zero as the blocklength n tends to infinity.
When Rfb = 0, the feedback signals have to be deterministic

and the setup is equivalent to a setup without feedback. When
Rfb � log2 |Y|, the setup is equivalent to perfect-feedback.

III. ACHIEVABLE REGION

Theorem 1 (Achievable Region). Let W , U1, U2,

V1, V2, Y12, Y1, and Y2 be arbitrary finite sets.

Also, let (W,V1, V2, U1, U2, X1, X2, Y, Y12, Y1, Y2)

and (

˜W, ˜V1, ˜V2, ˜U1, ˜U2, ˜X1, ˜X2, ˜Y , ˜Y12, ˜Y1, ˜Y2) be two

correlated random tuples over the product alphabets

W ⇥ U1 ⇥ U2 ⇥ V1 ⇥ V2 ⇥ X1 ⇥ X2 ⇥ Y ⇥ Y12 ⇥ Y1 ⇥ Y2

satisfying the following two conditions:

1) The joint distributions of the two tuples coincide:

PWU1U2V1V2X1X2Y Y12Y1Y2 = PW̃ Ũ1Ũ2Ṽ1Ṽ2X̃1X̃2Ỹ Ỹ12Ỹ1Ỹ2
,

(5)
and each of them factors as

PWU1U2V1V2X1X2Y Y12Y1Y2

= PWPV1V2PU1|WV1
PU2|WV2

·PX1|WU1V1
PX2|WU2V2

PY |X1X2

·PY12|YWPY2|WY Y12
PY1|WY Y12

(6)

where PY |X1X2
describes the channel law of our MAC.

2) Defining

˜S , (

˜W, ˜V1, ˜V2, ˜Y12), the joint distribution

over both tuples factors as

PWU1U2V1V2X1X2Y Y12Y1Y2S̃Ũ1Ũ2X̃1X̃2Ỹ Ỹ1Ỹ2

= PS̃Ũ1Ũ2X̃1X̃2Ỹ Ỹ1Ỹ2
PV1|S̃Ũ1

PV2|S̃Ũ2

·PWU1U2X1X2Y12Y1Y2Y |V1V2
. (7)

All nonnegative rate pairs (R1, R2) satisfying Con-

straints (8) on top of next page are achievable.

Remark 1. Using time-sharing, it can be shown that also the

convex hull of the region described in Theorem 1 is achievable.

Remark 2. When choosing V1 = V2 = Y12 = Y1 = Y2 =

W = ;, U1 = X1, and U2 = X2, the achievable region in

Theorem 1 reduces to the nofeedback capacity region.

When Rfb � log2 |Y|, Constraint (8a) is always satisfied.

In this case, we can choose Y = Y12 and Y1 = Y2 = ; to

mimic the setup with perfect feedback. If now we specialize

the achievable region in Theorem 1 to the choices U1 = X1

and U2 = X2, we recover the achievable region of Venkatara-

manan & Pradhan for perfect feedback [6].

Finally, when choosing V1 = V2 = ;, the tilded and the non-

tilded tuples become independent and the achievable region

in Theorem 1 specializes to the set of all rate pairs (R1, R2)

satisfying

Rfb � max

i2{1,2}

�
I(Y12;Y |WXi)

 



Rfb � max

�
I(Y12;Y |WX1), I(Y12;Y |WX2)

 
+ I(Y ;Y1|Y12X1W ) + I(Y ;Y2|Y12X2W ) (8a)

R1  I(X1;Y |SU1U2X2)

+min{I(U1;Y2Y12| ˜S ˜Y2
˜U2

˜X2WV2U2X2), I(W ;Y | ˜W ˜Y ) + I(U1;Y |WV1V2U2) + I(V1;Y | ˜Y ˜S ˜Y1
˜Y2

˜U2WV2)}(8b)
R2  I(X2;Y |SU1U2X1)

+min{I(U2;Y1Y12| ˜S ˜Y1
˜U1

˜X1WV1U1X1), I(W ;Y | ˜W ˜Y ) + I(U2;Y |WV1V2U1) + I(V2;Y | ˜Y ˜S ˜Y1
˜Y2

˜U1WV1)} (8c)
R1 +R2  I(X1X2;Y |SU1U2) + I(W ;Y | ˜W ˜Y ) + I(U1U2;Y |WV1V2) + I(V1V2;Y | ˜Y ˜S ˜Y1

˜Y2W ) (8d)
R1 +R2  I(X1X2;Y |SU1U2)

