Equivalence between dimensional contractions in Wasserstein distance and the curvature-dimension condition

Abstract : The curvature-dimension condition is a generalization of the Bochner inequality to weighted Riemannian manifolds and general metric measure spaces. It is now known to be equivalent to evolution variational inequalities for the heat semigroup, and quadratic Wasserstein distance contraction properties at different times. On the other hand, in a compact Riemannian manifold, it implies a same-time Wasserstein contraction property for this semigroup. In this work we generalize the latter result to metric measure spaces and more importantly prove the converse: contraction inequalities are equivalent to curvature-dimension conditions. Links with functional inequalities are also investigated.
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01220776
Contributeur : Ivan Gentil <>
Soumis le : vendredi 12 janvier 2018 - 15:15:00
Dernière modification le : mardi 16 janvier 2018 - 16:12:59

Fichiers

HAL-CBFGG2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01220776, version 2
  • ARXIV : 1510.07793

Citation

François Bolley, Ivan Gentil, Arnaud Guillin, Kazumasa Kuwada, Dario Cordero-Erausquin, et al.. Equivalence between dimensional contractions in Wasserstein distance and the curvature-dimension condition. 2015. 〈hal-01220776v2〉

Partager

Métriques

Consultations de la notice

50

Téléchargements de fichiers

6