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Behavioral regulation and the modulation of information 
coding in the lateral prefrontal and cingulate cortex 

 
M. Khamassi, R. Quilodran, P. Enel, P.F. Dominey, E. Procyk 

 
  
 

 
To explain the high level of flexibility in primate decision-making, theoretical models often invoke 

reinforcement-based mechanisms, performance monitoring functions, and core neural features 

within frontal cortical regions. However, the underlying biological mechanisms remain unknown. 

In recent models, part of the regulation of behavioral control is based on meta-learning principles, 

e.g. driving exploratory actions by varying a meta-parameter, the inverse temperature, which 

regulates the contrast between competing action probabilities. Here we investigate how 

complementary processes between lateral prefrontal cortex (LPFC) and dorsal anterior cingulate 

cortex (dACC) implement decision regulation during exploratory and exploitative behaviors. 

Model-based analyses of unit activity recorded in these two areas in monkeys first revealed that 

adaptation of the decision function is reflected in a covariation between LPFC neural activity and 

the control level estimated from the animal's behavior. Second, dACC more prominently encoded a 

reflection of outcome uncertainty useful for control regulation based on task monitoring. Model-

based analyses also revealed higher information integration before feedback in LPFC, and after 

feedback in dACC. Overall the data support a role of dACC in integrating reinforcement-based 

information to regulate decision functions in LPFC. Our results thus provide biological evidence on 

how prefrontal cortical subregions may cooperate to regulate decision-making.  

 

INTRODUCTION 

When searching for resources, animals can adapt their choices by reference to the recent history 

of successes and failures. This progressive process leads to improved predictions of future outcomes 

and to the adjustment of action values. However, to be efficient, adaptation requires dynamic 

modulations of behavioral control, including a balance between choices known to be rewarding 

(exploitation), and choices with unsure, but potentially better, outcome (exploration). 

The prefrontal cortex is required for the organization of goal-directed behavior (Miller and Cohen 

2001; Wilson et al. 2010) and appears to play a key role in regulating exploratory behaviors (Daw N. 

D. et al. 2006; Cohen J. D. et al. 2007; Frank et al. 2009). The lateral prefrontal cortex (LPFC) and the 
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dorsal anterior cingulate cortex (dACC, or strictly speaking the midcingulate cortex, (Amiez et al. 

2013)) play central roles, but it is unclear which mechanisms underlie the decision to explore and how 

these prefrontal subdivisions participate.  

Computational solutions often rely on the meta-learning framework, where shifting between 

different control levels (e.g. shifting between exploration and exploitation) is achieved by dynamically 

tuning meta-parameters based on measures of the agent’s performance (Doya 2002; Ishii et al. 2002; 

Schweighofer and Doya 2003). When applied to models of prefrontal cortex’s role in exploration 

(McClure et al. 2006; Cohen J. D. et al. 2007; Krichmar 2008; Khamassi et al. 2011), this principle 

predicts that the expression of exploration is associated with decreased choice-selectivity in the LPFC 

(flat action probability distribution producing stochastic decisions) while exploitation is associated 

with increased selectivity (peaked probability distribution resulting in a winner-take-all effect). 

However, such online variations during decision-making have yet to be shown experimentally. 

Moreover, current models often restrict the role of dACC to conflict monitoring (Botvinick et al. 2001) 

neglecting its involvement in action valuation (MacDonald et al. 2000; Kennerley et al. 2006; 

Rushworth and Behrens 2008; Seo and Lee 2008; Alexander W.H. and Brown 2010; Kaping et al. 

2011). dACC activity shows correlates of adjustment of action values based on measures of 

performance such as reward prediction errors (Holroyd and Coles 2002; Amiez et al. 2005; 

Matsumoto et al. 2007; Quilodran et al. 2008), outcome history (Seo and Lee 2007), and error-

likelihood (Brown and Braver 2005). Variations of activities in dACC and LPFC between exploration 

and exploitation suggest that both structures contribute to the regulation of exploration (Procyk et al. 

2000; Procyk and Goldman-Rakic 2006; Landmann et al. 2007; Rothe et al. 2011).  

The present work assessed the complementarity of dACC and LPFC in behavioral regulation. We 

previously developed a neurocomputational model of the dACC-LPFC system to synthesize the data 

reviewed above (Khamassi et al. 2011; Khamassi et al. 2013). One important feature of the model was 

to include a regulatory mechanism by which the control level is modulated as a function of changes in 

the monitored performance. As reviewed above such a regulatory mechanism should lead to changes 

in prefrontal neural selectivity. This work thus generated experimental predictions that are tested 

here on actual neurophysiological data.  

We recorded LPFC single-unit activities and made comparative model-based analyses with these 

data and dACC recordings that had previously been analyzed only at the time of feedback (Quilodran 

et al. 2008). We show that information related to different model variables (reward prediction errors, 

action values, and outcome uncertainty) are multiplexed in different trial epochs both in dACC and 

LPFC, with higher integration of information before the feedback in LPFC, and after the feedback in 

dACC. Moreover LPFC activity displays higher mutual information with the animal’s choice than dACC, 
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supporting its role in action selection. Importantly, as predicted by prefrontal cortical models, we 

observe that LPFC choice selectivity co-varies with the control level measured from behavior. Taken 

together with recent data (Behrens et al. 2007; Rushworth and Behrens 2008), our results suggest 

that the dACC-LPFC diad is implicated in the online regulation of learning mechanisms during 

behavioral adaptation, with dACC integrating reinforcement-based information to regulate decision 

functions in LPFC. 

 

MATERIAL & METHODS 

Monkey housing, surgical, electrophysiological and histological procedures were carried out 

according to the European Community Council Directive (1986) (Ministère de l’Agriculture et de la 

Forêt, Commission nationale de l’expérimentation animale) and Direction Départementale des 

Services Vétérinaires (Lyon, France).  

Experimental set up. Two male rhesus monkeys (monkeys M and P) were included in this 

experiment. During recordings animals were seated in a primate chair (Crist Instrument Company 

Inc., USA) within arm’s reach of a tangent touch-screen (Microtouch System) coupled to a TV 

monitor. In the front panel of the chair, an opening allowed the monkey to touch the screen with one 

hand. A computer recorded the position and accuracy of each touch. It also controlled the 

presentation via the monitor of visual stimuli (colored shapes), which served as visual targets 

(CORTEX software, NIMH Laboratory of Neuropsychology, Bethesda, Maryland). Eye movements 

were monitored using an Iscan infrared system (Iscan Inc., USA).  

Problem Solving task. We employed a Problem Solving task (PS task; Fig. 1A) where the subject 

has to find by trial and error which of four targets is rewarded. A typical problem started with a 

Search period where the animal performed a series of incorrect search trials (INC) until the discovery 

of the correct target (first correct trial, CO1). Then a Repetition period was imposed where the animal 

could repeat the same choice during a varying number of trials (between 3 and 11 trials) to reduce 

anticipation of the end of problems. At the end of repetition, a Signal to Change (SC; a red flashing 

circle of 8 cm in diameter at the center of screen) indicated the beginning of a new problem, i.e. that 

the correct target location would change with a 90% probability. 