+min{I(U2;Y1Y12| ˜S ˜Y1
˜U1

˜X1WV1U1X1), I(W ;Y | ˜W ˜Y ) + I(U2;Y |WV1V2U1) + I(V2;Y | ˜Y ˜S ˜Y1
˜Y2

˜U1WV1)}
+min{I(U1;Y2Y12| ˜S ˜Y2

˜U2
˜X2WV2U2X2), I(W ;Y | ˜W ˜Y ) + I(U1;Y |WV1V2U2) + I(V1;Y | ˜Y ˜S ˜Y1

˜Y2
˜U2WV2)} (8e)

+I(Y ;Y1|Y12X1W ) + I(Y ;Y2|Y12X2W ) (9a)
R1  I(X1;Y |WU1X2) + min{I(U1;Y |WU2)

+I(W ;Y ), I(U1;Y2Y12|WX2)} (9b)
R2  I(X2;Y |WU2X1) + min{I(U2;Y |WU1)

+I(W ;Y ), I(U2;Y1Y12|WX1)} (9c)
R1 +R2  I(X1X2;Y |WU1U2) + min{I(U2;Y |WU1)

+I(W ;Y ), I(U2;Y1Y12|WX1)}
+min{I(U1;Y |WU2) + I(W ;Y ),

I(U1;Y2Y12|WX2)} (9d)
R1 +R2  I(X1X2;Y ) (9e)

where now PWU1U2X1X2Y Y12Y1Y2 factors as

PWU1U2X1X2Y Y12Y1Y2

= PWPU1|WPU2|WPX1|U1WPX2|U2WPY |X1X2

·PY12|YWPY1|YWY12
PY2|YWY12

. (10)

This region contains the achievable region by Shaviv &

Steinberg [9].

IV. OUTLINE OF CODING SCHEME

Let W,U1, U2, V1, V2, X1, X2, Y, Y12, Y1, Y2, ˜W, ˜U1, ˜U2, ˜V1,
˜V2, ˜X1, ˜X2, ˜Y , ˜Y12, ˜Y1, ˜Y2 be as defined in Theorem 1 so that
they satisfy (5)–(7). Fix a nonnegative rate pair (R1, R2) that
satisfies rate constraints (8) with strict inequalities. Using for
example Fourier-Motzkin Elimination, it can be shown that
there must exist rates R0

1 > 0, R0
2 > 0 so that they satisfy

R1 > R0
1 and R2 > R0

2 and the following nine conditions

Rfb > max

�
I(Y12;Y |WX1), I(Y12;Y |WX2)

 

+

X

i2{1,2}

I(Y ;Yi|Y12XiW ), (11a)

R1 �R0
1 < I(X1;Y |SU1U2X2) (11b)

R2 �R0
2 < I(X2;Y |SU1U2X1) (11c)

R1�R0
1+R2�R0

2< I(X1X2;Y |SU1U2) (11d)
R0

1 < I(U1;Y2Y12| ˜S ˜Y2
˜U2

˜X2WV2U2X2) (11e)
R0

2 < I(U2;Y1Y12| ˜S ˜Y1
˜U1

˜X1WV1U1X1) (11f)
R0

1 < I(W ;Y | ˜W ˜Y ) + I(U1;Y |WV1V2U2)

+I(V1;Y | ˜Y ˜S ˜Y1
˜Y2

˜U2WV2) (11g)
R0

2 < I(W ;Y | ˜W ˜Y ) + I(U2;Y |WV1V2U1)

+I(V2;Y | ˜Y ˜S ˜Y1
˜Y2

˜U1WV1) (11h)
R0

1 +R0
2 < I(W ;Y | ˜W ˜Y ) + I(U1U2;Y |WV1V2)

+I(V1V2;Y | ˜Y ˜S ˜Y1
˜Y2W ). (11i)

Fix also a constant R0 satisfying:

R0 < I(W ;Y | ˜W, ˜Y ). (12)

We briefly describe a random code construction for which
the average probability of error (averaged over codebooks,
messages, and channel realizations) can be shown to tend to 0.
A deterministic coding scheme achieving the same rates can
then be obtained via standard arguments.

Our coding scheme is based on block-Markov and super-
position coding, rate-splitting, sliding-window decoding, and
Heegard-Berger coding on the feedback links. It extends over
B + 2 blocks. For each i 2 {1, 2}, split Message Mi into
B submessages (m

(1)
i , . . . ,m

(B)
i ) each of rate Ri/B. For

b 2 {1, . . . , B}, split each of these submessages into a pair
(j

(b)
i , k

(b)
i ) of rates R0

i/B and (Ri �R0
i)/B, respectively. For

blocks b 2 {B +1, B +2}, set j(b)1 = k
(b)
1 = j

(b)
2 = k

(b)
2 = 1.

