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Abstract

In this paper, we extend the Holmström and Milgrom problem [30] by adding uncertainty

about the volatility of the output for both the agent and the principal. We study more

precisely the impact of the "Nature" playing against the Agent and the Principal by choosing

the worst possible volatility of the output. We solve the first-best and the second-best problems

associated with this framework and we show that optimal contracts are in a class of contracts

similar to [9, 10], linear with respect to the output and its quadratic variation. We compare

our results with the classical problem in [30].

Key words: Risk-sharing, moral hazard, principal-agent, second-order BSDEs, volatility un-

certainty.
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1 Introduction

By and large, it has now become common knowledge among the economists, that almost everything

in economics was to a certain degree a matter of incentives: incentives to work hard, to produce, to

study, to invest, to consume reasonably... At the heart of the importance of incentives, lies the fact

that, to quote B. Salanié [53] “asymmetries of information are pervasive in economic relationships,

that is to say, customers know more about their tastes than firms, firms know more about their

costs than the government, and all agents take actions that are at least partly unobservable”.

Starting from the 70s, the theory of contracts evolved from this acknowledgment and the fact that

such situations could not be reproduced using the general equilibrium theory. In the corresponding

typical situation, a principal (who takes the initiative of the contract) is (potentially) imperfectly

informed about the actions of an agent (who accepts or rejects the contract). The goal is to design

a contract that maximizes the utility of the principal while that of the agent is held to a given

level. Of course, the form of the optimal contracts typically depends on whether these actions

are observable/contractible or not, and on whether there are characteristics of the agent that are

unknown to the principal. There are three main types of such problems: the first best case, or risk

sharing, in which both parties have the same information; the second best case, or moral hazard, in

which the action of the agent is hidden or not contractible; the third best case or adverse selection,
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in which the type of the agent is hidden. We will not study this last problem, and refer the

interested reader to, among others, [8, 11, 14, 54, 65]. These problems are fundamentally linked

to designing optimal incentives, and are therefore present in a very large number of situations.

Beyond the obvious application to the optimal remuneration of an employee, one can for instance

think on how regulators with imperfect information and limited policy instruments can motivate

banks to operate entirely in the social interest, on how a company can optimally compensate its

executives, on how banks achieve optimal securitization of mortgage loans or on how investors

should pay their portfolio managers (see Bolton and Dewatripont [3] or Laffont and Martimort

[32] for many more examples).

Early studies of the risk-sharing problem can be found, among others, in Borch [4], Wilson [68] or

Ross [52]. Since then, a large literature has emerged, solving very general risk-sharing problems,

for instance in a framework with several agents and recursive utilities (see Duffie et al. [20] or

Dumas et al. [21], or for studying optimal compensation of portfolio managers (see Ou-Yang [41]

or Cadenillas et al. [6]). From the mathematical point of view, these problems can usually be

tackled using either their dual formulation or the so-called stochastic maximum principle, which

can characterize the optimal choices of the principal and the agent through coupled systems of

Forward Backward Stochastic Differential Equations (FBSDEs in the sequel) (see the very nice

monograph [15] by Cvitanić and Zhang for a systematic presentation). One of the main findings in

almost all of these works, is that one can find an optimal contract which is linear in the terminal

value of the output managed by the agent (a result already obtained in [52]) and possibly some

benchmark to which his performance is compared. In specific cases, one can even have Markovian

optimal contracts which are given as a (possibly linear) functional of the terminal value of the

output (see in particular [6] for details).

Concerning the so-called moral hazard problem, the first paper on continuous-time Principal-

Agent problems is the seminal paper by Holmström and Milgrom [30]. They consider principal

and agent with exponential utility functions and find that the optimal contract is linear. Their

work was generalized by Schättler and Sung [57, 58], Sung [62, 63], Müller [36, 37], and Hellwig

and Schmidt [29], using a dynamic programming and martingales approach, which is classical in

stochastic control theory (see also the survey paper by Sung [64] for more references). The papers

by Williams [67] and Cvitanić, Wan and Zhang [12, 13] use the stochastic maximum principle

and FBSDEs to characterize the optimal compensation for more general utility functions. More

recently, Djehiche and Hegelsson [18, 19] have also used this approach. A more recent seminal paper

in moral hazard setting is Sannikov [55], who finds a tractable model for solving the problem with a

random time of retiring the agent and with continuous payments, rather than a lump-sum payment

at the terminal time . Since then, a growing literature extending the above models has emerged,

be it to include output processes with jumps [2, 7, 43, 69], imperfect information and learning

[1, 16, 26, 25, 28, 49], asset pricing [42], executive compensation [27], or mortgage contracts [44]

(see also the illuminating survey paper [56] for more references).

Compared to the first-best problem, the moral hazard case corresponds to a Stackelberg-like game

between the principal and the agent, in the sense that the principal will start by trying to compute

the reaction function of the agent to a given contract (that is to say the optimal action chosen

by the agent given the contract), and use this action to maximize his utility over all admissible

contracts1. This approach does not always work, because it may be hard to solve the agent’s

1For a recent different approach, see Miller and Yang [35]. For each possible agent’s control process, they
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stochastic control problem given an arbitrary payoff, possibly non-Markovian, and it may also

be hard for the principal to maximize over all such contracts. Furthermore, the agent’s optimal

control, if it even exists, depends on the given contract in a highly nonlinear manner, rendering the

principal’s optimization problem even harder and obscure. For these reasons, and as mentioned

above, in its most general form the problem was also approached in the literature by the stochastic

version of the Pontryagin maximal principle. Nonetheless, none of these standard approaches can

solve the problem when the agent also controls the diffusion coefficient of the output, and not

just the drift. Building upon this gap in the literature, Cvitanić, Possamaï and Touzi [9, 10] have

very recently developed a general approach of the problem through dynamic programming and

so-called BSDEs and 2BSDEs, showing that under mild conditions, the problem of the principal

could always be rewritten in an equivalent way as a standard stochastic control problem involving

two state variables, namely the output itself but also the continuation utility (or value function) of

the agent, a property which was pointed out by Sannikov in the specific setting of [55], and which

was already well-known by the economists, even in discrete-time models, see for instance Spear and

Srivastrava [61]. An important finding of [9], in the context of a delegated portfolio management

problem which generalizes Holmström and Milgrom problem [30] to a context where the agent can

control the volatility of the (multidimensional) output process, is that in both the first-best and

moral hazard problems, the optimal contracts become path-dependent, as they crucially use the

quadratic variation of the output process (see also [33] for a related problem).

Our goal in this paper is to study yet another generalization of the Holmström and Milgrom prob-

lem [30], to a setting where the agent only controls the drift of the output, but where the twist

is that both the principal and the agent may have some uncertainty about the volatility of the

output, and only believe that it lies in some given interval of R+. This is the so-called situation of

volatility ambiguity which has received a lot of attention recently, both in the mathematical finance

community, since the seminal paper by Denis and Martini [17], and in the economics literature,

see for instance [23, 24]. From the mathematical point of view, everything happens as if both the

principal and the agent have a "worst-case" approach to the contracting problem, in the sense

that they act as if "Nature" was playing against them by choosing the worst possible volatility of

the output. Mathematically, this means that the principal and the agent utility criterion incorpo-

rates the fact that they are playing a zero-sum game agains "Nature". Furthermore, we put no

restrictions on the beliefs that the agent and the principal have with respect to the likely volatility

scenario, in the sense that their volatility intervals can be different.

Under this framework, which has not been studied so far in the literature2, we start by solving the

risk-sharing problem. Surprisingly, this problem is much more involved than in the classical case,

since it takes a very unusual form, as a supremum of a sum of two infimum over different sets.

Nonetheless, we solve it completely by first focusing on a sub-class of contracts similar to the ones

obtained in [9, 10], and then using calculus of variations and convex analysis to argue that the

characterize contracts that are incentive compatible for it.
2After the completion of this paper, we have been made aware of the paper in preparation [66] by Sung, where

the author studies a problem similar to ours. The main difference between the two papers is that [66] does not
consider the risk-sharing problem, and that when it comes to the moral hazard case, we solve the maximization
problem of the principal over all feasible contracts (the only restriction being integrability), while [66] concentrates
on a subset of contracts similar to our class C

SB (see (4.10)), without showing that this restriction is without loss
of generality. Furthermore, [66] imposes as an admissibility condition that the (random) volatility of the output
process is Lipschitz in ω for the sup topology, a restriction which is not present at all in our study, and whose
interpretation is, in our view, not clear at all.
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optimal contracts in the sub-class are actually optimal in the class of all admissible contracts. We

also highlight a very surprising effect, since in the case where the volatility intervals of the principal

and the agent are completely disjoint, the principal can actually reach utility 0 using an appropriate

sequence of contracts (we remind the reader that the exponential utility is − exp(−Rpx), so that

it is bounded from above by 0).

Next, we concentrate on the second-best problem. Our first contribution is to use the theory of

second-order BSDEs developed by Soner, Touzi and Zhang [60], and more precisely the recent

wellposedness results obtained by Possamaï, Tan and Zhou [47], to obtain a probabilistic represen-

tation of the value function of the agent, for any sufficiently integrable contract. In particular, this

representation gives an easy access to the optimal action chosen by the agent. Then, following the

ideas of [9, 10], we concentrate our attention on a sub-class of contracts, for which the principal

problem can be solved by hand, and then show using appropriate bounds that this restriction is

actually without loss of generality. We emphasize that though this approach is similar in spirit

to the one used in [10], we cannot use their method of proof, since our problem is fundamentally

different, because the agent himself does not control the volatility of the output, but rather en-

dures it. Our arguments are actually quite less involved and only require to obtain tight enough

upper and lower bounds for the value function of the principal. For simplicity, we present the

arguments in the case of a quadratic cost of effort for the agent. Once more, some of our results

are quite surprising, since in the case where the volatility intervals of the principal and the agent

are completely disjoint, the principal can actually reach utility 0, so that there is no loss of utility

due to moral hazard. This is a completely different situation from the classical problem [30] where

the second-best problem never coincides with the first-best one.

The rest of the paper is organized as follows. We introduce the model and the contracting problem

in Section 2. Then Section 3 is devoted to the risk-sharing problem, while Section 4 treats the

moral hazard case. We next present some possible extensions in Section 5, and finally conclude

our study in Section 6.

2 The model

2.1 The stochastic basis

We start by giving all the necessary notations and definitions allowing us to consider the so-called

"weak" formulation of our problem.

Let Ω := {ω ∈ C ([0, T ] ,R) : ω0 = 0} be the canonical space equipped with the uniform norm

||ω||T∞ := sup0≤t≤T |ωt|. F will always be a fixed σ-field on Ω which contains all our filtrations.

We then denote B the canonical process, P0 the Wiener measure, F := {Ft}0≤t≤T the filtration

generated by B and F+ := {F+
t , 0 ≤ t ≤ T}, the right limit of F where F+

t := ∩s>tFs. We will

denote by M(Ω) the set of all probability measures on Ω. We also recall the so-called universal

filtration F⋆ := {F⋆
t }0≤t≤T defined as follows

F⋆
t :=

⋂

P∈M(Ω)

FP
t ,

where FP
t is the usual completion under P.

For any subset E of a finite dimensional space and any filtration X on (Ω,F), we denote by

H0(E,X) the set of all X-progressively measurable processes with values in E. Moreover for all
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p > 0 and for all P ∈ M(Ω), we denote by Hp(P, E,X) the subset of H0(E,X) whose elements H

satisfy EP
[∫ T

0 |Ht|
p dt
]
< +∞. The localized versions of these spaces are denoted by H

p
loc

(P, E,X).

For any subset P ⊂ M(Ω), a P−polar set is a P−negligible set for all P ∈ P, and considering a

P−polar set, we say that a property holds P−quasi-surely if it holds outside of this P−polar set.

Finally, we introduce the following filtration GP := {GP
t }0≤t≤T which will be useful in the sequel

GP
t := F⋆

t ∨ NP , t ≤ T,

where NP is the collection of P−polar sets, and its right-continuous limit, denoted GP,+.

For all α ∈ H1
loc

(P0,R
⋆
+,F), we define the following probability measure on (Ω,F)

Pα := P0 ◦ (X
α
. )

−1 where Xα
t :=

∫ t

0
α1/2
s dBs, t ∈ [0, T ], P0 − a.s.

We denote by PS the collection of all such probability measures on (Ω,F). We recall from [31]

that the quadratic variation process 〈B〉 is universally defined under any P ∈ PS , and takes values

in the set of all non-decreasing continuous functions from R+ to R⋆
+. We will denote its pathwise

density with respect to the Lebesgue measure by α̂. Finally we recall from [59] that every P ∈ PS

satisfies the Blumenthal zero-one law and the martingale representation property.

By definition, for any P ∈ PS

W P
t :=

∫ t

0
α̂−1/2
s dBs, P− a.s.,

is a (P,F)−Brownian motion. Notice that the probability measures in P ∈ PS satisfy

FP = (FW P

)P, (2.1)

where FW P

is the natural (raw) filtration of the process W P.

Moreover, using the result of [39]3, there actually exists an aggregated version of this family, which

we denote by W , which is F⋆-adapted and a (P,FP)−Brownian motion for every P ∈ PS .

Our focus in this paper will be on the following subsets of PS .

Definition 2.1. (i) Pm is the sub-class of PS consisting of all P ∈ PS such that the canonical

process B is a P−uniformly integrable martingale, with respect to F.

(ii) For any 0 < α ≤ α, P[α,α] is the sub-set of Pm consisting of all the measures P ∈ Pm such that

α ≤ α̂ ≤ α, P− a.s.