Each trial was organized as follows: a central target (lever) is presented which is referred to as trial 

start (ST); the animal then touches the lever to trigger the onset of a central white square which 

served as fixation point (FP). After an ensuing delay period of about 1.8 s (during which the monkey is 

required to maintain fixation on the FP), four visual target items (disks of 5mm in diameter) are 

presented and the FP is extinguished. The monkey then has to make a saccade towards the selected 

target. After the monkey has fixated on the selected target for 390 ms, all the targets turn white (go 
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signal), indicating that the monkey can touch the chosen target. Targets turn grey at touch for 600ms 

and then switch off. At offset, a juice reward is delivered after a correct touch. In the case of an 

incorrect choice, no reward is given, and in the next trial the animal can continue his search for the 

correct target. A trial is aborted in case of a premature touch or a break in eye fixation. 

Behavioral data. Performance in search and repetition periods was measured using the average 

number of trials performed until discovery of the correct target (including first correct trial) and the 

number of trials performed to repeat the correct response three times, respectively. Different types 

of trials are defined in a problem. During search the successive trials were labeled by their order of 

occurrence (indices: 1, 2, 3, …, until the first correct trial). Correct trials were labeled CO1, CO2, … and 

COn. Arm reaction times and movement times were measured on each trial. Starting and ending 

event codes defined each trial. 

Series of problems are grouped in sessions. A session corresponds to one recording file that 

contain data acquired for several hours (during behavioral sessions) to several tens of minutes (during 

neurophysiological recordings corresponding to one site and depth). 

Electrophysiological recordings. Monkeys were implanted with a head-restraining device, and a 

magnetic resonance imaging-guided craniotomy was performed to access the prefrontal cortex. A 

recording chamber was implanted with its center placed at stereotaxic anterior level A+31. Neuronal 

activity was recorded using epoxy-coated tungsten electrodes. Recording sites labeled dACC covered 

an area extending over about 6 mm (anterior to posterior), in the dorsal bank and fundus of the 

anterior part of the cingulate sulcus, at stereotaxic levels superior to A+30 (Fig. 1B). This region is at 

the rostral level of the mid-cingulate cortex as defined by Vogt and colleagues (Vogt et al. 2005). 

Recording sites in LPFC were located mostly on the posterior third of the principal sulcus.  

Data analyses 

All analyses were performed using Matlab (The Mathworks, Natick, MA). 

Theoretical model for model-based analysis. We compared the ability of several different 

computational models to fit trial-by-trial choices made by the animals. The aim was to select the best 

model to analyze neural data. The models tested (see list below) were designed to evaluate which 

among several computational mechanisms were crucial to reproduce monkey behavior in this task. 

The mechanisms are: 

a) Elimination of non-rewarded targets tested by the animal during the search period. This 

mechanism could be modeled in many different ways, e.g. using Bayesian models or 

reinforcement learning models. In order to keep our results comparable and includable within 

the framework used by previous similar studies (e.g. Matsumoto et al., 2007; Seo and Lee, 2009; 

Kennerley and Walton, 2011), we used reinforcement learning models (which would work with 
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high learning rates – i.e. close to 1 – in this task) while noting that this would be equivalent to 

models performing logical elimination of non-rewarded targets or models using a Bayesian 

framework for elimination. This mechanism is included in Models 1-10 in the list below. 

b) Progressive forgetting that a target has already been tested. This mechanism is included in 

Models 2-7 and 9-10. 

c) Reset after the Signal to Change. This would represent information about the task structure and 

is included in Models 3-12. Among these models, some (i.e. Models 4,6-10) also tend not to 

choose the previously rewarded target (called ‘shift’ mechanism), and some (i.e. Models 5-10) 

also include spatial biases for the first target choice within a problem (called ‘bias’ mechanism). 

d) Change in the level of control from search to repetition period (after the first correct trial). This 

would represent other information about the task structure and is included in Models 9 and 10 

(i.e. GQLSB2β and SBnoA2β). 

 

List of tested models: 

1. Model QL (Q-learning) 

We first tested a classical Q-learning (QL) algorithm which implements action valuation based on 

standard reinforcement learning mechanisms (Sutton and Barto 1998). The task involving 4 possible 

targets on the touch screen (upper-left: 1, upper-right: 2, lower-right: 3, lower-left: 4, Fig. 1C), the 

model had 4 possible action values (i.e. Q1, Q2, Q3 and Q4 corresponding to the respective values 

associated with choosing target 1, 2, 3 and 4 respectively). 

At each trial, the probability of choosing target a was computed by a Boltzmann softmax rule for 

action selection:  

    
  tβQ

tβQ
=tP

b
b

a
a exp

exp  (1) 

where the inverse temperature meta-parameter β (0 < β) regulates the exploration level. A small β 

leads to very similar probabilities for all targets (flat probability distribution) and thus to an 

exploratory behavior. A large β increases the contrast between the highest value and the others 

(peaked probability distribution), and thus produces an exploitative behavior. 

At the end of the trial, after choosing target ai, the corresponding value is compared with the 

presence/absence of reward so as to compute a Reward Prediction Error (RPE) (Schultz et al. 1997): 

 tQtrt a )1()1(  (2) 

where r(t) is the reward function modeled as being equal to 1 at the end of the trial in the case of 

success, and -1 in the case of failure. The reward prediction error signal δ(t) is then used to update 

the value associated to the chosen target: 
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    )1(1  tα+tQtQ aa   (3) 

where α is the learning rate.  Thus the QL model employs 2 free meta-parameters: α and β. 

2. Model GQL (Generalized Q-learning) 

We also tested a generalized version of Q-learning (GQL) (Barraclough et al. 2004; Ito and Doya 

2009) which includes a forgetting mechanism by also updating values associated to each non chosen 

target b according to the following equation: 

  )(1)()1( 0 tQQtQtQ bbb    (4) 

where κ is a third meta-parameter called the forgetting rate  10  , and Q0 is the initial Q-value. 

3. Model GQLnoSnoB (GQL with reset of Q values at each new problem; no shift, no bias) 

Since animals are over-trained on the PS task, they tend to learn the task structure: the 

presentation of the Signal to Change (SC) on the screen is sufficient to let them anticipate that a new 

problem will start and that most probably the correct target will change. In contrast, the two above-

mentioned reinforcement learning models tend to repeat previously rewarded choices. We thus 

tested an extension of these models where the values associated to each target are reset to [0 0 0 0] 

at the beginning of each new problem (Model GQLnoSnoB). 

4. Model GQLSnoB (GQL with reset including shift in previously rewarded target; no bias) 

We also tested a version of the latter model where, in addition, the value associated to the 

previously rewarded target has a probability PS of being reset to 0 at the beginning of the problem, PS 

being the animal’s average probability of shifting from the previously rewarded target as measured 

from the previous session  95.0P85.0 S  (Fig. 2A- middle). This model including the shifting 

mechanism is called GQLSnoB and has 3 free meta-parameters. 