For each block b 2 {1, . . . , B + 2}, at Transmitter i, for
i 2 {1, 2}, the j-message (j(b)i ) is transmitted using a feedback
scheme and is going to be decoded at the other transmitter and
the k-message (k

(b)
i ) is transmitted without using the feedback

and is decoded only at the receiver.
For each block b 2 {1, . . . , B + 2}, Transmitter i, for

i 2 {1, 2}, sends x

(b)
i (k

(b)
i |u(b)

i (j
(b)
i |v(b)

i ,w(b)
)). The choice

of the sequences u

(b)
i , v(b)

i , and w

(b) is explained next.
After each block b, the receiver compresses the channel

outputs y

(b) it observed for this block into (y

(b)
12 ,y

(b)
1 ,y

(b)
2 )

using Heegard-Berger coding [10]. The receiver uses the feed-
back links only once to send the same message M

(b)
fb which—

as shortly explained ahead at the end of this section—is the
triple (r

(b)
12 , r

(b)
1 , r

(b)
2 ), indices of bins containing the quantized

output sequences y

(b)
12 , y(b)

1 , and y

(b)
2 . Upon receiving M

(b)
fb ,

Transmitter i, for i 2 {1, 2}, reconstructs the sequence y

(b)
12

by looking for a codeword y

(b)
12 in bin r

(b)
12 jointly typical with

(w

(b),x
(b)
i ). Then, it looks for a codeword y

(b)
i in bin r

(b)
i

jointly typical with (w

(b),x
(b)
i ,y

(b)
12 ).

For a given block b, the messages j
(b)
1 and j

(b)
2 are at first

transmitted using the u

(b)
1 - and u

(b)
2 -codewords of this block b.



In contrast to the schemes by Cover & Leung [3] or by Carleial
[7], the transmitters do not immediately decode each-other
submessages j

(b)
1 or j

(b)
2 after learning the (y

(b)
12 ,y

(b)
1 ,y

(b)
2 )

signals of block b. Instead, they wait for another block, where
they exchange information helping them in the decoding.
Specifically, at the end of each block b 2 {1, . . . , B+1}, each
Transmitter i computes transmitter-side resolution information
v

(b+1)
i as a (randomized) function of its block-b codeword u

(b)
i

and some common information s

(b) which is known to both
transmitters. (The common information s

(b) consists of the
w

(b),v
(b)
1 ,v

(b)
2 ,y

(b)
12 sequences; the former three are explained

in the sequel.) The resolution information v

(b+1)
i is then sent

in block b+1. The initial sequences (v(1)
1 ,v

(1)
2 ) are drawn i.i.d.

according to PV1V2 and are known to everyone. In each block
b 2 {1, . . . , B + 2}, the sequences (v

(b)
1 ,v

(b)
2 ) are correlated,

which makes that sending them can be more efficient than
sending independent data. (In particular, Condition (7) ensures
that they have i.i.d. joint distribution PV1V2 .)

After reception of y

(b+1), the receiver creates a list of the
most likely (j

(b)
1 , j

(b)
2 ) message pairs based on y

(b) and y

(b+1)

(and all the information that it has for blocks b and b+ 1).
Upon observing the feedback outputs in block b+ 1, Trans-

mitter i, for i 2 {1, 2}, uses the sequences y

(b)
12 , y(b)

i , y(b+1)
12 ,

and y

(b+1)
i (and all the information that it has for blocks

b and b + 1) to estimate the decoder’s list of highly-likely
message-pairs (j

(b)
1 , j

(b)
2 ). At the same time, it also estimates

the other transmitter’s v

(b+1)-sequence and decodes the other
transmitter’s message j(b). (Notice that at this point, the
receiver is hindered compared to the transmitters as it does
know any of the v(b+1)-sequences.) Conditions (11e) and (11f)
ensure that each transmitter decodes the other transmitter’s
v

(b+1)-sequences correctly with high probability. Therefore,
besides having an estimate of the decoder’s list, Transmitter i
also has an estimate of the position of the correct message pair
therein. Let the index �(b+2)

i describe this position. If there is
no such index or if it exceeds b2nR0c, then the index �(b+2)

i
is chosen uniformly at random from the set {1, . . . , b2nR0c}.
If the feedback information and the j-messages were decoded
correctly, with high probability we have �(b+2)

1 = �
(b+2)
2 . We

abuse notation and call this index �(b+2). The two transmitters
send this index jointly in block b + 2 using a cooperation
sequence w

(b+2) that plays the role of receiver-side resolution
information. For blocks b 2 {1, 2}, it is fixed and known to
everyone.