The actions of the agent will be considered as F-predictable processes a taking values in the

compact set [0, amax] (for every ω). We denote this set by A. Next, for any subset P ⊂ PS and

any a ∈ A, we define

Pa :=

{
Q, s.t.

dQ

dP
= E

(∫ T

0
asα̂

−1/2
s dWs

)
, P− a.s., for some P ∈ P

}
.

3We emphasize that this result actually requires to assume that certain set-theoretic axioms holds, which we do
implicitly here. For instance, it is sufficient to work under the usual ZFC framework, and assume in addition the
continuum hypothesis.
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We also denote PA := ∪a∈AP
a. In particular, for every P ∈ PA there exists a unique pair

(αP, aP) ∈ H1
loc

(P0,R
⋆
+,F)×A such that

Bt =

∫ t

0
aPsds+

∫ t

0
(αP

s )
1/2dW aP

s , P− a.s., (2.2)

where dW aP
s := dWs−(αP

s )
−1/2aPsds, P−a.s. is a (Pa,FPa

)−Brownian motion by Girsanov theorem.

More precisely, for any P ∈ PA, we must have

dP

dPα
= E

(∫ T

0
asα̂

−1/2
s dBs

)
,

for some (α, a) ∈ H1
loc

(P0,R
⋆
+,F)×A and the following equalities hold

aP(B·) = a(B·) and αP(B·) = α(W·), dt× P− a.e.

For simplicity, we will therefore sometimes denote a probability measure P ∈ PA
S by Pα

a . For any

subset of P ⊂ Pm, we also denote for any (t,P) ∈ [0, T ] ×P

P(P, t+) :=
{
P ∈ P, P

′
= P, on F+

t

}
.

2.2 The contracting problem in finite horizon

We consider a generalization of the classical problem of Holmström and Milgrom [30] and fix a

given time horizon T > 0. Here the agent and the principal both observe the outcome process

B, but the principal may not observe the action chosen by the agent4, and both of them have

a "worst-case" approach to the contract, in the sense that they act as if "Nature" was playing

against them by choosing the worst possible volatility of the output. More precisely, a contract

will be a FT−measurable random variable, corresponding to the salary received by the agent at

time T only, and the utility of the agent is then, given a contract ξ, a recommended level of effort

a ∈ A and an ambiguity set PA ⊂ Pm

uA0 (ξ, a) := inf
P∈Pa

A

EP

[
UA

(
ξ −

∫ T

0
k(as)ds

)]
,

where UA(x) := − exp (−RAx) is the utility function of the Agent and k(x) is his cost function,

which, as usual is assumed to be increasing, strictly convex and superlinear.

The value function of the agent at time 0 is therefore

UA
0 (ξ) := sup

a∈A
inf

P∈Pa
A

EP

[
UA

(
ξ −

∫ T

0
k(as)ds

)]
.

Similarly, the utility of the Principal, having an ambiguity set PP ⊂ Pm, when offering a contract

ξ and a recommended level of effort a ∈ A is

uP0 (ξ, a) := inf
P∈Pa

P

EP [UP (BT − ξ)] , (2.3)

where UP (x) := − exp (−RPx) is the utility function of the Principal. From now on, we assume

that

PP = P[αP ,αP ] and PA = P[αA,αA],

4He observes it in the risk-sharing problem of Section 3, but not in the moral hazard case of Section 4.
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for some 0 ≤ αP ≤ αP and 0 ≤ αA ≤ αA.

Let R < 0 denote the reservation utility of the agent. The problem of the Principal is then to offer

a contract ξ as well as a recommended level of effort a so as to maximize his utility (2.3), subject

to the constraints

uA0 (ξ, a) ≥ R (2.4)

uA0 (ξ, a) = UA
0 (ξ). (2.5)

The first constraint is the so-called participation constraint, while the second-one is the usual

incentive compatibility condition, stating that the recommended level of effort a should be the

optimal response of the agent, given the contract ξ.

Furthermore, we will denote by C the set of admissible contracts, that is to say the set of

FT−measurable random variables such that

sup
P∈PA

A∪PA
P

EP [exp (p |ξ|)] < +∞, for any p ≥ 0,

and we emphasize immediately that we will have to restrict a bit more the admissible contracts

when solving the second-best problem.

3 The first-best: a problem of calculus of variations

In this section, we start by solving the first-best problem for the principal, since it will serve as our

main benchmark and has not been considered, as far as we know, in the pre-existing literature.

Moreover, we will see that the derivation is a lot more complicated than in the classical setting. So

much so that, quite surprisingly compared with the classical Holmström and Milgrom [30] problem,

the optimal contracts are in general not linear with respect to the final value of the output BT ,

and are even path-dependent.

Recall that for any contract ξ ∈ C and for any recommended effort level a ∈ A

uP,FB
0 (ξ, a) = inf

P∈Pa
P

EP [UP (BT − ξ)] .

The value function of the principal is then

UP,FB
0 := sup

ξ∈C
sup
a∈A

{
uP0 (ξ, a)

}
, (3.1)

where the following participation constraint is satisfied

inf
P∈Pa

A

EP

[
UA

(
ξ −

∫ T

0
k(as)ds

)]
≥ R. (3.2)

The value function of the principal defined by (3.1) can be then rewritten

UP,FB
0 := sup

ξ∈C
sup
a∈A

{
inf

P∈Pa
P

EP [UP (BT − ξ)] + ρ inf
P∈Pa

A

EP

[
UA

(
ξ −

∫ T

0
k(as)ds

)]}
, (3.3)

where the Lagrange multiplier ρ > 0 is here to ensure that the participation constraint (3.2) holds.
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3.1 A particular sub-class of non-linear contracts

It has been pointed out recently in [9] that in contracting problems where the agent can control

the volatility of the output process, non-linear contracts involving the quadratic variation 〈B〉 of

the output appeared naturally. Though the problem we consider here is different, since it can

be interpreted as if the agent was actually playing a game against another "player", who is the

one controlling the volatility of the output, we expect that these non-linear and path-dependent

contracts will play an important role. We therefore introduce the set

Q :=
{
ξ ∈ C, ξ = zBT +

γ

2
〈B〉T + δ, (z, γ, δ) ∈ R3

}
.

From now on, noticing that any contract ξ in Q is uniquely defined by the corresponding triplet

of reals (z, γ, δ), we will abuse notations and make the identification ξ ≡ (z, γ, δ).

3.1.1 Degeneracy for disjoints PP and PA

Our first result shows that if the sets of ambiguity of the principal and the agent are completely

disjoint, then there are sequences of contracts in Q such that the Principal can attain the universal

upper bound 0 of his utility, while ensuring that the agent still receives his reservation utility R.

Theorem 3.1. (i) Assume that αP < αA. Then, there exist a sequence of contracts (ξn)n∈N⋆ and

a recommended effort a⋆ := amax, with

ξn :=
1

2
n〈B〉T −

T

2
nαA + δ⋆, δ⋆ := Tk(amax)−

log(−R)

RA
,

such that lim
n→+∞

uP,FB
0 (ξn, amax) = 0 and uA0 (ξ

n, amax) = R, for any n ≥ 1.

(ii) Assume that αP > αA. Then, there exist a sequence of contracts (ξn)n∈N⋆ and a recommended

effort a⋆ := amax where

ξn := −
1

2
n〈B〉T +

T

2
nαA + δ⋆, δ⋆ := Tk(amax)−

log(−R)

RA

such that lim
n→+∞

uP,FB
0 (ξn, amax) = 0 and uA0 (ξ

n, amax) = R, for any n ≥ 1.

Before proving this result, let us comment on it. We will see during the proof that when the sets

of uncertainty for the principal and the agent are completely disjoint, the principal can use the

quadratic variation component in the contract in order to make appear in the exponential a term

which he can make arbitrarily large, but which is not seen at all by the agent in his utility, as

it is constructed so that it disappears under the worst-case probability measure the agent. This

is therefore the combination of this difference between the worst-case measures of the principal

and the agent, as well as the fact that their uncertainty sets are disjoints which make the problem

degenerate. This is, from our point view, quite a surprising result, all the more since we will prove

later on that this phenomenon also happens in the second-best problem.

Proof. (i) First case: αA > αP. Let

ξn =
1

2
n〈B〉T −

T

2
nαA + δ⋆, n ∈ N⋆,
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with δ⋆ = Tk(amax) − log(−R)
RA

. We aim at showing that the sequence of contracts (ξn) is a max-

imizing sequence of contracts, allowing the principal to reach utility 0, when recommending in

addition the level of effort amax. We have

uP0 (ξ
n, amax) = inf

P∈Pamax
P

EP [UP (BT − ξn)]

= inf
P∈Pamax

P

EP
[
−e−RP (BT− 1

2
n
∫ T
0 αP

sds+
T
2
nαA−δ⋆)

]

= e−RP (T
2
nαA−δ⋆) inf

P∈Pamax
P

EP
[
−e−RP (BT− 1

2
n
∫ T
0

αP
sds)
]

= e−RP (T
2
nαA−δ⋆) inf

P∈Pamax
P

EP
[
−e−RP (

∫ T
0
(αP

s)
1/2dW amax

s +Tamax− 1
2
n
∫ T
0

αsds)
]

= −e−RP (Tamax+T
2
nαA−δ⋆) sup

P∈Pamax
P

EP

[
E

(
−RP

∫ T

0
(αP

s )
1/2dW amax

s

)

× exp

(
1

2
R2

P

∫ T

0
αP
sds+

RP

2
n

∫ T

0
αP
sds

)]

= − exp

(
−RP

(
amaxT − δ⋆ +

T

2
n(αA − αP )−

1

2
RPTα

P

))
,

where we have used the fact that for any P ∈ Pamax

P , we have

exp

(
1

2
R2

P

∫ T

0
αP
sds+

RP

2
n

∫ T

0
αP
sds

)
≤ exp

(
T

2
R2

Pα
P +

RP

2
nTαP

)
, P− a.s.,

and that the stochastic exponential appearing above is clearly a P−martingale for any P ∈ Pamax

P ,

so that the value of the supremum is clear and attained for the measure PαP

amax .

Hence, we obtain uP0 (ξ
n, amax) −→ 0 when n → +∞. Since UP

0 ≤ 0, we deduce that the sequence

(ξn) approaches the best utility for the principal when n goes to +∞. It remains to prove that for

any n ∈ N⋆, ξn is admissible, i.e., ξn satisfies

inf
P∈Pamax

A

EP
[
UA

(
ξn −K

amax)
T

)]
≥ R, n ∈ N⋆.

Indeed,

inf
P∈Pamax

A

EP [UA (ξn − Tk(amax))]

= inf
P∈Pamax

A

EP [− exp (−RA (ξn − Tk(amax))]

= inf
P∈Pamax

A

EP

[
− exp

(
−RA

(
1

2
n

∫ T

0
αP
sds−

T

2
nαA + δ⋆ − Tk(amax)

))]

= − exp

(
−RA

(
δ⋆ − Tk(amax)−

T

2
nαA

))
sup

P∈Pamax
A

EP

[
exp

(
−
RAn

2

∫ T

0
αP
sds

)]

= −e−RA(δ⋆−Tk(amax)) = R.

(ii) Second case: αA < αP. Similarly, let

ξn = −
n

2
〈B〉T +

T

2
nαA + δ⋆, n ∈ N⋆, δ⋆ = Tk(amax)−

log(−R)

RA
.
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Assume that n > RP , the same computations as above lead to

uP0 (ξ
n, amax) = inf

P∈Pa
P

EP [UP (BT − ξn)]

= −e−RP (Tamax−T
2
nαA−δ⋆) sup

P∈Pamax
P

EP

[
E

(
−RP

∫ T

0
(αP

s )
1/2dW amax

s

)

× exp

(
1

2
R2

P

∫ T

0
αP
sds−

RP

2
n

∫ T

0
αP
sds

)]

= − exp

(
−RP

(
Tamax − δ⋆ +

T

2
n(αP − αA)−

1

2
RPTα

P

))
.

Hence, we obtain again uP0 (ξ
n, amax) −→ 0 when n → +∞. Next, we have

inf
P∈Pamax

A

EP [UA (ξn − Tk(amax))]

= inf
P∈Pamax

A

EP [− exp (−RA (ξn − Tk(amax)))]

= inf
P∈Pamax

A

EP

[
− exp

(
−RA

(
−
1

2
n

∫ T

0
αsds+

T

2
nαA + δ⋆ − Tk(amax)

))]

= − exp

(
−RA

(
δ⋆ − Tk(amax) +

T

2
nαA

))
× sup

P∈Pa
A

EP

[
exp

(
RAn

2

∫ T

0
αsds

)]

= −e−RA(δ⋆−Tk(amax)) = R.

3.1.2 Optimal contracts in Q with intersecting uncertainty sets

We study now non-degenerate cases. Let us define the subset Adet ⊂ A of actions which are

deterministic. The following maps, defined for any (a, z, γ, δ, αP , αA) ∈ A×R3×[αP , αP ]×[αA, αA],

will play an important role in what follows

F (a, z, γ, δ, αP , αA) := ΓP (a, z, γ, δ, αP ) + ρΓA(a, z, γ, δ, αA), (3.4)

where

ΓP (a, z, γ, δ, αP ) := − exp

(
RP

(
δ − (1− z)

∫ T

0
asds+

(
RP (1− z)2

2
+

γ

2

)
αPT

))
,

ΓA(a, z, γ, δ, αA) := − exp

(
RA

(∫ T

0
k(as)ds− z

∫ T

0
asds− δ +

(
RAz

2

2
−

γ

2

)
αAT

))
.