5. Model GQLBnoS (GQL with reset based on spatial biases; no shift) 

In the fifth tested model (Model GQLBnoS), instead of using such a shifting mechanism, target Q-

values are reset to values determined by the animal’s spatial biases measured during search periods 

of the previous session; for instance, if during the previous session, the animal started 50% of search 

periods by choosing target 1, 25% by choosing 2, 15% by choosing target 3 and the rest of the time 

by choosing target 4, target values were reset to [θ1 ; θ2 ; θ3 ; (1-θ1-θ2-θ3)] where θ1=0.5, θ2=0.25 and 

θ3=0.15 at each new search of the next session. In this manner, Q-values are reset using a rough 

estimate of choice variance during the previous session. These 3 spatial bias parameters are not 

considered as free meta-parameters since they were always determined based on the previous 

behavioral session because they were found to be stable across sessions for each monkey (Fig. 2A- 

right). 

6. Model GQLSB  (GQL with reset including shift in previously rewarded target and spatial biases) 
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We also tested a model which combines both shifting mechanism and spatial biases (Model 

GQLSB ) and thus has 3 free meta-parameters. 

7. Model SBnoA (Shift and Bias but the learning rate α is fixed to 1) 

Since the reward schedule is deterministic (i.e. choice of the correct target provides reward with 

probability 1), a single correct trial is sufficient for the monkey to memorize which target is rewarded 

in a given problem. We thus tested a version of the previous model where elimination of non-

rewarded target is done with a learning rate α fixed to 1 – i.e. no degree of freedom in the learning 

rate in contrast with Model GQLSB. This meta-parameter is usually set to a low value (i.e. close to 0) 

in the Reinforcement Learning framework to enable progressive learning of reward contingencies 

(Sutton and Barto 1998). With α set to 1, the model SBnoA systematically performs sharp changes of 

Q-values after each outcome, a process which could be closer to working memory mechanisms in the 

prefrontal cortex (Collins and Frank 2012). All other meta-parameters are similar as in GQLSB, 

including the forgetting mechanism (Equation 4) which is considered to be not specific to 

Reinforcement Learning but also valid for Working Memory (Collins and Frank, 2012). Model SBnoA 

has 2 free meta-parameters. 

8. Model SBnoF (Shift and Bias but no α and no Forgetting) 

To verify that the forgetting mechanism was necessary, we tested a model where both α and κ are 

set to 1. This model has thus only 1 meta-parameter: β. 

9. Model GQLSB2β (with distinct exploration meta-parameters during search and repetition 

trials: resp. βS and βR) 

To test the hypothesis that monkey behavior in the PS Task can be best explained by two distinct 

control levels during search and repetition periods, instead of using a single meta-parameter β for all 

trials, we used two distinct meta-parameters βS and βR so that the model used βS in Equation 1 

during search trials and βR in Equation 1 during repetition trials. We tested these distinct search and 

repetition βS and βR meta-parameters in Model GQLSB2β which thus has 4 free meta-parameters 

compared to 3 in Model GQLSB. 

10. Model SBnoA2β (with distinct exploration meta-parameters during search and repetition 

trials: resp. βS and βR) 

Similarly to the previous model, we tested a version of Model SBnoA which includes two distinct 

βS and βR meta-parameters for search and repetition periods. Model SBnoA2β thus has 3 free 

meta-parameters.  

11. and 12. Control models: ClockS (Clockwise search + repetition of correct target); RandS 

(Random search + repetition of correct target) 
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We finally tested 2 control models to test the contribution of the value updating mechanisms 

used in the previous models for the elimination of non-rewarded target (i.e. Equation 3 with α used 

as a free meta-parameter in model GQLSB or set to 1 in Model SBnoA). Model ClockS replaces such 

mechanism by performing systematic clockwise searches, starting from the animal’s favorite target – 

as measured in the spatial bias –, instead of choosing targets based on their values, and repeats the 

choice of the rewarded target once it finds it. Model RandS performs random searches and repeats 

choices of the rewarded target once it finds it. 

 

Theoretical model optimization. To compare the ability of models in fitting monkeys’ behavior 

during the task, (1) we first separated the behavioral data into 2 datasets so as to optimize the 

models on the Optimization dataset (Opt) and then perform an out-of-sample test of these models 

on the Test dataset (Test), (2) for each model, we then estimated the meta-parameter set which 

maximized the log-likelihood of monkeys’ trial-by-trial choices in the Optimization dataset given the 

model, (3) we finally compared the scores obtained by the models with different criteria: maximum 

log-likelihood (LL) and percentage of monkeys’ choice predicted (%) on Opt and Test datasets, BIC, 

AIC, Log of posterior probability of models given the data and given priors over meta-parameters 

(LPP). 

 

1. Separation of optimization (Opt) and test (Test) datasets 

We used a cross-validation method by optimizing models’ meta-parameters on 4 behavioral 

sessions (2 per monkey concatenated into a single block of trials per monkey in order to optimize a 

single meta-parameter set per animal; 4031 trials) of the PS task, and then out of sample testing 

these models with the same meta-parameters on 49 other sessions (57336 trials). The out of sample 

test was performed to test models’ generalization ability and to validate which model is best without 

complexity issues. 

 

2. Meta-parameter estimation 

The aim here was to find for each model M the set of meta-parameters θ which maximized the 

log-likelihood LL of the sequence of monkey choices in the Optimization dataset D given M and θ: 

   


,maxarg MDPLogopt   (5) 

   


,max MDPLogLLopt   (6) 

We searched for each model’s LLopt and θopt on the Optimization dataset with two different 

methods: 
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We first sampled a million different meta-parameters sets (drawn from prior distributions over 

meta-parameters such that α,κ are in [0;1], β,βS,βR are in -10log([0;1])). We stored the LLopt score 

obtained for each model and the corresponding meta-parameter set θopt. 

We then performed another meta-parameter search through a gradient-descent method using 

the fminsearch function in Matlab launched at multiple starting points: we started the function from 

all possible combinations of meta-parameters in α,κ in {0.1;0.5;0.9}, β,βS,βR in {1;5;35}. If this method 

gave a better LL score for a given model, we stored it as well as the corresponding meta-parameter 

set. Otherwise, we kept the best LL score and the corresponding meta-parameter set obtained with 

the sampling method for this model. 

 

3. Model comparison 

In order to compare the ability of the different models to accurately fit monkeys’ behavior in the 

task, we used different criteria. As typically done in the literature, we first used the maximized log-

likelihood obtained for each model on the Optimization dataset (LLopt) to compute the Bayesian 

Information Criterion (BICopt) and Akaike Information Criterion (AICopt). We also looked at the 

percentage of trials of the Optimization dataset where each model accurately predicts monkeys’ 

choice (%opt). We performed likelihood ratio tests to compare nested models (e.g. Model SBnoF and 

Model SBnoA). 

To test models’ generalization ability and to validate which model is best without complexity 

issues, we additionally compared models’ log-likelihood on the Test dataset given the meta-

parameters estimated on the Optimization dataset (LLtest), as well as models’ percentage of trials of 

the Test dataset where the model accurately predicts monkeys’ choice given the meta-parameters 

estimated on the Optimization dataset (%test). 