Upon receiving y

(b+2), the receiver decodes the w

(b+2)

codeword and the index �(b+2) based on w

(b+1), y(b+1), and
y

(b+2), and uses �(b+2) to identify the correct message-pair
(j

(b)
1 , j

(b)
2 ) within its list. Condition (12) ensures that w(b+2)

can be correctly decoded at the receiver. The receiver’s list
for block b can be resolved by w

(b+2) with high probability
if Conditions (11g)-(11i) are satisfied. Thereafter, the receiver
also decodes with high probability the messages k(b)1 and k

(b)
2 ,

encoded in the x

(b)
1 - and x

(b)
2 -codewords, based on y

(b) if
Conditions (11b)-(11d) are true.

To compress y

(b) at the end of block b 2 {1, . . . , B + 1},

the receiver looks for a sequence y

(b)
12 jointly typical with y

(b)

and the decoded sequence w

(b). Then, for i 2 {1, 2}, it looks
for a sequence y

(b)
i jointly typical with (y

(b)
12 ,y

(b),w(b)
). Let

r
(b)
12 , r(b)1 , r(b)2 denote the indices of the bins containing y

(b)
12 ,

y

(b)
1 , and y

(b)
2 , respectively. The Heegard-Berger coding [10]

and Constraint (11a) ensure that with high probability, Trans-
mitter i can reconstruct (y(b)

12 ,y
(b)
i ), for i 2 {1, 2}.

V. EXAMPLE: THE GAUSSIAN MAC
Consider a memoryless Gaussian MAC with symmetric

input-power constraint P . The channel output is Y = X1 +

X2+Z, where Z is zero-mean Gaussian with variance �2 > 0.
It can be shown that our coding scheme in Section IV and
Theorem 1 in Section III hold also for this Gaussian MAC.

Inspired by [6], we propose the following choices. Let
↵,� > 0 such that ↵+ � < 1, ✓ 2 [0, 1], and �12,�1,�2 > 0.
Also, let � 2 [�1, 1] so that

�  P✓↵

�2
+ �2

12 + P↵✓ + 2P (1� ✓)
. (13)

Now, let W , A1, A2, IX1 , IX2 , ˜W , ˜A1, ˜A2, ˜IX1 , and ˜IX2 be
independent zero-mean standard Gaussians, and independent
thereof and independent of each other, let Z12, ˜Z12 be zero-
mean Gaussians of same variance �2

12, Z1, ˜Z1 be zero-mean
Gaussians of same variance �2

1 , and Z2, ˜Z2 be zero-mean
Gaussians of same variance �2

2 , and let ( ˜V1, ˜V2) be a centered

bivariate Gaussian of covariance matrix
✓
1 �
� 1

◆
.

Define for i 2 {1, 2},
Ũi ,

p
↵Ãi +

p
�Ṽi +

p
1� ↵� �W̃ , (14)

X̃i ,
p

P (1� ✓)ĨXi +
p
P✓Ũi, (15)

Ỹi , Ỹ + Z̃i, (16)
Ỹ12 , Ỹ + Z̃12. (17)

Furthermore, define
V1 , ⇠1

⇣
Ũ1 �

p
�Ṽ1 �

p
(1� ↵� �)W̃

⌘
/
p
↵+ ⇠2f(S̃) (18a)

V2 , �⇠1
⇣
Ũ2 �

p
�Ṽ2 �

p
(1� ↵� �)W̃

⌘
/
p
↵� ⇠2f(S̃) (18b)

where the function f is chosen as

f(S̃) = f(W̃ , Ṽ1, Ṽ2, Ỹ12)

, Ỹ12 �
p
�✓P (Ṽ1 + Ṽ2)� 2

p
(1� ↵� �)✓PW̃p

�2 + �2
12 + 2P↵✓ + 2P (1� ✓)

(19)

and where ⇠1, ⇠2 2 R are chosen to satisfy

1 = ⇠21 + ⇠22 + 2⇠1⇠2

s
P✓↵

�2 + �2
12 + 2P↵✓ + 2P (1� ✓)

, (20a)

� = �2⇠1⇠2

s
P✓↵

�2 + �2
12 + 2P↵✓ + 2P (1� ✓)

� ⇠22 . (20b)

(Condition (13) ensures that such real ⇠1 and ⇠2 exist. In
general, there are four possible choices for ⇠1, ⇠2. The specific
choice of ⇠1, ⇠2 does not show up in the rate-constraints (25)
and does not change the set of achievable rates.)

