Equivalence between dimensional contractions in Wasserstein distance and the curvature-dimension condition

Abstract : The curvature-dimension condition is a generalization of the Bochner inequality to weighted Riemannian manifolds and general metric measure spaces. It is now known to be equivalent to evolution variational inequalities for the heat semigroup, and quadratic Wasserstein distance contraction properties at different times. On the other hand, in a compact Riemannian manifold, it implies a same-time Wasserstein contraction property for this semigroup. In this work we generalize the latter result to metric measure spaces and more importantly prove the converse: contraction inequalities are equivalent to curvature-dimension conditions. Links with functional inequalities are also investigated.
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01220776
Contributeur : Ivan Gentil <>
Soumis le : lundi 26 octobre 2015 - 22:13:34
Dernière modification le : jeudi 27 avril 2017 - 09:46:08
Document(s) archivé(s) le : mercredi 27 janvier 2016 - 17:10:51

Fichiers

BGGK-contraction.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01220776, version 1
  • ARXIV : 1510.07793

Citation

François Bolley, Ivan Gentil, Arnaud Guillin, Kazumasa Kuwada. Equivalence between dimensional contractions in Wasserstein distance and the curvature-dimension condition. 2015. <hal-01220776>

Partager

Métriques

Consultations de
la notice

285

Téléchargements du document

70