We also define

G(a, z, γ, αP , αA) :=− ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP
e

RARP
RA+RP

∫ T
0 (k(as)−as)ds

× e
RARP
RA+RP

(γ
2
T (αP−αA)+T

2 (αPRP (1−z)2+αARAz2))
.

When αP = αA, by noticing that G(a, z, γ, αP , αA) does not depend on γ we will simply write

without any ambiguity

G(a, z, αP ) := G(a, z, γ, αP , αP ).
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To alleviate later computations, we partition the set Q into

Qγ :=
{
ξ ≡ (z, γ, δ) ∈ Q, γ < −RP (1− z)2

}
,

Q|γ| :=
{
ξ ≡ (z, γ, δ) ∈ Q, −RP (1− z)2 < γ < RAz

2
}
,

Qd :=
{
ξ ≡ (z, γ, δ) ∈ Q, −RP (1− z)2 = γ

}
,

Qu :=
{
ξ ≡ (z, γ, δ) ∈ Q, γ = RAz

2
}
,

Qγ :=
{
ξ ≡ (z, γ, δ) ∈ Q, γ > RAz

2
}
,

and define for any (a, ξ) ∈ A× C

ũP,FB
0 (a, ξ) := inf

P∈Pa
P

EP [UP (BT − ξ)] + ρ inf
P∈Pa

A

EP

[
UA

(
ξ −

∫ T

0
k(as)ds

)]
.

The following lemma computes the principal utility ũP,FB
0 (a, ξ) for a recommended level of effort

in Adet and any contract ξ ∈ Q. Its proof is relegated to the Appendix.

Lemma 3.1. Let us fix some a ∈ Adet and some ξ ∈ Q, with ξ ≡ (z, γ, δ).

(i) If ξ ∈ Qγ

ũP,FB
0 (a, ξ) = F (a, z, γ, δ, αP , αA).

(ii) a) If ξ ∈ Qd, then for any P ∈ Pa
P ,

EP [UP (BT − ξ)] = inf
P∈Pa

P

EP [UP (BT − ξ)] ,

and in particular

ũP,FB
0 (a, ξ) = F (a, z, γ, δ, αP , α

A), for any αP ∈ [αP , αP ].

b) If ξ ∈ Q|γ|,

ũP,FB
0 (a, ξ) = F (a, z, γ, δ, αP , αA).

c) If ξ ∈ Qu, then for any P ∈ Pa
A,

EP

[
UA

(
ξ −

∫ T

0
k(as)ds

)]
= inf

P∈Pa
A

EP

[
UA

(
ξ −

∫ T

0
k(as)ds

)]
,

and in particular

ũP,FB
0 (a, ξ) = F (a, z, γ, δ, αP , αA), for any αA ∈ [αA, αA].

(iii) If ξ ∈ Qγ,

ũP,FB
0 (a, ξ) = F (a, z, γ, δ, αP , αA).

The next lemma computes the supremum of F with respect to δ. Its proof is also relegated to the

Appendix.
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Lemma 3.2. For any (a, z, γ, αP , αA) ∈ A× R× R× [αP , αP ]× [αA, αA] we have

sup
δ∈R

F (a, z, γ, δ, αP , αA) = F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA) = G(a, z, γ, αP , αA),

where

δ⋆(z, γ, αP , αA) :=
1

RA +RP

[
log

(
ρRA

RP

)
+

∫ T

0
((RP (1− z)−RAz)as +RAk(as)) ds

−
RP

2
(RP (1− z)2 + γ)αPT +

RA

2

(
RAz

2 − γ
)
αAT

]
.

The following lemma gives the optimal contracts and efforts in Adet and each subset of our partition

of Q for the principal problem, for a fixed Lagrange multiplier ρ.

Lemma 3.3. Let a⋆ be the constant minimiser of the strictly convex map a 7−→ k(a)−a and define

z⋆ := RP
RA+RP

.

(i) Optimal contracts in Qγ.

a) If αP < αA,

sup
a∈Adet

sup
ξ∈Qγ

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, αP , αA),

where γ⋆ := −RP (1− z⋆)2 and

δ⋆ :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆)ds+
R2

ARPT

2(RA +RP )
αA

]
.

b) If αP = αA =: α̃,

sup
a∈Adet

sup
ξ∈Qγ

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, α̃, α̃),

for any γ⋆ < −RP (1− z⋆)2 and

δ⋆ :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆)

]
−

γ⋆

2
α̃T.

In these two cases

sup
a∈Adet

sup
ξ∈Qγ

ũP,FB
0 (a, ξ) = G(a⋆, z⋆, αA).

(ii) Optimal contracts in Qd. For any αP ∈ [αP , αP ],

sup
a∈Adet

sup
ξ∈Qd

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, αP , α

A) = G(a⋆, z⋆, αA),

with γ⋆ := −RP (1− z⋆)2 and

δ⋆ :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆) +
R2

ARPT

2(RA +RP )
αA

]
.

(iii) Optimal contracts in Q|γ|.
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a) If αP < αA,

sup
a∈Adet

sup
ξ∈Q|γ|

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, αP , αA) = G(a⋆, z⋆, αP ),

where γ⋆ := RA|z
⋆|2 and

δ⋆ :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆)

]
−

γ⋆

2
αPT.

b) If αP = αA =: α,

sup
a∈Adet

sup
ξ∈Q|γ|

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, α, α) = G(a⋆, z⋆, α),

for any γ⋆ ∈ (−RP (1− z⋆)2, RA|z
⋆|2) and

δ⋆ :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆)

]
−

γ⋆

2
αT.

c) If αP > αA,

sup
a∈Adet

sup
ξ∈Q|γ|

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, αP , αA) = G(a⋆, z⋆, αA),

where γ⋆ := −RP (1− z⋆)2 and

δ⋆ :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆) +
R2

ARPT

2(RA +RP )
αA

]
.

(iv) Optimal contracts in Qu. For any αA ∈ [αA, αA],

sup
a∈Adet

sup
ξ∈Qu

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, αP , αA) = G(a⋆, z⋆, αP ),

with γ⋆ := RA|z
⋆|2 and

δ⋆ :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆)−
RAR

2
PT

2(RA +RP )
αP

]
.

(v) Optimal contracts in Qγ.

a) If αP = αA =: α̌,

sup
a∈Adet

sup
ξ∈Qγ

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, α̌, α̌),

for any γ⋆ > RA|z
⋆|2 and

δ⋆ :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆)

]
−

γ⋆

2
α̌T.

b) If αP > αA,

sup
a∈Adet

sup
ξ∈Qγ

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, αP , αA),

with γ⋆ := RA|z
⋆|2 and

δ⋆ :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆)−
RAR

2
PT

2(RA +RP )
αP

]
.

In these two cases

sup
a∈Adet

sup
ξ∈Qγ

ũP,FB
0 (a, ξ) = G(a⋆, z⋆, αP ).

13



3.1.3 Are contracts in Q optimal?

The question now is obviously whether the optimal contracts in Q that we have derived in the

previous section are optimal among all the admissible contracts in C. We will show in this section

that this is actually always true. We insist on the fact that such a situation is different from

the original Holmstrom-Milgrom [30] problem, where the first-best contract was linear in BT , and

is thus much closer to its recent generalization in [9] where the agent is allowed to control the

volatility of the output, where optimal contracts are shown to be linear in BT and its quadratic

variation 〈B〉T . Nonetheless, in the setting of [9], moral hazard arises from the dimension of the

output process, while it comes from the worst-case attitude of both the principal and the agent in

our framework

Let us consider the so-called Morse-Transue space on (Ω,F ,P0) (we refer the reader to the mono-

graphs [50, 51] for more details), defined by

Mφ :=
{
ξ := Ω −→ R, measurable, EP0 [φ(aξ)] < +∞, for any a ≥ 0

}
,

where φ is the Young function

φ(x) := exp(|x|)− 1.

Then, if Mφ is endowed with the norm

‖ξ‖φ := sup
{
EP0 [ξg], with EP0 [φ(g)] ≤ 1

}
,

it becomes a (non-reflexive) Banach space. For any a ∈ A and (αP , αA) ∈ [αP , αP ]× [αA, αP ], we

consider the map ΞαP ,αA
a : Mφ −→ R defined by

ΞαP ,αA
a (ξ) := EP0

[
e
−RP

(∫ T
0

as(X
a,αP
· )ds+α

1
2
P BT−ξ(Xa,P

· )

)

+ ρe−RA(ξ(X
a,αA
· )−

∫ T
0 k(as(X

a,αA
· ))ds)

]
,

with

Xa,αP
· (B·) :=

∫ ·

0
as(B·)ds + (αP )

1
2B·, Xa,αA

· (B·) :=

∫ ·

0
as(B·)ds+ (αA)

1
2B·.

Notice that if ξ ≡ (z, γ, δ) ∈ Q, and a ∈ Adet

ΞαP ,αA
a (ξ) = −F (a, z, γ, δ, αP , αA). (3.5)

It can be readily checked that ΞαP ,αA
a is a strictly convex mapping in ξ, which is in addition proper

and continuous. However, since Mφ is not reflexive, we cannot affirm that its minimum is attained.

Nonetheless, we can still use the characterization of a minimizer in terms of Gâteaux derivative.

Indeed, a random variable ξ which minimizes ΞαP ,αA
a necessarily satisfies the following property

D̃ΞαP ,αA
a (ξ)[h− ξ] ≥ 0, (3.6)

for any h ∈ Mφ, where D̃ΞαP ,αA
a denotes the Gâteaux derivative of ΞαP ,αA

a given by

D̃ΞαP ,αA
a (ξ)[h] = EP0

[
RPh(X

a,αP
· )e

−RP

(∫ T
0

as(X
a,αP
· )ds+αP

1
2BT−ξ(X

a,αP
· )

)

−RAh(X
a,αA
· )ρe−RA(ξ(Xa,A

· )−
∫ T
0 k(as(X

a,αA
· ))ds)

]
.

The following lemma studies when (3.6) holds for contracts having the form of the optimal contracts

in Q. Its proof is postponed to the Appendix.
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Lemma 3.4. Fix some a ∈ A and let ξa := z⋆BT + γ⋆

2 〈B〉T + δ⋆(a) where γ⋆ ∈ R, and

z⋆ :=
RP

RA +RP
, δ⋆(a) :=

1

RA +RP

(
log

(
ρ
RA

RP

)
+RA

∫ T

0
k(as)ds

)
+ λ, λ ∈ R.

Then,

• if RA = RP , Property (3.6) is satisfied for ξa if αP = αA.

• if RA 6= RP , Property (3.6) is satisfied for ξa if αP = αA =: α and the following condition

holds
γ⋆

2
αT + λ = 0. (3.7)

We can now give our main result, which states that the optimal contract in the first best problem

belongs to Q.

Theorem 3.2. We have

(i) Assume that αA = αP . Then, the set

Qγ :=
{
ξ⋆ ≡ (z⋆, γ⋆, δ⋆) ∈ Q, z⋆ =

RP

RA +RP
, γ⋆ ≥ RA|z

⋆|2,

δ⋆ = Tk(a⋆)−
RP

RA +RP
Ta⋆ +

αPT

2

(
RAR

2
P

(RA +RP )2
− γ⋆

)
−

1

RA
log(−R)

}
,

is the subset of optimal contracts in Q for the first best problem (3.1) with the optimal recommended

level effort

a⋆ := argmax (k(a) − a) .

(ii) Assume that αA < αP < αA. Then, an optimal contract is given by

ξ⋆ := z⋆BT +
γ⋆

2
〈B〉T + δ⋆,

where γ⋆ = RA(z
⋆)2, and

z⋆ :=
RP

RA +RP
, δ⋆ := Tk(a⋆)−

RP

RA +RP
Ta⋆ −

1

RA
log(−R).

(iii) Assume that αA = αP . Then, the set

Q|γ| :=
{
ξ⋆ ≡ (z⋆, γ⋆, δ⋆) ∈ Q, z⋆ =

RP

RA +RP
, γ⋆ ∈ [−RP (1− z⋆)2, RA|z

⋆|2],

δ⋆ = Tk(a⋆)−
RP

RA +RP
Ta⋆ +

αPT

2

(
RAR

2
P

(RA +RP )2
− γ⋆

)
−

1

RA
log(−R)

}
,

is the subset of optimal contracts in Q for the first best problem (3.1) with the optimal recommended

level effort

a⋆ := argmax (k(a) − a) .

(iv) Assume that αP = αA. Then, the set

Qγ :=
{
ξ⋆ ≡ (z⋆, γ⋆, δ⋆) ∈ Q, z⋆ =

RP

RA +RP
, γ⋆ ≤ −RP (1− z⋆)2,

δ⋆ = Tk(a⋆)−
RP

RA +RP
Ta⋆ +

αPT

2

(
RAR

2
P

(RA +RP )2
− γ⋆

)
−

1

RA
log(−R)

}
,
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is the subset of optimal contracts in Q for the first best problem (3.1) with the optimal recommended

level effort

a⋆ := argmax (k(a) − a) .

(v) Assume that αP < αA < αP . Then, an optimal contract is given by

ξ⋆ := z⋆BT +
γ⋆

2
〈B〉T + δ⋆,

where γ⋆ = −RP |1− z⋆|2, and

z⋆ :=
RP

RA +RP
, δ⋆ := Tk(a⋆)−

RP

RA +RP
Ta⋆ +

αAT

2

RARP

RA +RP
−

1

RA
log(−R).