 

 Finally, because comparing the maximal likelihood each model assigns to data can result in 

overfitting, we also computed an estimation of the log of the posterior probability over models on 

the Optimization dataset (LPPopt) estimated with the meta-parameter sampling method previously 

performed (Daw N.D. 2011). To do so, we hypothesized a uniform prior distribution over models 

P(M); we also considered a prior distribution for the meta-parameters given the models P(θ|M), 

which was the distributions from which the meta-parameters were drawn during sampling. With this 

choice of priors and meta-parameter sampling, LPPopt can be written as: 

      


















 



N

i
iopt MDP

N
LogdMDPLogDMPLogLPP

1

,1, 


 
(7) 
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where N is the number of samples drawn for each model. To avoid numerical issues in Matlab 

when computing the exponential of large numbers, LPPopt was computed in practice as: 

      optoptopt LLNLogLLMDPLogLPP 







 



,logexp  
(8) 

Estimating models’ posterior probability given the data can be seen as equivalent as computing a 

“mean likelihood”. And it has the advantage of penalizing both models that have a peaked posterior 

probability distribution (i.e. models with a likelihood which is good at its maximum but which 

decreases sharply as soon as meta-parameters slightly change) and models that have a large number 

of free meta-parameters (Daw N.D. 2011). 

 

Neural data  analyses 

Activity variation between search and repetition. To analyze activity variations of individual 

neurons between the search period and the repetition period, we computed an index of activity 

variation for each cell:  

 

 
 BA

AB
Ia 


  (9) 

A is the cell mean firing rate during the early-delay epoch ([start+0.1s; start+1.1s]) over all trials of 

the search period, and B is the cell’s mean firing rate in the same epoch during all trials of the 

repetition period. 

To measure significant increases or decreases of activity in a given group of neurons, we 

considered the distribution of neurons’ activity variation index. An activity variation was considered 

significant when the distribution had a mean significantly different from 0 using a one-sample t-test 

and a median significantly different from zero using a Wilcoxon Mann-Whitney U-test for zero 

median. Then we employed a Kruskal-Wallis test to compare the distributions of activity during 

search and repetition, corrected for multiple comparison between different groups of neurons 

(Bonferroni correction). 

Choice selectivity. To empirically measure variations in choice selectivity of individual neurons, we 

analyzed neural activities using a specific measure of spatial selectivity (Procyk and Goldman-Rakic 

2006). The activity of a neuron was classified as choice selective when this activity was significantly 

modulated by the identity/location of the target chosen by the animal (one-way ANOVA, p < 0.05). 

The target preference of a neuron was determined by ranking the average activity measured in the 

early-delay epoch ([start+0.1s; start+1.1s]) when this activity was significantly modulated by the 

target choice. We used for each unit the average firing rate ranked by values and herein named 

'preference' (a, b, c, d where a is the preferred and d the least preferred target). The ranking was first 
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used for population data and structure comparisons. For each cell, the activity was normalized to the 

maximum and minimum of activity measured in the repetition period (with normalized activity = 

[activity - min]/[max - min]). 

 Second, to study changes in choice selectivity (tuning) throughout trials during the task, we used 

for each unit the average firing rate ranked by values (a, b, c, d). We then calculated the norm of a 

preference vector using the method of (Procyk and Goldman-Rakic 2006) which is equivalent to 

computing the Euclidean distance within a factor of 2 : We used an arbitrary arrangement in a 

square matrix ቂܽ ܾ
ܿ ݀

ቃ  to calculate the vector norm:   

   dbcaH   and    dcbaV    

 22 VHnorm   

(10) 

For each neuron, the norm was divided by the global mean activity of the neuron (to exclude the 

effect of firing rate in this measure: preventing a cell A that has a higher mean firing rate than a cell B 

to have a higher choice selectivity norm when they are both equally choice selective). 

The value of the preference vector norm was taken as reflecting the strength of choice coding of 

the cell. A norm equal to zero would reflect equal activity for the four target locations. This objective 

measure allows the extraction of one single value for each cell, and can be averaged across cells. 

Finally, to study variations in choice selectivity between search and repetition periods, we computed 

an index of choice selectivity variation for each cell:  

 
 DC

CD
Is 


  (11) 

where C is the cell’s choice selectivity norm during search and D is the cell’s choice selectivity norm 

during repetition.  

To assess significant variations of choice selectivity between search and repetition in a given group 

of neurons (e.g. dACC or LPFC), we used: a t-test to verify whether the mean was different from zero; 

a Wilcoxon Mann-Whitney U- test to verify whether the median was different from zero; then we 

used a Kruskal-Wallis test to compare the distributions of choice selectivity during search and 

repetition, corrected for multiple comparison between different groups of neurons (Bonferroni 

correction). 

To assess whether variations of choice selectivity between search and repetition depended on the 

exploration level β measured in the animal’s behavior by means of the model, we cut sessions into 

two groups: those where β was smaller than the median of β values (i.e. 5), and those where β was 

larger than this median. Thus, in these analyses, repetition periods of a session with β < 5 will be 

considered a relative exploration, and repetition periods of a session with β > 5 will be considered a 

relative exploitation. We then performed two-way ANOVAs (β x task phase) and used a Tukey HSD 
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post hoc test to determine the direction of the significant changes in selectivity with changing 

exploration levels, tested at p=0.05. 

Model-based analysis of single-unit data. To test whether single units encoded information 

related to model computations, we used the following model variables as regressors of trial-by-trial 

activity: the reward prediction error [δ], the action value [Q] associated to each target and the 

outcome uncertainty [U]. The latter is a performance monitoring measure which assesses the 

entropy of the probability over the different possible outcomes (i.e. reward r  versus no reward r ) 

at the current trial t given the set T of remaining targets: 

           TrPTrPTrPTrPtU loglog  . At the beginning of a new problem, when there are 4 

possible targets, U starts at a low value since there is 75% chance of making an error. U increases trial 

after trial during the search period. It is maximal when there remain 2 possible targets because there 

is 50% chance of making an error. Then U drops after either the first rewarded trial or the third error 

trial – because the fourth target is necessarily the rewarded one – and remains at zero during the 

repetition period. We decided to use a regressor with this pattern of change because it is somewhat 

comparable to the description of changes in frontal activity previously observed during the PS task 

(Procyk et al., 2000; Procyk and Goldman-Rakic, 2006). 

We used U as the simplest possible parameter-free performance monitoring regressor for neural 

activity. This was done in order to test whether dACC and LPFC single-unit could reflect performance 

monitoring processes in addition to responding to feedback and tracking target values. But we note 

that the profile of U in this task would not be different from other performance monitoring measures 

such as the outcome history that we previously used in our computational model for dynamic control 

regulation in this task (Khamassi et al. 2011), or such as the vigilance level in the model of Dehaene 

and Changeux (Dehaene et al. 1998) which uses error and correct signals to update a regulatory 

variable (increased after errors and decreased after correct trials). We come back to possible 

interpretations of neural correlates of U in the discussion. 