For these choices define for i 2 {1, 2},
Ui ,

p
↵Ai +

p
�Vi +

p
1� ↵� �W, (21)



Rf � C

✓
�2

�2
12

+
P
�2
12

� P✓
�2
12

✓
1� ↵� � +

�2✓�2

(1� (1� ↵� �)✓)

◆◆

+
2X

i=1

C

 
�2
12

�2
i

�2 (1� (1� ↵� �)✓) + P
�
(1� (1� ↵� �)✓)2 � �2✓2�2

�

(�2 + �2
12) (1� (1� ↵� �)✓) + P ((1� (1� ↵� �)✓)2 � �2✓2�2)

!
(25a)

R1  C

✓
P (1� ✓)

�2

◆
+min

⇢
C

0

@ P✓↵

�2 +
�2
12�

2
2

�2
12+�2

2
+ P (1� ✓)

+
P✓�(1 + �)

�2
12�

2
2

�2
12+�2

2
+ �2 + P (1� ✓) + P↵✓

1

A , C

✓
↵P✓

2P (1� ✓) + �2

◆

+C

✓
4P✓(1� ↵� �)

�2 + 2P (1� ✓) + 2P✓(↵+ �(1 + �))

◆
+ C

✓
�P✓(2P (1� ✓) + �2)(1 + �)

(2↵P✓ + 2P (1� ✓) + �2)(�2 + 2P (1� ✓) + ↵P✓)

◆�
, (25b)

R2  C

✓
P (1� ✓)

�2

◆
+min

⇢
C

0

@ P✓↵

�2 +
�2
12�

2
1

�2
12+�2

1
+ P (1� ✓)

+
P✓�(1 + �)

�2
12�

2
1

�2
12+�2

1
+ �2 + P (1� ✓) + P↵✓

1

A , C

✓
↵P✓

2P (1� ✓) + �2

◆

+C

✓
4P✓(1� ↵� �)

�2 + 2P (1� ✓) + 2P✓(↵+ �(1 + �))

◆
+ C

✓
�P✓(2P (1� ✓) + �2)(1 + �)

(2↵P✓ + 2P (1� ✓) + �2)(�2 + 2P (1� ✓) + ↵P✓)

◆�
, (25c)

R1 +R2  C

✓
2P (1� ✓)

�2

◆
+ C

✓
2P✓(2� ↵� �(1� �))

2P (1� ✓) + �2

◆
, (25d)

R1 +R2  C

✓
2P (1� ✓)

�2

◆
+

2X

i=1

min

⇢
C

0

@ P✓↵

�2 +
�2
12�

2
i

�2
12+�2

i
+ P (1� ✓)

+
P✓�(1 + �)

�2
12�

2
i

�2
12+�2

i
+ �2 + P (1� ✓) + P↵✓

1

A , C

✓
↵✓P

2P (1� ✓) + �2

◆

+C

✓
4P✓(1� ↵� �)

�2 + 2P (1� ✓) + 2P✓(↵+ �(1 + �))

◆
+ C

✓
�P✓(2P (1� ✓) + �2)(1 + �)

(2↵P✓ + 2P (1� ✓) + �2)(�2 + 2P (1� ✓) + ↵P✓)

◆�
, (25e)

Fig. 1. Achievable regions for the Gaussian MAC for P/�2 = 5 and Rfb = 2

Xi ,
p

P (1� ✓)IXi +
p
P✓Ui, (22)

Yi , Y + Zi, (23)
Y12 , Y + Z12. (24)

Substituting the above choice into the rate-constraints of
Theorem 1, we obtain that all nonnegative rate pairs (R1, R2)

satisfying Constraints (25) on top of this page are achievable.
In (25) we use the notation C(x) , 1

2 log(1 + x).
Figure 1 compares the achievable region in (25), to the

nofeedback capacity region, the perfect feedback capac-
ity region [2], the Cover-Leung [3] and Venkataramanan-
Pradhan [6] regions for perfect feedback, and to the Shaviv-
Steinberg region with rate-limited feedback [9].

For the sake of simplicity we restrict to the case where only
common feedback is present (Y1 = Y2 = ;,�2

1 ,�
2
2 ! 1)

which reduces to Wyner-Ziv coding [11] over the feedback
links. In this case, we need to have �2

12 � �2+P
22Rfb�1

and we
see that our scheme is strictly better in terms of sum-rate
than the Shaviv-Steinberg scheme. In fact, based on extensive

simulations, we conjecture that this is the case whenever
P
�2 < 2

2Rfb � 2, which is equivalent to �2
12 < �2.
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