Proof. We begin by proving (i). Assume that αA = αP . First notice that

UP,FB
0 ≤ sup

ξ∈C
sup
a∈A

{
EPαP

a [UP (BT − ξ)] + ρEP
αA

a

[
UA

(
ξ −

∫ T

0
k(as)ds

)]}

= −inf
ξ∈C

inf
a∈A

ΞαP ,αA

a (ξ),

where we have used the fact that by definition, the law of B under Pα
a is equal to the law of Xa,α

under P0. Let us then define for any a ∈ A

ξa := z⋆BT +
γ⋆

2
〈B〉T + δ⋆(a),

where γ⋆ ∈ [RA(z
⋆)2,+∞), and

z⋆ :=
RP

RA +RP
, δ⋆(a) :=

1

RA +RP

(
log

(
ρ
RA

RP

)
+RA

∫ T

0
k(as)ds

)
−

γ⋆

2
αPT.

Then by Lemma 3.4, we know that

inf
ξ∈C

inf
a∈A

ΞαP ,αA

a (ξ) = inf
a∈A

ΞαP ,αA

a (ξa).

We then have

ΞαP ,αA

a (ξa) =ρ
RP

RA+RP

(
RA

RP

)−
RA

RA+RP RP +RA

RP
e
αPT

R2
AR2

P
2(RA+RP )2

× EP0

[
E

(
−

RARP

RA +RP
(αP )1/2BT

)
e

RARP
RA+RP

∫ T
0 (k(as(X

a,αP

· ))−as(X
a,αP

· ))ds
]
,

so that we clearly have

inf
a∈A

ΞαP ,αA

a (ξa) = Ξ
αP ,αA

a⋆ (ξa⋆).

Thus we have obtained

UP,FB
0 ≤ −Ξ

αP ,αA

a⋆ (ξa⋆).

Conversely, we have from Lemma 3.3 (iv) and (v) a.,

UP,FB
0 ≥ sup

ξ∈Qγ

sup
a∈Adet

ũP,FB
0 (a, ξ) = G(a⋆, z⋆, αP ) = −Ξ

αP ,αA

a⋆ (ξa⋆).
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Therefore

UP,FB
0 = −Ξ

αP ,αA

a⋆ (ξa⋆).

Finally, it remains to choose ρ so as to satisfy the participation constraint of the agent. Some

calculations show that it suffices to take ρ such that

1

RA +RP
log

(
ρ
RA

RP

)
= −

1

RA
log(−R) +

RP

RA +RP
T

[
k(a⋆)− a⋆ + αPT

RARP

2(RA +RP )

]
.

Thus,

δ(a⋆) = Tk(a⋆)−
RP

RA +RP
Ta⋆ +

αPT

2

(
RAR

2
P

(RA +RP )2
− γ⋆

)
−

1

RA
log(−R).

We now turn to (ii). Since we have αA < αP < αA, we deduce that

UP,FB
0 ≤ sup

ξ∈C
sup
a∈A

{
EPαP

a [UP (BT − ξ)] + ρEPαP
a

[
UA

(
ξ −

∫ T

0
k(as)ds

)]}

= −inf
ξ∈C

inf
a∈A

ΞαP ,αP

a (ξ).

Let us then define for any a ∈ A

ξa := z⋆BT +
γ⋆

2
〈B〉T + δ⋆(a),

where γ⋆ = RA(z
⋆)2, and

z⋆ :=
RP

RA +RP
, δ⋆(a) :=

1

RA +RP

(
log

(
ρ
RA

RP

)
+RA

∫ T

0
k(as)ds

)
−

γ⋆

2
αPT.

Then by Lemma 3.4, we know that

inf
ξ∈C

inf
a∈A

ΞαP ,αP

a (ξ) = inf
a∈A

ΞαP ,αP

a (ξa).

We then have

ΞαP ,αP

a (ξa) =

(
ρ
RA

RP

) RP
RA+RP

(
1 +

RP

RA

)
e
αPT

R2
AR2

P
2(RA+RP )2

× EP0

[
E

(
−

RARP

RA +RP
(αP )1/2BT

)
e

RARP
RA+RP

∫ T
0 (k(as(X

a,αP

· ))−as(X
a,αP

· ))ds
]
,

so that we clearly have

inf
a∈A

ΞαP ,αP

a (ξa) = ΞαP ,αP

a⋆ (ξa⋆).

Thus we have obtained

UP,FB
0 ≤ −ΞαP ,αP

a⋆ (ξa⋆).

Conversely, using Lemma 3.3(iv) we have

UP,FB
0 ≥ sup

a∈Adet

sup
ξ∈Qu

ũP,FB
0 (a, ξ) = G(a⋆, z⋆, αP ) = −ΞαP ,αP

a⋆ (ξa⋆).

Therefore

UP,FB
0 = −ΞαP ,αP

a⋆ (ξa⋆).

17



Finally, it remains to choose ρ so as to satisfy the participation constraint of the agent. Some

calculations show that it suffices to take ρ such that

1

RA +RP
log

(
ρ
RA

RP

)
= −

1

RA
log(−R) +

RP

RA +RP
T

[
k(a⋆)− a⋆ + αPT

RARP

2(RA +RP )

]
.

Thus,

δ(a⋆) = Tk(a⋆)−
RP

RA +RP
Ta⋆ +

αPT

2

(
RAR

2
P

(RA +RP )2
− γ⋆

)
−

1

RA
log(−R)

= Tk(a⋆)−
RP

RA +RP
Ta⋆ −

1

RA
log(−R).

We now turn to (v). Since we have αP < αA < αP , we deduce that

UP,FB
0 ≤ sup

ξ∈C
sup
a∈A

{
EPαA

a [UP (BT − ξ)] + ρEPαA
a

[
UA

(
ξ −

∫ T

0
k(as)ds

)]}

= −inf
ξ∈C

inf
a∈A

ΞαA,αA

a (ξ).

Let us then define for any a ∈ A

ξa := z⋆BT +
γ⋆

2
〈B〉T + δ⋆(a),

where γ⋆ = −RP |1− z⋆|2, and

z⋆ :=
RP

RA +RP
, δ⋆(a) :=

1

RA +RP

(
log

(
ρ
RA

RP

)
+RA

∫ T

0
k(as)ds

)
−

γ⋆

2
αAT.

Then by Lemma 3.4, we know that

inf
ξ∈C

inf
a∈A

ΞαA,αA

a (ξ) = inf
a∈A

ΞαA,αA

a (ξa).

We then have

ΞαA,αA

a (ξa) =

(
ρ
RA

RP

) RP
RA+RP

(
1 +

RP

RA

)
e
αAT

R2
AR2

P
2(RA+RP )2

× EP0

[
E

(
−

RARP

RA +RP
(αA)1/2BT

)
e

RARP
RA+RP

∫ T
0
(k(as(X

a,αA

· ))−as(X
a,αA

· ))ds
]
,

so that we clearly have

inf
a∈A

ΞαA,αA

a (ξa) = ΞαA,αA

a⋆ (ξa⋆).

Thus we have obtained

UP,FB
0 ≤ −ΞαA,αA

a⋆ (ξa⋆).

Conversely, using Lemma 3.3 (ii) we have

UP,FB
0 ≥ sup

a∈Adet

sup
ξ∈Qd

ũP,FB
0 (a, ξ) = G(a⋆, z⋆, αA) = −ΞαA,αA

a⋆ (ξa⋆).

Therefore

UP,FB
0 = −ΞαA,αA

a⋆ (ξa⋆).
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Finally, it remains to choose ρ so as to satisfy the participation constraint of the agent. Some

calculations show that it suffices to take ρ such that

1

RA +RP
log

(
ρ
RA

RP

)
= −

1

RA
log(−R) +

RP

RA +RP
T

[
k(a⋆)− a⋆ + αAT

RARP

2(RA +RP )

]
.

Thus,

δ(a⋆) = Tk(a⋆)−
RP

RA +RP
Ta⋆ +

αAT

2

(
RAR

2
P

(RA +RP )2
− γ⋆

)
−

1

RA
log(−R)

= Tk(a⋆)−
RP

RA +RP
Ta⋆ +

αAT

2

RARP

RA +RP
−

1

RA
log(−R).

We now prove (iii). Assume that αA = αP , and notice that

UP,FB
0 ≤ sup

ξ∈C
sup
a∈A

{
EPαP

a [UP (BT − ξ)] + ρEPαA
a

[
UA

(
ξ −

∫ T

0
k(as)ds

)]}

= −inf
ξ∈C

inf
a∈A

ΞαP ,αA

a (ξ),

where we have used the fact that by definition, the law of B under Pα
a is equal to the law of Xa,α

under P0. Let us then define for any a ∈ A

ξa := z⋆BT +
γ⋆

2
〈B〉T + δ⋆(a),

where γ⋆ ∈ [−RP |1− z⋆|2, RA|z
⋆|2], and

z⋆ :=
RP

RA +RP
, δ⋆(a) :=

1

RA +RP

(
log

(
ρ
RA

RP

)
+RA

∫ T

0
k(as)ds

)
−

γ⋆

2
αPT.

Then by Lemma 3.4, we know that

inf
ξ∈C

inf
a∈A

ΞαP ,αA

a (ξ) = inf
a∈A

ΞαP ,αA

a (ξa).

We then have

ΞαP ,αA

a (ξa) =

(
ρ
RA

RP

) RP
RA+RP

(
1 +

RP

RA

)
e
αPT

R2
AR2

P
2(RA+RP )2

× EP0

[
E

(
−

RARP

RA +RP
(αP )1/2BT

)
e

RARP
RA+RP

∫ T
0
(k(as(X

a,αP

· ))−as(X
a,αP

· ))ds
]
,

so that we clearly have

inf
a∈A

ΞαP ,αA

a (ξa) = ΞαP ,αA

a⋆ (ξa⋆).

Thus we have obtained

UP,FB
0 ≤ −ΞαP ,αA

a⋆ (ξa⋆).

Conversely, we have from Lemma 3.3 (ii), (iii)b), (iv),

UP,FB
0 ≥ sup

ξ∈Q|γ|

sup
a∈Adet

ũP,FB
0 (a, ξ) = G(a⋆, z⋆, αP ) = −ΞαP ,αA

a⋆ (ξa⋆).
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Therefore

UP,FB
0 = −ΞαP ,αA

a⋆ (ξa⋆).

Finally, it remains to choose ρ so as to satisfy the participation constraint of the agent. Some

calculations show that it suffices to take ρ such that

1

RA +RP
log

(
ρ
RA

RP

)
= −

1

RA
log(−R) +

RP

RA +RP
T

[
k(a⋆)− a⋆ + αPT

RARP

2(RA +RP )

]
.

Thus,

δ(a⋆) = Tk(a⋆)−
RP

RA +RP
Ta⋆ +

αPT

2

(
RAR

2
P

(RA +RP )2
− γ⋆

)
−

1

RA
log(−R).

We finally prove (iv). Assume that αP = αA, and notice that

UP,FB
0 ≤ sup

ξ∈C
sup
a∈A

{
EP

αP

a [UP (BT − ξ)] + ρEPαA
a

[
UA

(
ξ −

∫ T

0
k(as)ds

)]}

= −inf
ξ∈C

inf
a∈A

ΞαP ,αA

a (ξ),

where we have used the fact that by definition, the law of B under Pα
a is equal to the law of Xa,α

under P0. Let us then define for any a ∈ A

ξa := z⋆BT +
γ⋆

2
〈B〉T + δ⋆(a),

where γ⋆ ∈ (−∞,−RP |1− z⋆|2], and

z⋆ :=
RP

RA +RP
, δ⋆(a) :=

1

RA +RP

(
log

(
ρ
RA

RP

)
+RA

∫ T

0
k(as)ds

)
−

γ⋆

2
αPT.

Then by Lemma 3.4, we know that

inf
ξ∈C

inf
a∈A

ΞαP ,αA

a (ξ) = inf
a∈A

ΞαP ,αA

a (ξa).

We then have

ΞαP ,αA

a (ξa) =

(
ρ
RA

RP

) RP
RA+RP

(
1 +

RP

RA

)
e
αPT

R2
AR2

P
2(RA+RP )2

× EP0

[
E

(
−

RARP

RA +RP
(αP )1/2BT

)
e

RARP
RA+RP

∫ T
0
(k(as(X

a,αP

· ))−as(X
a,αP

· ))ds
]
,

so that we clearly have

inf
a∈A

ΞαP ,αA

a (ξa) = Ξ
αP ,αA

a⋆ (ξa⋆).

Thus we have obtained

UP,FB
0 ≤ −Ξ

αP ,αA

a⋆ (ξa⋆).

Conversely, we have from Lemma 3.3 (i) b., (ii) and (iii) c.,

UP,FB
0 ≥ sup

ξ∈Qγ

sup
a∈Adet

ũP,FB
0 (a, ξ) = G(a⋆, z⋆, αP ) = −Ξ

αP ,αA

a⋆ (ξa⋆).

Therefore

UP,FB
0 = −Ξ

αP ,αA

a⋆ (ξa⋆).
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Finally, it remains to choose ρ so as to satisfy the participation constraint of the agent. Some

calculations show that it suffices to take ρ such that

1

RA +RP
log

(
ρ
RA

RP

)
= −

1

RA
log(−R) +

RP

RA +RP
T

[
k(a⋆)− a⋆ + αPT

RARP

2(RA +RP )

]
.

Thus,

δ(a⋆) = Tk(a⋆)−
RP

RA +RP
Ta⋆ +

αPT

2

(
RAR

2
P

(RA +RP )2
− γ⋆

)
−

1

RA
log(−R).