To investigate how neural activity was influenced by action values [Q], reward prediction errors [δ] 

as well as the outcome uncertainty [U], we performed a multiple regression analysis combined with a 

bootstrapping procedure, focusing our analyses on spike rates during a set of trial epochs (Fig. 1C): 

pre-start (0.5 s before trial start); post-start (0.5 s after trial start); pre-target (0.5 s before target 

onset); post-target (0.5 s after target onset); the action epoch defined as pre-touch (0.5 s before 

screen touch); pre-feedback (0.5 s before feedback onset); early-feedback (0.5 s after feedback 

onset); late-feedback (1.0 s after feedback period); inter-trial-interval (ITI; 1.5 s after feedback onset).  

The spike rate y(t) during each of these intervals in trial t was analyzed using the following 

multiple linear regression model:  
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)()()()()()()( 65443322110 tUttQtQtQtQty    (13) 

where   4...1),( ktQk  are the action values associated to the four possible targets at time t, δ(t) 

is the reward prediction error, U(t) is the outcome uncertainty, and   n...1i,i   are the regression 

coefficients.  

δ, Q and U were all updated once in each trial. δ was updated at the time of feedback, so that 

regression analyses during pre-feedback epochs were done using δ from the previous trial, while 

analyses during post-feedback epochs used the updated δ. Q and U were updated at the end of the 

trial so that regression analyses in all trial epochs were done using the Q-values and U value of the 

current trial. 

Note that the action value functions of successive trials are correlated, because they are updated 

iteratively, and this violates the independence assumption in the regression model. Therefore, the 

statistical significance for the regression coefficients in this model was determined by a permutation 

test. For this, we performed a shuffled permutation of the trials and recalculated the regression 

coefficients for the same regression model, using the same meta-parameters of the model obtained 

for the unshuffled trials. This shuffling procedure was repeated 1000 times (bootstrapping method), 

and the p value for a given independent variable was determined by the fraction of the shuffles in 

which the magnitude of the regression coefficient from the shuffled trials exceeded that of the 

original regression coefficient (Seo and Lee 2009), corrected for multiple comparisons with different 

model variables in different trial epochs (Bonferroni correction). 

To assess the quality of encoding of action value information by dACC and LPFC neurons, we also 

performed a multiple regression analysis on the activity of each neuron related to Q-values after 

excluding trials where the preferred target of the neuron was chosen by the monkey. This analysis 

was performed to test whether the activity of such neurons still encodes Q-values outside trials 

where the target is selected. Similarly, to evaluate the quality of reward prediction error encoding, 

we performed separate multiple regression analyses on correct trials only versus error trials only. 

This analysis was performed to test whether the activity of such neurons quantitatively discriminate 

between different amplitudes of positive reward prediction errors and between different amplitudes 

of negative reward prediction errors. In both cases, the significance level of the multiple regression 

analyses was determined with a bootstrap method and a Bonferroni correction for multiple 

comparisons. 

Finally, to measure possible collinearity issues between model variables used as regressors of 

neural activity, we used Brian Lau’s Collinearity Diagnostics Toolbox for Matlab 

(http://www.subcortex.net/research/code/collinearity-diagnostics-matlab-code (Lau 2014)). We 

extracted the variation inflation factors (VIF) computed with the coefficient of determination obtained 
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when each regressor was expressed as a function of the other regressors. We also computed the 

condition indexes (CONDIND) and variance decomposition factors (VDF) obtained in the same 

analysis. A strong collinearity between regressors was diagnosed when CONDIND ≥ 30 and more than 

two VDFs > 0.5. A moderate collinearity was diagnosed when CONDIND ≥ 10 and more than two VDFs 

> 0.5. CONDIND ≤ 10 indicated a weak collinearity. 

 

Principal component analysis. To determine the degree to which single-unit activity segregated 

or integrated information about model variables, we performed a Principal Component Analysis 

(PCA) on the 3 correlation coefficients   6...4, ii  obtained with the multiple regression analysis 

and relating neural activity with the 3 main model variables (reward prediction error δ, outcome 

uncertainty U, and the action value Qk associated to the animal’s preferred target k). For each trial 

epoch, we pooled the coefficients obtained for all neurons in correlation with these model variables. 

Each principal component being expressed as a linear combination of the vector of correlation 

coefficients of neuron activities with these three model variables, the contribution of different model 

variables to each component gives an idea as to which extent cell activity is explained by an 

integrated contribution of multiple model variables. For instance, if a PCA on cell activity in the early-

delay period produces three principal components that are each dependent on a different single 

model variable (e.g. PC1 = 0.95Q + 0.01δ + 0.04U; PC2 = 0.1Q + 0.8δ + 0.1U; PC3 = 0.05Q + 0.05δ + 

0.9U), then activity variations are best explained by separate influences from the information 

conveyed by the model variables. If in contrast, the PCA produces principal components which 

strongly depend on multiple variables (e.g. PC1 = 0.5Q + 0.49δ + 0.01U; PC2 = 0.4Q + 0.1δ + 0.5U; 

PC3 = 0.2Q + 0.4δ + 0.4U), then variations of the activities are best explained by an integrated 

influence of such information (see Supplementary Figure S1 for illustration of different Principal 

Components resulting from artificially generated data showing different levels of integration 

between model variables). 

We compared the normalized absolute values of the coefficients of the three principal 

components so that a coefficient close to 1 denotes a strong correlation while a coefficient close to 0 

denotes no correlation. To quantify the integration of information about different model variables in 

single-unit activities, for each neuron k, we computed an entropy-like index (ELI) of sharpness of 

encoding of different model variables based on the distributions of regression coefficients between 

cell activities and model variables:  

 
i

iik ccELI log  (14) 

Where ci is the absolute value of the z-scored correlation strength ρi with model variable i. A 

neuron with activity correlated with different model variables with similar strengths will have a high 
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ELI; a neuron with activity highly correlated with only one model variable will have a low ELI. We 

compared the distributions of ELIs between dACC and LPFC in each trial epoch using a Kruskal-Wallis 

test. 

Finally, we estimated the contribution of each model variable to neural activity variance in each 

epoch and compared it between dACC and LPFC. To do so, we first normalized the coefficients for 

each principal component in each epoch. These coefficients being associated to three model 

variables Q, δ and U, this provided us with a contribution of each model variable to each principal 

component in each epoch. We then multiplied them by the contribution of each principal 

component to the global variance in neural activity in each epoch. The result constituted a 

normalized contribution of each model variable to neural activity variance in each epoch. We finally 

computed the entropy-like index (ELI) of these contributions. We compared the set of epoch-specific 

ELI between dACC and LPFC with a Kruskal-Wallis test. 

Mutual information. We measured the mutual information between monkey's choice at each 

trial and the firing rate of each individual recorded neuron during the early-delay epoch ([ST+0.1s; 

ST+1.1s]). The mutual information )R;S(I  was estimated by first computing a confusion matrix (Quian 

Quiroga and Panzeri 2009), relating at each trial t, the spike count from the unit activity in the early-

delay epoch (as “predicting response” R) and the target chosen by the monkey (i.e. 4 targets as 

“predicted stimulus” S). Since neuronal activity was recorded during a finite number of trials, not all 

possible response outcomes of each neuron to each stimulus (target) have been sufficiently sampled. 