3.2 Comments and comparison with the case without ambiguity

All the results obtained above are summarized in Section 6. Using Theorem 3.2, we recover the

classical result that when αP = αP = αA = αA =: α (that is to say when there is no ambiguity),

the optimal first-best contract is given by

z⋆BT +
RAR

2
Pα

2(RA +RP )2
T + Tk(a⋆)−

RP

RA +RP
Ta⋆ −

1

RA
log(−R), (3.8)

which provides the principal with utility

−(−R)
−

RP
RA exp

(
RPT

(
k(a∗)− a∗ +

α

2

RARP

RA +RP

))
. (3.9)

Therefore, as mentioned above, the first main difference with the ambiguity case is that in our

framework, one has in general to rely on path-dependent contracts using the quadratic variation

of the output. There is nonetheless an exception. Indeed, in the case where αA = αP , the choice

γ⋆ = 0 is allowed, so that there is a linear optimal contract in this case (which coincides with (3.8)

above), and in this case only. Furthermore, in the three cases αA = αP , αA = αP , αP = αA, we

have identified uncountably many optimal contracts in the class Q. This is really different from

the case without ambiguity, where the optimal contract is basically unique.

Finally, let us compare the utility the the principal can get out of the problem (since the agent

always receives his reservation utility, there is nothing to compare for him). Again by Theorem

3.2, whenever we have αA ≤ αP ≤ αA, the principal receives

−(−R)
−

RP
RA exp

(
RPT

(
k(a∗)− a∗ +

αP

2

RARP

RA +RP

))
,

which is always less than (3.9), for any α ∈ [αP , αP ], which means hat, as intuition would dictate,

the principal is worse-off compared to the case where he would not have any aversion to ambiguity.

Then, when we have αP ≤ αA ≤ αP , the principal gets

−(−R)
−

RP
RA exp

(
RPT

(
k(a∗)− a∗ +

αA

2

RARP

RA +RP

))
,

which is actually larger than (3.9) if α ≥ αA. In other words, compared to a situation where the

principal would have no ambiguity, but were more pessimistic than the agent and believed in a

level of volatility higher than αA, the ambiguity averse principal actually obtains a larger utility.

The situation is the same, though even more extreme, when αP < αA or αA < αP , since the

principal can reach utility 0 and is therefore always better off compared to the case without

ambiguity. We believe that such results are the most striking consequences of our new modelization

of the contracting problem.
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4 Moral hazard and second-best problem

We now study the so-called second best problem, corresponding to a Stackelberg-like equilibrium

between the principal and the agent. Now, the principal has no control (or cannot observe) the

effort level chosen by the agent. Hence, his strategy is to first compute the best-reaction function

of the agent to a given contract, and to determine his corresponding optimal effort (if it exists)

and then use this in his own utility function to maximize over all the contracts. Obviously, the

above approach can only work if the principal can actually find the optimal effort of the agent.

Therefore, the set of admissible contracts in the second best setting must at least be reduced to

the contracts ξ such that there exists (possibly several) a⋆ ∈ A with

R ≤ UA
0 (ξ) = inf

P∈Pa⋆
A

EP

[
UA

(
ξ −

∫ T

0
k(a⋆s)ds

)]
.

As we will see below, this set of contracts is actually equal to C, so that the above restriction is

without generality.

4.1 The agent’s problem

Let us start by looking at the dynamic version of the value function of the agent. Fix some a ∈ A.

The fact that there is an infimum with respect to a family of non-dominated measures makes things

a bit technical, however, we refer to the papers [40, 38] for the proofs that, for any FT−measurable

contract ξ ∈ C, one can define a process, which we denote by uAt (ξ, a) (denoted by Yt in [38]),

which is càdlàg, GPA,+−adapted (recall that for any a ∈ A, GPa
A = GPA , since the polar sets of

Pa
A are the same as the polar sets of PA) and such that

uAt (ξ, a) = essinfP
P
′∈Pa

A(P,t+)
EP

′
[
UA

(
ξ −

∫ T

t
k(as)ds

)∣∣∣∣Ft

]
, P− a.s., for all P ∈ Pa

A. (4.1)

Notice that since ξ ∈ C, it has exponential moments of any order, so that since in addition the

effort process a is bounded, we have that uA(ξ, a) has moments of any order, in the sense that

sup
P∈Pa

A

EP

[
sup

0≤t≤T

∣∣uAt (ξ, a)
∣∣p
]
< +∞, for all p ≥ 0, (4.2)

where we have used the generalized Doob inequality for sublinear expectations given in Proposition

A.1 in [45].

Moreover, by [38] (see in particular step 2 in the proof of Theorem 2.3), eRA

∫ t
0 k(as)dsuAt (ξ, a) is a

(P,GPA,+)−submartingale for every P ∈ Pa
A, and by step 3 in the proof of Theorem 2.3 in [38],

there is a GPA−predictable process Z̃, and a family of non-decreasing processes (K̃P)P∈Pa
A
, which

are FP−predictable, such that, for all P ∈ Pa
A

eRA

∫ t
0
k(as)dsuAt (ξ, a) = eRA

∫ T
0

k(as)dsUA(ξ)−

∫ T

t
Z̃sα̂

1
2
s dW

a
s − K̃P

T + K̃P
t , P− a.s.

Notice also that since every probability measure in PA is equivalent, by definition, to a probability

measure in Pa
A (and conversely), the above also holds P−a.s., for any P ∈ PA, with the convention

that we will still denote by K̃P the non-decreasing process associated to P ∈ Pa
A or PA. Moreover,

using again the aggregation result of [39], we can actually aggregate the family K̃P into a universal

process, which is GPA−predictable, and which we denote by K̃.
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We deduce that

uAt (ξ, a) = UA(ξ)−

∫ T

t
RAu

A
s (ξ, a) (asZ

a
s − k(as)) ds+

∫ T

t
RAu

A
s (ξ, a)Z

a
s α̂

1/2
s dWs

+

∫ T

t
RAu

A
s (ξ, a)dK

a
s , P− a.s., for all P ∈ PA,

where

Za
t := −

e−RA

∫ t
0
k(as)ds

RAut(ξ, a)
Z̃t, Ka

t := −

∫ t

0

e−RA

∫ s
0
k(ar)dr

RAuAt (ξ, a)
dK̃r.

Define

Y a
t := −

ln
(
−uAt (ξ, a)

)

RA
.

We therefore have for all P ∈ PA

Y a
t = ξ −

∫ T

t

(
RA

2
|Za

s |
2 α̂s + k(as)− asZ

a
s

)
ds−

∫ T

t
Za
s α̂

1/2
s dWs −

∫ T

t
dKa

s , P− a.s.

Now notice that by (4.2), we immediately have

sup
P∈PA

EP

[
exp

(
p sup
0≤t≤T

|Y a
t |

)]
< +∞, for every p ≥ 0.

Moreover, remember that by (4.1), we also have for every P ∈ Pa
A, by the exact same arguments

as above applied under any fixed measure P ∈ PA, that

Y a
t = essinfP

P
′∈Pa

A(P,t+)
YP

′
,a

t , P− a.s., (4.3)

where for any P ∈ Pa
A, (YP,a,ZP,a) is the unique5 solution to the following BSDE defined under P

YP,a
t = ξ −

∫ T

t

(
RA

2

∣∣∣ZP,a
s

∣∣∣
2
α̂s + k(as)− asZ

P,a
s

)
ds−

∫ T

t
ZP,a
s α̂1/2

s dWs, P− a.s.

Then, using (4.2), we can follow the proof of Lemma 3.1 in [48]6 to obtain that Za actually belongs

to the BMO space defined in [48] (see Section 2.3.2). Then, we can follow exactly the proof of

Theorem 6.1 in [48] to obtain with (4.3), that for any P ∈ Pa
A

Ka
t = essinfP

P
′∈Pa

A(P,t+)
EP

′

[Ka
T | Ft] , P− a.s.

Therefore, (Y a
t , Z

a
t ) is the unique solution to the (quadratic-linear) 2BSDE with terminal condition

ξ and generator RA/2z
2α̂s + k(as)− asz (see for instance Definition 2.3 of [48]).

5Wellposedness is clear here, since we have easily that

Y
P,a
t = −

log
(

−u
A,P
t (ξ, a)

)

RA
, P− a.s.,

where

u
A,P
t (ξ, a) := E

P

[

UA

(

ξ −

∫ T

t

k(as)ds

)∣

∣

∣

∣

Ft

]

, P− a.s.

6In this result, ξ and Y a are assumed to be bounded, but the proof generalizes easily to our setting where Y a

satisfies (4.2).
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Let us now denote by (Y,Z,K) the maximal solution to the following 2BSDE

Yt = ξ −

∫ T

t

(
RA

2
|Zs|

2 α̂s + inf
a∈[0,amax]

{k(a)− aZs}

)
ds−

∫ T

t
Zsα̂

1/2
s dWs −

∫ T

t
dKs. (4.4)

Before proceeding, let us explain why such a 2BSDE does indeed admit a maximal solution. First

of all, the corresponding quadratic BSDEs admit a maximal solution, because, since the infimum in

the generator is over a compact set, the generator of the BSDE is bounded from above by a function

with linear growth in z. The existence of a maximal solution is then direct from Proposition 4 of [5].

Furthermore, since this maximal solution is obtained as a monotone approximation of Lipschitz

BSDEs, it satisfies a comparison theorem. Hence, we can apply first Proposition 2.1 of [47] to

obtain the existence of a maximal solution of the 2BSDE, in the sense of Definition 4.1 of [47], and

then use Remark 4.1 of [47] to aggregate the family of non-decreasing processes into K (we remind

the reader that all the measures in PA satisfy the predictable martingale representation property).

In particular, we have the following representation for any P ∈ Pa
A,

Yt = essinfP

P
′∈Pa

A(P,t+)
YP

′

t , P− a.s., (4.5)

where for any P ∈ Pa
A, (YP,ZP) is the maximal solution of the quadratic BSDE

YP
t = ξ −

∫ T

t

(
RA

2

∣∣∣ZP
s

∣∣∣
2
α̂s + inf

a∈[0,amax]

{
k(a)− aZP

s

})
ds−

∫ T

t
ZP
s α̂

1/2
s dWs, P− a.s.

Now it is a classical result dating back to [22] (see also [34] for a similar result using 2BSDEs)

that, using the comparison theorem satisfied by the maximal solution of the 2BSDEs (which

automatically inherited from the one satisfied by the BSDEs), that

Y0 = sup
a∈A

Y a
0 = sup

a∈A
inf

P∈Pa
A

YP,a
0 = sup

a∈A
inf

P∈Pa
A

{
−

1

RA
log

(
−EP

[
UA

(
ξ −

∫ T

0
k(as)ds

)])}
,

so that

UA
0 (ξ) = − exp(−RAY0).

Furthermore, it is then clear, since the function k is strictly convex that there is some a⋆(Z·) ∈ A

such that

inf
a∈[0,amax]

{k(a)− aZs} = k(a⋆(Zs))− a⋆(Zs)Zs, s ∈ [0, T ].

This implies that

Y0 = inf
P∈P

a⋆(Z·)
A

Y
P,a⋆(Z·)
0 .

We have thus proved the following result.

Proposition 4.1. For any ξ ∈ C, the value function of the agent verifies

UA
0 (ξ) = − exp(−RAY0),

and the optimal effort of the agent is given by a⋆(Zs) which satisfies

inf
a∈[0,amax]

{k(a)− aZs} = k(a⋆(Zs))− a⋆(Zs)Zs, s ∈ [0, T ],

where (Y,Z) is the maximal solution to (4.4). Furthermore, ξ ∈ C if and only if

Y0 ≥ −
log(−R)

RA
=: R0. (4.6)
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We have thus solved the problem of the agent for any ξ ∈ C. Along the way, we showed that any

ξ ∈ C had the following decomposition

ξ = Y0 +

∫ T

0

(
RA

2
|Zs|

2 α̂s + inf
a∈[0,amax]

{k(a)− aZs}

)
ds+

∫ T

0
Zsα̂

1/2
s dWs +

∫ T

0
dKs, (4.7)

for some GPA−predictable process Z, Y0 ∈ R and some non-decreasing process K satisfying the

same minimality condition as in (4.3).

4.2 The principal’s problem

From Equality (4.7) in the previous section, we know that we can associate to each contract ξ a

GPA−predictable process Zξ, which determines completely the optimal effort of the agent a⋆(Zξ
· )

given by Proposition 4.1. We also denote by Y ξ and Kξ the other components of the maximal

solution to the 2BSDE (4.4). For technical reasons, we need to assume some integrability on Zξ.

More precisely, we define

CSB :=

{
ξ ∈ CSB , E

(
−RP

∫ ·

0
α̂

1
2
s (1− Zξ

s )dW
a⋆(Zξ

· )
s

)
is a P−martingale, ∀P ∈ P

a⋆(Zξ
· )

P

}
.

The principal’s problem then becomes

UP
0 = sup

ξ∈CSB

inf

P∈P
a⋆(Z

ξ
· )

P

EP [UP (BT − ξ)]

= sup
ξ∈CSB

inf

P∈P
a⋆(Z

ξ
· )

P

EP

[
−E

(
−RP

∫ T

0
α̂

1
2
s (1− Zξ

s )dW
a⋆(Zξ

· )
s

)
e
RP

(
KT+Y ξ

0 −
∫ T
0

f(Zξ
s ,α̂s)ds

)]
, (4.8)

where

f(z, α) := a⋆(z) − k(a⋆(z)) −
α

2

(
RAz

2 +RP (1− z)2
)
.

In order to continue our computations, we actually need to have more information on the non-

decreasing process K. Using similar intuitions as the ones given in [9, 10], we expect that when

the contract ξ is sufficiently "smooth", we can find a GPA
−predictable process Γ such that

Kt =

∫ t

0

(
1

2
α̂sΓs − inf

α∈[αA,αA]

{
1

2
αΓs

})
ds. (4.9)

However, in general, such a decomposition for K is not true for every ξ ∈ CSB. We will therefore

start by solving the principal problem for a particular sub-class of contracts in CSB such that the

process Γ exists, and then show that the principal’s value function is not actually affected by this

restriction.

4.2.1 A sub-optimal problem for the principal

Building upon (4.7) and (4.9) we consider the class C
SB ⊂ CSB of contracts ξ admitting the

decomposition

ξ = Y0 +

∫ T

0

(
1

2
α̂sΓs − inf

α∈[αA,αA]

{
1

2
αΓs

}
+

RA

2
|Zs|

2 α̂s + inf
a∈[0,amax]

{k(a)− aZs}

)
ds

+

∫ T

0
Zsα̂

1/2
s dWs, (4.10)
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for some Y0 ≥ R0, some GPA−predictable process Z such that

E

(
−RP

∫ ·

0
α̂

1
2
s (1− Zs)dW

a⋆(Z·)
s

)
is a P−martingale, ∀P ∈ P

a⋆(Z·)
P ,

and some GPA−predictable process Γ. The set of corresponding processes (Z,Γ) will be denoted

by U. A contract ξ ∈ C
SB will be identified with the triplet (Y0, Z,Γ).

We define now the following sub-optimal principal problem

U
P
0 := sup

ξ∈CSB

inf
P∈P

a⋆(Z·)
P

EP [UP (BT − ξ)] .

Let us also denote for any ξ ∈ C
SB

U
P
0 (ξ) := inf

P∈P
a⋆(Z·)
P

EP [UP (BT − ξ)] .

By the above calculations, we immediately have that

U
P
0 := sup

(Z,Γ)∈U
inf

P∈P
a⋆(Z·)
P

EP

[
−E

(
−RP

∫ T

0
α̂1/2
s (1− Zs)dW

a⋆(Z·)
s

)
eRP (R0−

∫ T
0

H(α̂s,Zs,Γs)ds)
]
,

where

H(α, z, γ) := a⋆(z) − k(a⋆(z))−
α

2

(
RAz

2 +RP (1− z)2
)
−

1

2
αγ + inf

α∈[αA,αA]

{
1

2
αγ

}
. (4.11)

In order to pursue the computations, we need to specify a form for the cost function k. Namely,

we will assume in what follows that

Assumption 4.1. The cost function of the agent is quadratic, defined, for some k > 0, by

k(a) := k
a2

2
, a ≥ 0.

We deduce from Proposition 4.1 that the agent chooses the control a⋆(z) = z
k . Hence, Equality

(4.11) can be rewritten

H(α, z, γ) =
z

k
−

z2

2k
−

α

2

(
RAz

2 +RP (1− z)2
)
−

1

2
αγ + inf

α∈[αA,αA]

{
1

2
αγ

}
(4.12)

=: Hz(α, z) +Hγ(α, γ),

where

Hz(α, z) :=
z

k
−

z2

2k
−

α

2

(
RAz

2 +RP (1− z)2
)

and

Hγ(α, γ) := −
1

2
αγ + inf

α∈[αA,αA]

{
1

2
αγ

}
.

Notice that for any α ≥ 0

H(αA, z, 0) = H(α, z,−RAz
2 −RP (1− z)2). (4.13)

The following lemma studies computes the maximum of the map (z, γ) 7−→ H(α, z, γ), depending

on the value of α ∈ R+.
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Lemma 4.1. We distinguish three cases.

(i) If αA ≤ α ≤ αA, then (z, γ) 7−→ H(α, z, γ) admits a (global) maximum at

z⋆(α) :=
1 + kαRP

1 + αk(RA +RP )
, γ⋆ := 0. (4.14)

(ii) If α < αA, then γ 7−→ H(α, z, γ) is increasing and attains its maximum at γ⋆ = +∞, for

which H(α, z, γ⋆) = +∞.

(iii) If αA < α, then γ 7−→ H(α, z, γ) is decreasing and attains its maximum at γ⋆ = −∞, for

which H(α, z, γ⋆) = +∞.

Proof. We have

∂H

∂z
(α, z, γ) =

∂Hz

∂z
(α, z) =

1

k
−

z

k
− α(RAz −RP (1− z)),

so that
∂H

∂z
(α, z, γ) = 0 ⇐⇒ z = z⋆(α) :=

1 + kαRP

1 + αk(RA +RP )
.

Since z 7−→ Hz(α, z) is concave for any α ≥ 0, we deduce that the maximum of Hz is attained at

z⋆(α).

Furthermore, for any γ 6= 0

∂H

∂γ
(α, z, γ) =

∂Hγ

∂γ
(α, γ) =

1

2
(αA − α)1γ>0 +

1

2
(αA − α)1γ<0

If αA ≤ α ≤ αA, then (z, γ) 7−→ H(α, z, γ) admits a global maximum at (z⋆(α), 0) which proves

(i). (ii) and (iii) are clear.

We can now state the main result of this section, which gives the optimal contracts for the second-

best problem, when contracts are restricted to the class C
SB.

Theorem 4.1. Let Assumption 4.1 hold. Define for any α ≥ 0

z⋆(α) :=
1 + kαRP

1 + αk(RA +RP )
.

(i) If αA ≤ αP ≤ αA, then an admissible optimal contract is given by

ξ⋆ ≡ (R0, z
⋆(αP ), 0),

where R0 is defined by Relation (4.6). In this case,

U
P
0 = − exp

(
−RP (TH(αP , z⋆(αP ), 0) −R0)

)
.

(ii) If αP ≤ αA ≤ αP , then an admissible optimal contract is given by

ξ⋆ ≡ (R0, z
⋆(αA), γ⋆),

where R0 is defined by Relation (4.6) and

γ⋆ := −RA(z
⋆(αA))2 −RP (1− z⋆(αA))2.
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In this case,

U
P
0 = − exp

(
−RP (TH(αA, z⋆(αA), γ⋆)−R0)

)
.

(iii) Assume that αP < αA. Let ξn ≡ (R0, 0, n), then

U
P
0 = lim

n→+∞
U

P
0 (ξ

n) = 0.

(iv) Assume that αA < αP . Let ξn ≡ (R0, 0,−n), then

U
P
0 = lim

n→+∞
U

P
0 (ξ

n) = 0.

Proof. We recall Definition (4.14) for any α ≥ 0

z⋆(α) :=
1 + kαRP

1 + αk(RA +RP )
.

We begin with the proof of (i). Assume that αA ≤ αP ≤ αA, then

U
P
0 ≥ inf

P∈P
a⋆(z⋆(α̂·))
P

EP

[
−E

(
−RP

∫ T

0
α̂

1
2
s (1− z⋆(α̂s))dW

a⋆(z⋆)
s

)
eRP (R0−

∫ T
0

H(α̂s,z⋆(α̂s),0)ds)
]
.

Then we have for any α ≥ 0

H(α, z⋆(α), 0) = −
α

2
RP +

z⋆(α)

k
(1 + αkRP )−

|z⋆(α)|2

2k
(1 + αk(RA +RP ))

= −
α

2
RP +

(1 + αkRP )
2

k(1 + αk(RA +RP ))
−

(1 + αkRP )
2

2k(1 + αk(RA +RP ))

= −
α

2
RP +

(1 + αkRP )
2

2k(1 + αk(RA +RP ))
.

Hence,

∂H

∂α
(α, z⋆(α), 0) =

−RA

(
1 + 2kαRP + k2α2RP (RA +RP )

)

2(1 + αk(RA +RP ))2
≤ 0, ∀α ∈ [αP , αP ].

Therefore,

U
P
0 ≥ −eRPR0e−RP

∫ T
0

H(αP ,z⋆(αP ),0)ds.

Indeed, z⋆(α̂s) is bounded so that the stochastic exponential is trivially a true martingale. We

now turn to the converse inequality, we have

U
P
0 ≤ sup

(Z,Γ)∈U
E
PαP

a⋆(Z·)

[
−E

(
−RP

∫ T

0
(αP )1/2(1− Zs)dW

a⋆(Z·)
s

)
eRP (R0−

∫ T
0 H(αP ,Zs,Γs)ds)

]
.

According to Lemma 4.1(i), we obtain

U
P
0 ≤ −eRPR0e−RPTH(αP ,z⋆(αP ),0).

Hence, if αA ≤ αP ≤ αA, then U
P
0 = −eRPR0e−RP

∫ T
0 H(αP ,z⋆(αP ),0)ds. We now prove that the

contract ξ⋆ ≡ (R0, z
⋆(αP ), 0) ∈ C

SB is indeed optimal. We have

inf
P∈P

a⋆(z⋆(αP ))
P

EP

[
−E

(
−RP

∫ T

0
α̂

1
2
s (1− z⋆(αP ))dW a⋆(z⋆(αP ))

s

)
eRP (R0−

∫ T
0 H(α̂s,z⋆(αP ),0)ds)

]

= U
P
0 ,
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since by definition (4.12) of H, α 7−→ H(α, z⋆(αP ), 0 is decreasing, so that the above infimum is

attained for the measure PαP

a⋆(z⋆(αP ))
.

We now turn to the proof of (ii). Assume that αP ≤ αA ≤ αP . On the one hand

inf
P∈P

a⋆(z⋆(αA))
P

EP

[
−E

(
−RP

∫ T

0
α̂

1
2
s (1− z⋆(αA))dW a⋆(z⋆(αA))

s

)
eRP (R0−

∫ T
0 H(α̂s,z⋆(αA),γ⋆)ds)

]

≤ U
P
0 ,

where γ⋆ := −RA(z
⋆(αA))2 −RP (1− z⋆(αA))2. Thus, using Relation (4.13), we have

U
P
0 ≥ −eRPR0e−RPTH(αA,z⋆(αA),0).

On the other hand, since αA ∈ [αP , αP ]

U
P
0 ≤ eRPR0 sup

(Z,Γ)∈U
E
PαA

a⋆(Z·)

[
−E

(
−RP

∫ T

0
αA1/2

(1− Zs)dW
a⋆(Z·)
s

)
e−RP

∫ T
0

H(αA,Zs,Γs)ds

]
.

By using Lemma 4.1(i), we obtain

U
P
0 ≤ −eRPR0e−RPTH(αA,z⋆(αA),0).

We deduce that

U
P
0 = −eRPR0e−RPTH(αA,z⋆(αA),0).

We consider now a contract ξ⋆ ≡ (R0, z
⋆(αA), γ⋆) and we show that U

P
0 (ξ

⋆) = U
P
0 . We have

inf
P∈P

a⋆(z⋆(αA)
P

EP

[
−E

(
−RP

∫ T

0
α̂1/2
s (1− z⋆(αA))dW a⋆(z⋆(αA))

s

)
eRP (R0−

∫ T
0

H(α̂s,z⋆(αA),γ⋆)ds)
]

= −eRPR0e−RPTH(αA,z⋆(αA),0) = U
P
0 ,

since H(α, z⋆(αA), γ⋆) is actually independent of α.

We now prove (iii). Assume that αP < αA. First notice that U
P
0 ≤ 0. Let ξn ≡ (R0, 0, n).

U
P
0 ≥ U

P
0 (ξ

n) = eRPR0 inf
P∈PP

EP

[
−E

(
−RP

∫ T

0
α̂1/2
s dWs

)
e−RP

∫ T
0 H(α̂s,0,n)ds

]
.

Notice that H(α, 0, n) = n
2 (α

A − α). Hence,

U
P
0 ≥ −eRPR0e−RP

nT
2

(αA−αP )

and since αP < αA, taking the limit when n goes to +∞ we deduce that

U
P
0 ≥ lim

n→+∞
U

P
0 (ξ

n) = 0.

We finally prove (iv). Assume that αP > αA. The proof is similar to the previous case by

choosing ξn ≡ (R0, 0,−n).
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4.3 The principal sub-optimal problem is equal to U
P
0

In this section, we prove the following result.

Theorem 4.2. Let Assumption 4.1 hold. Then

UP
0 = U

P
0 .

Proof. First of all, notice that when αP < αA or αA < αP , we have U
P
0 = 0, so that UP

0 = 0 as

well. Let us now assume that αA ≤ αP ≤ αA. By (4.8), since KT ≥ 0, we easily have

UP
0 ≤ sup

ξ∈CSB

E
PαP

a⋆(Z
ξ
· )

[
−E

(
−RP

∫ T

0
(αP )

1
2 (1− Zξ

s )dW
a⋆(Zξ

· )
s

)
e
RP

(
R0−

∫ T
0 f(Zξ

s ,α
P )ds

)]
.

Then, we easily have that the map z 7−→ f(z, αP ) attains its maximum at z⋆(αP ), where it is

actually equal to H(αP , z⋆(αP ), 0). Thus

UP
0 ≤ eRPR0e−RP TH(αP ,z⋆(αP ),0) = U

P
0 ,

by Theorem 4.1(i).

Assume now that αP ≤ αA ≤ αP . Then, we also have by (4.8) that, with the same arguments

UP
0 ≤ sup

ξ∈CSB

E
PαP

a⋆(Z
ξ
· )

[
−E

(
−RP

∫ T

0
(αA)

1
2 (1− Zξ

s )dW
a⋆(Zξ

· )
s

)
e
RP

(
R0−

∫ T
0

f(Zξ
s ,α

A)ds
)]

≤ eRPR0e−RPTH(αA,z⋆(αA),0) = U
P
0 ,

by Theorem 4.1(ii).

4.4 Comments

The comparison with the case without ambiguity is actually very similar to the first best problem.