This is called the “limited sampling bias” which can be overcome by subtracting a correction term 

from the plug-in estimator of the mutual information (Panzeri et al. 2007). Thus we subtracted the 

Panzeri Treves (PT) correction term (Treves and Panzeri 1995) from the estimated mutual information 

)R;S(I : 

      







 

s
s RR

N
RSIBIAS 11

)2ln(2
1;  

(15) 

Where N is the number of trials during which the unit activity was recorded, R is the number of 

relevant bins among the M possible values taken by the vector of spike counts and computed by the 

“bayescount” routine provided by (Panzeri and Treves 1996), and SR  is the number of relevant 

responses to stimulus (target) s. 

Such measurement of information being reliable only if the activity was recorded during a 

sufficient number of trials per stimulus presentation, we restricted this analysis to units that verified 

the following condition (Panzeri et al. 2007): 

4R/NS   (16) 

Where SN  is the minimum number of trials per stimulus (target). 
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Finally, to verify that such a condition was sufficiently restrictive to exclude artifactual effects, for 

each considered neuron we constructed 1000 pseudo response arrays by shuffling the order of trials 

at fixed target stimulus, and we recomputed each time the mutual information in the same manner 

(Panzeri et al. 2007). Then we verified that the average mutual information obtained with such 

shuffling procedure was close to the PT bias correction term computed with Equation 15 (Panzeri 

and Treves 1996). 

 

RESULTS 

Previous studies have emphasized the role of LPFC in cognitive control and dACC in adjustment of 

action values based on measures of performance such as reward prediction errors, error-likelihood 

and outcome history. In addition, variations of activities in the two regions between exploration and 

exploitation suggest that both contribute to the regulation of the control level during exploration. 

Altogether neurophysiological data suggest particular relationships between dACC and LPFC, but 

their respective contribution during adaptation remains unclear and a computational approach to 

this issue appears highly relevant. We recently modeled such relationships using the meta-learning 

framework (Khamassi et al. 2011). The network model was simulated in the Problem Solving (PS) task 

(Quilodran et al., 2008) where monkeys have to search for the rewarded target in a set of four on a 

touch-screen, and have to repeat this rewarded choice for at least 3 trials before starting a new 

search period (Fig. 1A). In these simulations, variations of the model’s control meta-parameter (i.e. 

inverse temperature β) produced variations of choice selectivity in simulated LPFC in the following 

manner: a decrease of choice selectivity (exploration) during search; an increase of choice selectivity 

(exploitation) during repetition. This resulted in a globally higher mean choice selectivity in simulated 

LPFC compared to simulated dACC, and in a co-variation between choice selectivity and the inverse 

temperature in simulated LPFC but not in simulated dACC (Khamassi et al. 2011). This illustrates a 

prediction of computational models on the role of prefrontal cortex in exploration (McClure et al. 

2006; Cohen J. D. et al. 2007; Krichmar 2008) which has not yet been tested experimentally. 

 

Characteristics of behaviors 

To assess the plausibility of such computational principles we first analyzed animals’ behavior in 

the PS task. During recordings, monkeys performed nearly optimal searches, i.e., rarely repeated 

incorrect trials (INC), and on average made errors in less than 5% of repetition trials. Although the 

animals' strategy for determining the correct target during search periods was highly efficient, the 

pattern of successive choices was not systematic. Analyses of series of choices during search periods 

revealed that monkeys used either clockwise (e.g. choosing target 1 then 2), counterclockwise, or 
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crossing (going from one target to the opposite target in the display, e.g. from 1 to 3) strategies, with 

a slightly higher incidence for clockwise and counterclockwise strategies, and a slightly higher 

incidence for clockwise over counterclockwise strategy (Percent clockwise, counterclockwise, 

crossing and repeats were 38%, 36%, 25%, 1% and 39%, 33%, 26%, 2% for each monkey respectively, 

measured for 9716 and 4986 transitions between two targets during search periods of 6986 and 

3227 problems respectively). Rather than being systematic or random, monkeys’ search behavior 

appeared to be governed by more complex factors: shifting from the previously rewarded target in 

response to the Signal to Change (SC) at the beginning of most new problems (Fig. 2A-middle); 

spatial biases i.e. more frequent selection of preferred targets in the first trial of search periods (Fig. 

2A-right); and efficient adaption to each choice error as argued above. This indicates a planned and 

controlled exploratory behavior during search periods. This is also reflected in an incremental change 

in reaction times during the search period, with gradual decreases after each error (Fig. 2B). 

Moreover, reaction times shifted from search to repetition period after the first reward (CO1), 

suggesting a shift between two distinct behavioral modes or two levels of control (Monkey M: 

Wilcoxon Mann-Whitney U-test, p < 0.001; Monkey P: p  < 0.001; Fig. 2B). 

 

Model-based analyses. Behavioral analyses revealed that monkeys used nearly-optimal strategies 

to solve the task, including shift at problem changes, which are unlikely to be solved by simple 

reinforcement learning. In order to identify the different elements that took part in monkey's 

decisions and adaptation during the task we compared the fit scores of several distinct models to 

trial-by-trial choices after estimating each model’s free meta-parameters that maximize the log-

likelihood separately for each monkey (see Methods). We found that models performing either a 

random search or a clockwise search and then simply repeating the correct target could not properly 

reproduce monkeys' behavior during the task, even when the clockwise search was systematically 

started by the monkeys' preferred target according to its spatial biases (Models RandS  and ClockS ;  

Table 1 and Fig. 2D). Moreover, the fact that monkeys most often shifted their choice at the 

beginning of each new problem in response to the Signal to Change (SC) (Fig. 2A-middle) prevented 

a simple reinforcement learning model (Q-learning) or even a generalized reinforcement learning 

model from reproducing monkey's behavior (resp. QL and GQL in Table 1). Indeed, these models 

obviously have a strong tendency to choose the previously rewarded target without taking into 

account the Signal to Change to a new problem. Behavior was better reproduced with a combination 

of generalized reinforcement learning and reset of target values at each new problem (shifting the 

previously rewarded target and taking into account the animal's spatial biases measured during the 

previous session; i.e. Models GQLSB, GQLSB2β, SBnoA, SBnoA2β in Figure 2D and Table 1). We tested 
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control models without spatial biases, without problem shift, and with neither of them, to show that 

they were both required to fit behavior (resp. GQLSnoB, GQLBnoS and GQLnoSnoB in Table 1). We 

also tested a model with spatial biases and shift but without progressive updating of target values 

nor forgetting – i.e. 1,1    (Model SBnoF, which is a restricted and nested version of Model 

SBnoA with 1 less meta-parameter) and found that it was not as good as SBnoA in fitting monkeys’ 

behavior, as found with a likelihood ratio test at p=0.05 with one degree of freedom. 