First, notice that when αP ∈ [αA, αA], an optimal contract can be chosen to be linear in the

terminal value of the output, and it is actually the exact same contract as the optimal one for a

principal who would only believe in a constant volatility process equal to αP . Since the utility of

the principal is then a decreasing function of the volatility, this means that the principal always

gets less utility than in a context without ambiguity.

However, as soon as αA ∈ [αP , αP ], the second-best optimal contract makes use of the quadratic

variation of the output and is therefore path-dependent. Besides, as in the first-best case, the

principal may get an higher utility level than in the case without ambiguity.

Finally, in the degenerated cases (iii) and (iv) of Theorem 4.1, we have seen that the optimal

effort for the agent is equal to 0 since z∗ = 0 and a∗(z∗) = 0, on the contrary to the first-best

problem where, in the same case, the optimal level of effort for the agent, chosen by the principal

to obtained his best utility 0, was amax. Hence, to solve the second-best problem, the agent does

not provide any effort and attains his reservation utility. It can be explained by the fact that in

the second-best problem, an optimal contract is a Stackelberg equilibrium, where the principal has

to anticipate the reaction of the agent given an admissible contract, unlike the first-best problem

for which the principal chooses the level of effort for the agent.
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5 Possible extensions

In this section, we examine several potential generalizations of the problem at hand, and we try

to explain how to tackle it in each case.

5.1 More general dynamics

The first possible extension would be to consider an output with more general dynamics. Typically,

one could have a general model where

Bt =

∫ t

0
bs(Bs, a

P
s , α

P
s )ds +

∫ t

0
(αP

s )
1/2dW aP

s , P− a.s.,

that is to say that the impact of the effort choice of the agent on the drift of the output is now

non-linear, and the value of this drift may also depend on the current value of the output itself,

which could model some synergy effects. Furthermore, b should be assumed to have linear growth

in a and to be continuous.

Furthermore, the cost function k could also take the form ks(Bs, a
P
s ).

In the first-best problem, if the map b actually only depends on a, and not on B and α, and if

k does not depend on B, then it is not difficult to see that our approach will still work, albeit

with more complicated computations. Notably, the optimal effort of the agent will either be amax

or any (deterministic) minimizer of a 7−→ ks(a) − bs(a) (which exist since k is superlinear). It is

however not clear to us how to handle the general dynamics.

In the second-best problem, the representation of the value function of the agent in terms of

2BSDEs will always work, provided that one can indeed check that it is wellposed (which requires

obviously some assumptions on k and b). Then, following [10], we can always associate to the

suboptimal value function of the principal U
P
0 an Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation

in the two state variables B and Y Z,Γ defined by

Y Z,Γ
t := R0 +

∫ t

0

(
RA

2
|Zs|

2 α̂s + inf
a∈[0,amax]

{ks(Bs, a)− bs(Bs, a)Zs}

)
ds

+

∫ t

0

(
1

2
α̂sΓs − inf

α∈[αA,αA]

{
1

2
αΓs

})
ds+

∫ t

0
Zsα̂

1/2
s dWs,

which one can then interpret as controlled diffusions processes, with controls (Z,Γ), chosen by the

principal, and α, chosen by the "Nature". The HJBI equation then writes





∂tv(t, x, y) + sup
(z,γ)∈R2

inf
α∈[αP ,αP ]

{
bt(x, a

⋆
t (x, z))∂xv(t, x, y) +

(
RA

2
αz2 + kt(x, a

⋆
t (x, z)) +

1

2
αγ

− inf
α̃∈[αA,αA]

{
1

2
α̃γ

})
∂yv(t, x, y) +

1

2
α∂xxv(t, x, y)

+
1

2
αz2∂yyv(t, x, y) + αz∂xyv(t, x, y)

}
, (t, x, y) ∈ [0, T )× R2,

v(T, x, y) = UP (x− y), (x, y) ∈ R2,

(5.1)
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where a⋆t (x, z) is the unique (for simplicity)7 minimizer of the map a 7−→ kt(x, a) − bt(x, a)z. We

then expect to have the link U
P
0 = v(0, 0, R0). We could next try to study the above equation, and,

for instance, find a smooth solution which would allow us to use a verification type argument to

identify it with the value function of the principal. We believe nonetheless that such an approach

should probably be used on a case by case basis.

5.2 More general utility functions

Another possible generalization would be to go beyond the case of exponential utility functions

for the principal and the agent. As usual, if the utility of the agent is separable (that is to say if

the cost comes out of the utility), then the 2BSDE characterization of his value function would

still hold. The main problem would then be to solve the principal problem. Once again, one could

write down an HJBI equation similar to the one above and try to study it.

6 Conclusion and summary table

Q :=
{
ξ ∈ C, ξ = zBT +

γ

2
〈B〉T + δ, (z, γ, δ) ∈ R3

}

Qγ :=
{
ξ⋆ ≡ (z⋆, γ⋆, δ⋆) ∈ Q, z⋆ =

RP

RA +RP
, γ⋆ ≥ RA|z

⋆|2,

δ⋆ = Tk(a⋆)−
RP

RA +RP
Ta⋆ +

αPT

2

(
RAR

2
P

(RA +RP )2
− γ⋆

)
−

1

RA
log(−R)

}

Q|γ| :=
{
ξ⋆ ≡ (z⋆, γ⋆, δ⋆) ∈ Q, z⋆ =

RP

RA +RP
, γ⋆ ∈ [−RP (1− z⋆)2, RA|z

⋆|2],

δ⋆ = Tk(a⋆)−
RP

RA +RP
Ta⋆ +

αPT

2

(
RAR

2
P

(RA +RP )2
− γ⋆

)
−

1

RA
log(−R)

}

Qγ :=
{
ξ⋆ ≡ (z⋆, γ⋆, δ⋆) ∈ Q, z⋆ =

RP

RA +RP
, γ⋆ ≤ −RP (1− z⋆)2,

δ⋆ = Tk(a⋆)−
RP

RA +RP
Ta⋆ +

αPT

2

(
RAR

2
P

(RA +RP )2
− γ⋆

)
−

1

RA
log(−R)

}
.

We set a∗ := argmin {k(a) − a} .

7If the minimizer is not unique, then we assume as usual that the principal has sufficient bargaining power to
make the agent choose the best minimizer for him. This means that one has also to take the supremum over all
minimizers in the Hamiltonian above.
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6.1 Summary table for the first-best problem

Opt. contracts Uniqueness Effort Worst PP Worst PA

αP < αA nonlinear ξn s.t. No amax αP αA

Theorem 3.1(i) UP
0 (ξn) −→

n→+∞
0

αA = αP Qγ No a⋆ αP αA

Theorem 3.2(i)

αA < αP < αA Qu Yes a⋆ αP [αA, αA]

Theorem 3.2(ii)

αP = αA Q|γ| No a⋆ αP αA

Theorem 3.2(iii)

αP = αA Qγ No a⋆ αP αA

Theorem 3.2(iv)

αP < αA < αP Qd Yes a⋆ [αP , αP ] αA

Theorem 3.2(v)

αA < αP nonlinear ξn s.t. No amax αP αA

Theorem 3.1(ii) UP
0 (ξn) −→

n→+∞
0

6.2 Summary table for the second-best problem

For any α ≥ 0 we set

z∗(α) :=
1 + kαRP

1 + αk(RA +RP )
,

and

γ∗ := −RA(z
∗(αA))2 −RP (1− z∗(αA))2.

For any z ∈ R,

a∗(z) := argmin
a∈[0,amax]

{k(a)− az} =
z

k
.
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Opt. contracts Uniqueness Effort Worst PP Worst PA

αP < αA Nonlinear ξn s.t. No 0 αP αA

Theorem 4.1(iii) UP
0 (ξn) →

n→+∞
0

αA ≤ αP < αA Linear contract Yes a∗(z∗(αP )) αP [αA, αA]

Theorem 4.1(i) (R0, z
∗(αP ), 0)

αP = αA (R0, z
∗(αP ), 0) No a∗(z∗(αP )) αP αA

Theorem 4.1(i), (ii) (R0, z
∗(αP ), γ∗)

αP ≤ αA < αP Non linear Yes a∗(z∗(αA)) [αP , αP ] αA

Theorem 4.1(ii) (R0, z
∗(αA), γ∗)

αA < αP nonlinear ξn s.t. No 0 αP αA

Theorem 3.1(ii) UP
0 (ξn) →

n→+∞
0

A Appendix

Proof of Lemma 3.1. Let a ∈ Adet and ξ ≡ (z, γ, δ) ∈ Q. We compute on the one hand

inf
P∈Pa

P

EP [UP (BT − ξ)] = inf
P∈Pa

P

EP
[
−e−RP (BT (1−z)− γ

2

∫ T
0 αP

sds−δ)
]

= −eRP (δ−(1−z)
∫ T
0 asds) sup

P∈Pa
P

EP

[
E

(
−RP (1− z)

∫ T

0
(αP

s )
1
2 dW a

s

)
e

RP
2 (RP (1−z)2+γ)

∫ T
0 αP

sds

]
.

Hence, using the fact that the stochastic exponential appearing above is a true martingale under

any P ∈ Pa
P , we deduce easily that

inf
P∈Pa

P

EP [UP (BT − ξ)] =





ΓP (a, z, γ, δ, α
P ), if γ < −RP (1− z)2

ΓP (a, z, γ, δ, α
P ), if γ > −RP (1− z)2

EP [UP (BT − ξ)] , ∀P ∈ Pa
P if γ = −RP (1− z)2.

(A.1)

We compute on the other hand

inf
P∈Pa

A

EP

[
UA

(
ξ −

∫ T

0
k(as)ds

)]

= inf
P∈Pa

A

EP
[
−e−RA(zBT+ γ

2

∫ T
0

αP
sds+δ−

∫ T
0

k(as)ds)
]

= −eRA(
∫ T
0 k(as)ds−δ−z

∫ T
0 asds) sup

P∈Pa
P

EP

[
E

(
−RAz

∫ T

0
(αP

s )
1
2 dW a

s

)
e
RA

(
RAz2

2
− γ

2

)∫ T
0

αP
sds
]
.
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Hence,

inf
P∈Pa

A

EP

[
UA

(
ξ −

∫ T

0
k(as)ds

)]
=





ΓA(a, z, γ, δ, α
A), if γ < RAz

2,

ΓA(a, z, γ, δ, α
A), if γ > RAz

2,

EP

[
UA

(
ξ −

∫ T

0
k(as)ds

)]
, ∀P ∈ Pa

A if γ = RAz
2.

(A.2)

By combining (A.1) and (A.2) and using the definition (3.4), we conclude the proof of the lemma.

Proof of Lemma 3.2. Let (a, z, γ, αP , αA) ∈ A×R×R× [αP , αP ]× [αA, αA]. First notice that the

map δ 7−→ F (a, z, γ, δ, αP , αA) is clearly concave (we remind the reader that ρ > 0). Using the

first order condition for δ, we obtain after some calculations

∂F

∂δ
(z, γ, δ, αP , αA) = 0

⇐⇒ ΓP (z, γ, δ, αP ) = ρ
RA

RP
ΓA(z, γ, δ, αA)

⇐⇒ δ =
1

RA +RP

[
log

(
ρ
RA

RP

)
+ (RP (1− z)−RAz)

∫ T

0
asds+RA

∫ T

0
k(as)ds

−
RP

2
(RP (1− z)2 + γ)αPT +

RA

2

(
RAz

2 − γ
)
αAT

]
,

which ends the proof.

Proof of Lemma 3.3. (i) From Lemma 3.1(i) together with Lemma 3.2, we have

sup
a∈Adet

sup
ξ∈Qγ

inf
P∈Pa

P

EP [UP (BT − ξ)] + ρ inf
P∈Pa

A

EP

[
UA

(
ξ −

∫ T

0
k(as)ds

)]

= sup
a∈Adet

sup
z∈R

sup
γ<−RP (1−z)2

F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA),

where

δ⋆(z, γ, αP , αA) :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+

∫ T

0
((RP (1− z)−RAz)as +RAk(as)) ds

−
RP

2
(RP (1− z)2 + γ)αPT +

RA

2

(
RAz

2 − γ
)
αAT

]
,

and where we recall that then

F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

e
RARP
RA+RP

(
∫ T
0 (k(as)−as)ds+

γ
2
T (αP−αA))

× e
RARP
RA+RP

T
2 (α

PRP (1−z)2+αARAz2)
.

a) Assume that αP < αA. Then γ 7−→ F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA) is increasing for

γ < −RP (1− z)2 and is thus maximal at γ⋆(z) := −RP (1− z)2. Hence, by setting

δ⋆(z) :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+ (RP (1− z)−RAz)

∫ T

0
asds+RA

∫ T

0
k(as)ds

+
RAT

2

(
RAz

2 +RP (1− z)2
)
αA

]
,
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we have

sup
a∈Adet

sup
z∈R

sup
γ<−RP (1−z)2

F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA)

= sup
a∈Adet

sup
z∈R

F (a, z, γ⋆(z), δ⋆(z), αP , αA),

with

F (a, z, γ⋆(z), δ⋆(z), αP , αA)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

e
RARP
RA+RP

(
∫ T
0
(k(as)−as)ds+

T
2
αA(RP (1−z)2+RAz2))

.

Hence, by choosing z⋆ := RP
RA+RP

, a⋆ the constant minimiser of k(a)− a, γ⋆ = −RP (1− z⋆)2 and

δ⋆ := δ⋆(z⋆) =
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆) +
R2

ARPT

2(RA +RP )
αA

]
,

we have

sup
a∈Adet

sup
ξ∈Qγ

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, αP , αA)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

exp

(
RARP

RA +RP
T (k(a⋆)− a⋆) +

T

2

R2
AR

2
P

(RA +RP )2
αA

)
.

b) Assume that αP = αA =: α̃. Then γ 7−→ F (a, z, γ, δ⋆(z, γ, α̃, α̃), α̃, α̃) is constant for γ <

−RP (1− z)2. Hence for any γ < −RP (1− z)2

sup
a∈Adet

sup
z∈R

sup
γ<−RP (1−z)2

F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA)

= sup
a∈Adet

sup
z∈R

F (a, z, γ, δ⋆(z, γ, α̃, α̃), α̃),

where

δ⋆(z, γ, α̃) :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+ (RP (1− z)−RAz)

∫ T

0
asds+RA

∫ T

0
k(as)ds

(R2
Az

2 −R2
P (1− z)2)α̃

T

2

]
−

γ

2
α̃T,

and

F (a, z, γ, δ⋆(z, γ), α̃, α̃)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

e
RARP
RA+RP

(
∫ T
0 (k(as)−as)ds+

T
2
α̃(RP (1−z)2+RAz2))

.

Hence, by choosing z⋆ := RP
RA+RP

, a⋆ the constant minimiser of k(a) − a, for γ⋆ any value in

(−∞,−RP (1− z⋆)2) and

δ⋆ := δ⋆(z⋆, γ⋆) =
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆)

]
−

γ⋆

2
α̃T,
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we have

sup
a∈Adet

sup
ξ∈Qγ

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, α̃, α̃)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

exp

(
RARPT

RA +RP

(
k(a⋆)− a⋆ +

RARP

2(RA +RP )
α̃

))
.

(ii) From Lemma 3.1(ii)a), together with Lemma 3.2, we have for any αP ∈ [αP , αP ]

sup
a∈Adet

sup
ξ∈Qd

ũP,FB
0 (a, ξ) = sup

a∈Adet

sup
z∈R

F (a, z, γ⋆, δ⋆(z, γ⋆, αA), αP , α
A),

where γ⋆ = −RP (1− z)2, and

δ⋆(z, γ⋆, αA) :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+ (RP (1− z)−RAz)

∫ T

0
asds+RA

∫ T

0
k(as)ds

+
RA

2

(
RAz

2 +RP (1− z)2
)
αAT

]
,

with also

F (a, z, γ⋆, δ⋆(z, γ, αA), αP , α
A)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

e
RARP
RA+RP

(
∫ T
0
(k(as)−as)ds+

T
2
αA(RP (1−z)2+RAz2))

,

which does not depend on αP . Hence, by choosing z⋆ := RP
RA+RP

, a⋆ the constant minimiser of

k(a)− a, γ⋆ = −RP (1− z⋆)2 and

δ⋆ :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆) +
R2

ARPT

2(RA +RP )
αA

]
,

we have

sup
a∈Adet

sup
ξ∈Qd

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, αP , α

A)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

exp

(
RARPT

RA +RP

(
k(a⋆)− a⋆ +

RARP

2(RA +RP )
αA

))
.

(iii) From Lemma 3.1(ii)b) together with Lemma 3.2, we have

sup
a∈Adet

sup
ξ∈Q|γ|

ũP,FB
0 (a, ξ) = sup

a∈Adet

sup
z∈R

sup
−RP (1−z)2<γ<RAz2

F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA),

where

δ⋆(z, γ, αP , αA) :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+

∫ T

0
((RP (1− z)−RAz)as +RAk(as)) ds

−
RP

2
(RP (1− z)2 + γ)αPT +

RA

2

(
RAz

2 − γ
)
αAT

]
,
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and with

F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

e
RARP
RA+RP

(
∫ T
0 (k(as)−as)ds+

γ
2
T (αP−αA))

× e
RARP
RA+RP

T
2 (α

PRP (1−z)2+αARAz2)
.

a) Assume that αP < αA. Then γ 7−→ F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA) is increasing for

−RP (1− z)2 < γ < RAz
2 and is maximal at γ⋆(z) := RAz

2. Hence, by setting

δ⋆(z) :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+ (RP (1− z)−RAz)

∫ T

0
asds+RA

∫ T

0
k(as)ds

−
RPT

2

(
RAz

2 +RP (1− z)2
)
αP

]
,

we have

sup
a∈Adet

sup
z∈R

sup
−RP (1−z)2<γ<RAz2

F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA)

= sup
a∈Adet

sup
z∈R

F (a, z, γ⋆(z), δ⋆(z), αP , αA),

with

F (a, z, γ⋆(z), δ⋆(z), αP , αA)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

e
RARP
RA+RP

(
∫ T
0
(k(as)−as)ds+

T
2
αP (RP (1−z)2+RAz2))

.

Hence, by choosing z⋆ := RP
RA+RP

, a⋆ the constant minimiser of k(a)− a, γ⋆ = RA|z
⋆|2 and

δ⋆ := δ⋆(z⋆) =
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆)−
RAR

2
PT

2(RA +RP )
αP

]
,

we have

sup
a∈Adet

sup
ξ∈Q|γ|

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, αP , αA)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

exp

(
RARP

RA +RP
T (k(a⋆)− a⋆) +

T

2

R2
AR

2
P

(RA +RP )2
αP

)
.

b) Assume that αP = αA =: α. Then γ 7−→ F (a, z, γ, δ⋆(z, γ, α, α), α, α) is constant for

−RP (1− z)⋆ < γ < RAz
2. Hence for any γ ∈ (−RP (1− z)2, RAz

2)

sup
a∈Adet

sup
z∈R

sup
γ∈(−RP (1−z)2,RAz2)

F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA)

= sup
a∈Adet

sup
z∈R

F (a, z, γ, δ⋆(z, γ), α, α),

where

δ⋆(z, γ) :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+ (RP (1− z)−RAz)

∫ T

0
asds +RA

∫ T

0
k(as)ds

+(RAz
2 −RP (1− z)2)α

T

2

]
−

γ

2
αT,
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and with

F (a, z, γ, δ⋆(z, γ), α, α)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP
e

RARP
RA+RP

(
∫ T
0 (k(as)−as)ds+

T
2
α(RP (1−z)2+RAz2))

.

Hence, by choosing z⋆ := RP
RA+RP

, a⋆ the constant minimiser of k(a) − a, any γ⋆ ∈ (−RP (1 −

z)2, RAz
2) and

δ⋆ := δ⋆(z⋆, γ⋆) =
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆)

]
−

γ⋆

2
αT,

we have

sup
a∈Adet

sup
ξ∈Qγ

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, α, α)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

exp

(
RARPT

RA +RP

(
(k(a⋆)− a⋆) +

RARP

2(RA +RP )
α

))
.

c) Assume that αP > αA. The proof is exactly the same as in the case αP < αA, and we obtain,

with z⋆ = RP
RA+RP

, γ⋆ = −RP (1 − z⋆)2, and

δ⋆ :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆) +
R2

ARPT

2(RA +RP )
αA

]
,

that

sup
a∈Adet

sup
ξ∈Qu

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, αP , αA)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

exp

(
RARP

RA +RP
T (k(a⋆)− a⋆) +

T

2

R2
AR

2
P

(RA +RP )2
αA

)
.

(iv) The proof is similar to the case (ii). It suffices to change αA into αP and choose γ⋆ = RA|z
⋆|2.

(v) From Lemma 3.1(iii) together with Lemma 3.2, we have

sup
a∈Adet

sup
ξ∈Qγ

ũP,FB
0 (a, ξ) = sup

a∈Adet

sup
z∈R

sup
γ>RAz2

F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA),

where

δ⋆(z, γ, αP , αA) :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+

∫ T

0
((RP (1− z)−RAz)as +RAk(as)) ds

−
RP

2
(RP (1− z)2 + γ)αPT +

RA

2

(
RAz

2 − γ
)
αAT

]
,

and with

F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

e
RARP
RA+RP

(
∫ T
0 (k(as)−as)ds+

γ
2
T (αP−αA))

× e
RARP
RA+RP

T
2 (α

PRP (1−z)2+αARAz2)
.
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a) Assume that αP = αA =: α̌. Then γ 7−→ F (a, z, γ, δ⋆(z, γ, α̌, α̌), α̌, α̌) is constant for

γ > RAz
2. Hence for any γ > RAz

2

sup
a∈Adet

sup
z∈R

sup
γ>RAz2

F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA)

= sup
a∈Adet

sup
z∈R

F (a, z, γ, δ⋆(z, γ), α̌, α̌),

where

δ⋆(z, γ) :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+ (RP (1− z)−RAz)

∫ T

0
asds +RA

∫ T

0
k(as)ds

+(RAz
2 −RP (1− z)2)α̌

T

2

]
−

γ

2
α̌T,

and

F (a, z, γ, δ⋆(z, γ), α̌, α̌)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP
e

RARP
RA+RP

(
∫ T
0 (k(as)−as)ds+

T
2
α̌(RP (1−z)2+RAz2))

.

Hence, by choosing z⋆ := RP
RA+RP

, a⋆ the constant minimiser of k(a)− a, any γ⋆ > RA|z
⋆|2 and

δ⋆ := δ⋆(z⋆, γ⋆) =
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆)

]
−

γ⋆

2
α̌T,

we have

sup
a∈Adet

sup
ξ∈Qγ

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, α̌, α̌)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

exp

(
RARPT

RA +RP

(
(k(a⋆)− a⋆) +

RARP

2(RA +RP )
α̌

))
.

b) Assume that αP > αA. Then γ 7−→ F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA) is decreasing for

γ > RAz
2 and is maximal at γ⋆(z) := RAz

2. Hence, by setting

δ⋆(z) :=
1

RA +RP

[
log

(
ρ
RA

RP

)
+ (RP (1− z)−RAz)

∫ T

0
asds+RA

∫ T

0
k(as)ds

−
RPT

2

(
RAz

2 +RP (1− z)2
)
αP

]
,

we have

sup
a∈Adet

sup
z∈R

sup
γ>RAz2

F (a, z, γ, δ⋆(z, γ, αP , αA), αP , αA)

= sup
a∈Adet

sup
z∈R

F (a, z, γ⋆(z), δ⋆(z), αP , αA),

with

F (a, z, γ⋆(z), δ⋆(z), αP , αA)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

e
RARP
RA+RP

(
∫ T
0 (k(as)−as)ds+

T
2
αP (RP (1−z)2+RAz2))

.
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Hence, by choosing z⋆ := RP
RA+RP

, a⋆ the constant minimiser of k(a)− a, γ⋆ = RA|z
⋆|2 and

δ⋆ := δ⋆(z⋆) =
1

RA +RP

[
log

(
ρ
RA

RP

)
+RATk(a

⋆)−
RAR

2
PT

2(RA +RP )
αP

]
,

we have

sup
a∈Adet

sup
ξ∈Qγ

ũP,FB
0 (a, ξ) = F (a⋆, z⋆, γ⋆, δ⋆, αP , αA)

= −ρ
RP

RA+RP
RA +RP

RP

(
RA

RP

)−
RA

RA+RP

exp

(
RARP

RA +RP
T (k(a⋆)− a⋆) +

T

2

R2
AR

2
P

(RA +RP )2
αP

)
.

Proof of Lemma 3.4. For any a ∈ A, let us define ξa := z⋆BT + γ⋆

2 〈B〉T + δ⋆(a) where γ⋆ ∈ R,

z⋆ =
RP

RA +RP
, δ⋆(a) :=

1

RA +RP

(
log

(
ρ
RA

RP

)
+RA

∫ T

0
k(as)ds

)
+ λ, λ ∈ R.

Then, for any h ∈ Mφ

D̃ΞαP ,αA
a (ξa)[h]

= EP0

[
RPh(X

a,αP
· )e

−RP

(∫ T
0

as(X
a,αP
· )ds+αP

1
2 BT−ξa(X

a,αP
· )

)

−RAh(X
a,αA
· )ρe−RA(ξa(Xa,A

· )−
∫ T
0 k(as(X

a,αA
· ))ds)

]

= EP0

[
RPh(X

a,αP
· )e

−RP

(
RA

RA+RP

∫ T
0 as(X

a,αp
· )ds+αP

1
2

RA
RA+RP

BT− γ⋆

2
αP T−δ⋆(a))

)

−RAh(X
a,αA
· )ρe

−RA

(
RP

RA+RP
α

1
2
ABT+

RP
RA+RP

∫ T
0 as(X

a,αA
· )ds+ γ⋆

2
αAT+δ⋆(a)−

∫ T
0 k(as(X

a,αA
· ))ds

)]

= RP

(
ρ
RA

RP

) RP
RA+RP

(
EP

αP
0

[
h(Xa,αP

· )e
−

RARP
RA+RP

∫ T
0
(as(X

a,αP
· )−k(as(X

a,αP
· )))ds+RP

(
γ⋆

2
αP T+λ

)
+

R2
PR2

A
2(RA+RP )2

αP T

− EP
αA
0

[
h(Xa,αA

· )e
−

RARP
RA+RP

∫ T
0 (as(X

a,αA
· )−k(as(X

a,αA
· )))ds+RA

(
γ⋆

2
αAT+λ

)
+

R2
PR2

A
2(RA+RP )2

αAT

)
, (A.3)

where
dPαP

0

dP0
:= E

(
−
RPRA(αP )

1
2

RA +RP
BT

)
,
dPαA

0

dP0
:= E

(
−
RPRA(αA)

1
2

RA +RP
BT

)
.

Assume that αP = αA =: α. Then, if RA = RP or if RA 6= RP and Property (3.7) holds then we

automatically have

D̃ΞαP ,αA
a (ξ)[h − ξa] = 0,

which proves the first result.
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