Although Models GQLSB, GQLSB2β, SBnoA, SBnoA2β were significantly better than other tested 

models along all used criteria (maximum likelihood [Opt-LL], BIC score, AIC score, log of posterior 

probability [LPP], out-of-sample test [Test-LL] in Table 1), these 4 versions gave similar fit 

performance. In addition, the best model was not the same depending on the considered criterion: 

Model GQLSB2β was the best according to LL, BIC and AIC scores, and second best according to LPP 

and Test-LL scores; Model SBnoA2β was the best according to LPP score; Model GQLSB was the best 

according to Test-LL score. 

As a consequence, the present dataset does not allow to decide whether allowing a free meta-

parameter α (i.e. learning rate) in model GQLSB and GQLSB2β is necessary or not in this task, 

compared to versions of these models where α is fixed to 1 (Model SBnoA and SBnoA2β) (Fig. 2D and 

Table 1). This is due to the structure of the task – where a single correct trial is sufficient to know 

which is the correct target – which may be solved by sharp updates of working memory rather than 

by progressive reinforcement learning (although a small subset of the sessions were better fitted 

with  9.0;3.0  in Model GQLSB, thus revealing a continuum in the range of possible αs, 

Supplementary Fig. S2). We come back to this issue in the discussion. 

Similarly, models that use distinct control levels during search and repetition (Models GQLSB2β 

and SBnoA2β) could not be distinguished from models using a single parameter (Models GQLSB and 

SBnoA) in particular because of out-of-sample test scores (Table 1). 

Nevertheless, model-based analyses of behavior in the PS task suggest complex adaptations 

possibly combining rapid updating mechanisms (i.e. α close to 1), forgetting mechanisms and the use 

of information about the task structure (Signal to Change; first correct feedback signaling the 

beginning of repetition periods). Model GQLSB2β here combines these different mechanisms in the 

more complete manner and moreover won the competition against the other models according to 

three criteria out of five. Consequently, in the following we will use Model GQLSB2β for model-based 

analyses of neurophysiological data and will systematically compare the results with analyses 

performed with Models GQLSB, SBnoA, SBnoA2β to verify that they yield similar results. 

In summary, the best fit was obtained with Models SBnoA, SBnoA2β, GQLSB, GQLSB2β which 

could predict over 80% of the choices made by the animal (Table 1).  Figure 2A shows a sample of 
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trials where Model SBnoA can reproduce most monkey choices, and illustrating the sharper update 

of action values in Model SBnoA (with α = 1) compared to Model GQLSB (where the optimized α = 

0.7). When freely simulated on 1000 problems of the PS task – i.e., the models learned from their 

own decisions rather than trying to fit monkeys’ decisions –, the models made 38.23% clockwise 

search trials, 32.41% counter-clockwise, 29.22% crossing and 0.15% repeat. Simulations of the same 

models without spatial biases produced less difference between percentages of clockwise, counter-

clockwise and crossing trials, unlike monkeys: 33.98% clockwise, 32.42% counter-clockwise, 33.53% 

crossing and 0.07% repeat. 

 

Distinct control levels between search and repetition. To test whether behavioral adaptation 

could be described by a dynamical regulation of the β meta-parameter (i.e. inverse temperature) 

between search and repetition, we analyzed the value of the optimized two distinct free meta-

parameters (βS and βR) in Models GQLSB2β and SBnoA2β (Fig. 2E, 2C and Suppl. Fig. S2). The value of 

the optimized βS and βR meta-parameters obtained for a given monkey in a given session constituted 

a quantitative measure of the control level during that session. Such level was non-linearly linked to 

the number of errors the animal made. For instance, a βR of 3, 5, or 10 corresponded to 

approximately 20%, 5%, and 0% errors respectively made by the animal during repetition periods 

(Fig. 2C). 

Interestingly, the distributions of βS and βR obtained for each recording session showed 

dissociations between search and repetition periods in a large number of sessions. We found a 

unimodal distribution for the β meta-parameter during the search period (βS), reflecting a consistent 

level of control in the animal behavior from session to session. In contrast, we observed a bimodal 

distribution for the β meta-parameter during the repetition period (βR; Fig. 2E). In Figure 2E, the 

peak on the right of the distribution (large βR) corresponds to a subgroup of sessions where behavior 

shifted between different control levels from search to repetition periods. This shift in the level of 

control could be interpreted as a shift from exploratory to exploitative behavior, an attentional shift 

or a change in the working memory load, as we discuss further in the Discussion. Nevertheless this is 

consistent with the hypothesis of a dynamical regulation of the inverse temperature β between 

search and repetition periods in this task (Khamassi et al. 2011; Khamassi et al. 2013). The bimodal 

distribution for βR illustrates the fact that during another subgroup of sessions (small βR), the animal’s 

behavior did not shift to a different control level during repetition and thus made more errors. Such 

bimodal distribution of the β meta-parameter enables to separate sessions in two groups and to 

compare dACC and LPFC activities (see below) during sessions where decisions displayed a shift and 

during sessions where no such clear shift occurred. Interestingly, the bimodal distribution of βR is not 
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crucially dependent of the optimized learning rate α since a similar bimodal distribution was 

obtained with Model SBnoA2β and since the optimized βS and βR values in the two models were 

highly correlated (N = 277; βS: r = 0.9, p < 0.001; βR: r = 0.96, p < 0.001; Supplementary Fig. S2). 

 

Modulation of information coding 

To evaluate whether a behavioral change between search and repetition was accompanied by 

changes in LPFC activity and choice selectivity, we analyzed a pool of 232 LPFC single-units (see Fig. 

1B for the anatomy) in animals performing the PS task, and compared the results with 579 dACC 

single-unit recordings which have been only partially used for investigating feedback-related activity 

(Quilodran et al. 2008). We report here a new study relying on comparative analyses of dACC and 

LPFC responses, the analysis of activities before the feedback – especially during the delay period –, 

and the model-based analysis of these neurophysiological data. The results are summarized in 

Supplementary Table 1.  

Average activity variations between search and repetition. Previous studies revealed differential 

prefrontal fMRI activations between exploitation (where subjects chose the option with maximal 

value) and exploration trials (where subjects chose a non-optimal option) (Daw N. D. et al. 2006). 

Here a global decrease in average activity level was also observed in the monkey LPFC from search to 

repetition. For early-delay activity, the average index of variation between search and repetition in 

LPFC was negative (mean: -0.05) and significantly different from zero (mean: t-test p < 0.001, 

median: Wilcoxon Mann-Whitney U- test p < 0.001). The average index of activity variation in dACC 

was not different from zero (mean: -0.008; t-test p > 0.35; median: Wilcoxon Mann-Whitney U- test p 

> 0.25). However, close observation revealed that the non-significant average activity variation in 

dACC was due to the existence of equivalent proportions of dACC cells showing activity increase or 

activity decrease from search to repetition, leading to a null average index of variation (Fig. 3A-B; 

17% versus 20% cells respectively). In contrast, more LPFC single units showed a decreased activity 

from search to repetition (18%) than an increase (8%), thus explaining the apparent global decrease 

of average LPFC activity during repetition. The difference in proportion between dACC and LPFC is 

significant (Pearson χ2 test, 2 df, t = 13.0, p < 0.01) and was also found when separating data for the 

two monkeys (Supplementary Fig. S3). These changes in neural populations thus suggest that global 

non-linear dynamical changes occur in dACC and LPFC between search and repetition instead of a 

simple reduction or complete cessation of involvement during repetition.  

 

Modulations of choice selectivity between search and repetition. As shown in Figure 3A, a higher 

proportion of neurons showed a significant choice selectivity in LPFC (155/230, 67%) than in dACC 
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(286/575, 50%; Pearson χ2 test, 1 df, t = 20.7, p < 0.001) – as measured by the vector norm in 

Equation 10. Interestingly, the population average choice selectivity was higher in LPFC (0.80) than in 

dACC (0.70; Kruskal-Wallis test, p < 0.001; see Fig. 3C). When pooling all sessions together, this 

resulted in a significant increase in average choice selectivity in LPFC from search to repetition (mean 

variation: 0.04; Wilcoxon Mann-Whitney U-test p < 0.01; t-test p < 0.01; Fig. 3C). 

Strikingly, the significant increase in LPFC early-delay choice selectivity from search to repetition 

was found only during sessions where the model fit dissociated control levels in search and repetition 

(i.e. sessions with large βR [βR > 5]; Kruskal-Wallis test, 1df, χ2 = 6.45, p = 0.01; posthoc test with 

Bonferroni correction indicated that repetition > search). Such an effect was not found during sessions 

where the model reproducing the behavior remained at the same control level during repetition (i.e. 

sessions with small βR [βR < 5]; Kruskal-Wallis test, p > 0.98) (Fig. 4-bottom). 

Interestingly, choice selectivity in LPFC was significantly higher during repetition for sessions 

where βR was large (mean choice selectivity = 0.91) than for sessions where βR was small (mean 

choice selectivity = 0.73; Kruskal-Wallis test, 1df, χ2 = 12.5, p < 0.001; posthoc test with Bonferroni 

correction; Fig. 4-bottom). Thus, LPFC early-delay choice selectivity clearly covaried with the level of 

control measured in the animal’s behavior by means of the model. 

There was also an increase in dACC early-delay choice selectivity between search and repetition 

consistent with variations of β, but only during sessions where the model capturing the animal’s 

behavior made a strong shift in the control level (βR > 5; mean variation = 0.035, Kruskal-Wallis test, 

1df, χ2 = 5.22, p < 0.05; posthoc test with Bonferroni correction indicated that repetition > search; Fig. 

4-top). However, overall, dACC choice selectivity did not follow variations of the control level. Two-

way ANOVAs either for (βS x task phase) or for (βR x task phase) revealed no main effect of β (p > 0.2), 

an effect of task period (p < 0.01), but no interaction (p > 0.5). And there was no significant difference 

in ACC choice selectivity during repetition between sessions with a large βR (mean choice selectivity = 

0.69) and sessions with a low one (mean choice selectivity = 0.75; Kruskal-Wallis test, 1 df, χ2 = 3.11, p 

> 0.05). 

At the population level, increases in early-delay mean choice selectivity from search to repetition 

were due both to an increase of single unit selectivity, and to the emergence in repetition of selective 

units that were not significantly so in search (Fig. 3A). Importantly, the proportion of LPFC early-delay 

choice selective neurons during repetition periods of sessions where βR was small (55%) was 

significantly smaller than the proportion of such LPFC neurons during sessions where βR was large 

(72%; Pearson χ2 test, 1 df, t = 7.19, p < 0.01). In contrast, there was no difference in proportion of 

dACC early-delay choice selective neurons during repetition between sessions where βR was small 

(38%) and sessions where βR was large (35%; Pearson χ2 test, 1 df, t = 0.39, p > 0.5; Fig. 4B). These 
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analyses thus show a significant difference between dACC and LPFC neural activity properties. LPFC 

mean choice selectivity as well as LPFC proportion of choice selective cells varied between search and 

repetition in accordance with the control level measured in the behavior by means of the 

computational model, while such effect was much weaker in dACC. These results are robust since they 

could also be obtained with Model SBnoA2β (Supplementary Fig. S4A). Data separated for the two 

monkeys also reflected the contrast between the two structures (Supplementary Fig. S4B). 

 

Mutual information between neural activity and target choice. Generally, computational models 

of the dACC-LPFC system make the assumption that LPFC is central for the decision output. LPFC 

activity should thus be more tightly related to the animal’s choice than dACC activity. Here, in 63 

LPFC neurons recorded during a sufficient number of presentations of each target choice (see 

Methods), the average mutual information – corrected for sampling bias – was more than twice as 

high (ILPFC = 0.10 bit) as in 85 dACC cells (IACC = 0.04 bit; Kruskal-Wallis test, p < 0.001) (Fig. 3D). This 

effect appeared to be the result of the activity of a small subset of LPFC activity – in both monkeys 

(Supplementary Fig. S3D) – with a high mutual information with choice. To verify that the applied 

restriction on the number of sampling trials was accurate, we constructed 1000 shuffled pseudo 

response arrays for each single unit and measured the average mutual information obtained with 

this shuffling procedure. For the 63 LPFC and 85 dACC selected neurons, the difference between the 

averaged shuffled information and the bias correction term was very small (mean=0.01 bit), while it 

was high in non-selected neurons (mean=0.08 bit). Thus the difference in estimated information 

between dACC and LPFC was not due to a limited sampling bias in the restricted number of analyzed 

neurons. We can conclude that, in agreement with computational models of the dACC-LPFC system, 

neural recordings show a stronger link between LPFC activity and choice than between dACC activity 

and choice. 

 

Neural activity correlated with model variables.  

Following model-based analyses of behavior we tested whether single unit activity in LPFC and 

dACC differentially reflect information similar to variables in Model GQLSB2β by using the time series 

of these variables as regressors in a general linear model of single-unit activity (multiple regression 

analysis with a bootstrapping control – see Methods) (Fig. 6). In dACC and LPFC, respectively 397/579 

(68.6%) cells and 145/232 (62.5%) cells showed a correlation with at least one of the model's 

variables in at least one of the behavioral epochs: pre-start, delay, pre-target, post-target, pre-touch, 

pre-feedback, early-feedback, late-feedback, and inter-trial interval (ITI). More precisely, we found a 

larger proportion of cells in LPFC than in dACC correlated with at least one model variable in the 
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post-target epoch (Fig. 6E; Pearson χ2 tests, T = 3.89, p < 0.05), and a larger proportion of cells in 

dACC than in LPFC correlated with at least one model variable in the early-feedback epoch (Pearson 

χ2 test, T = 7.90, p < 0.01). Differences in proportions of LPFC and dACC neurons correlated with 

different model variables during pre- or post-feedback epochs were also observed for the two 

monkeys separately (Supplementary Figure S6), and when the model-based analysis was done with 

Models GQLSB, SBnoA or SBnoA2β (Supplementary Figures S5). Collinearity diagnostics between 

model variables revealed a weak collinearity in 306/308 recording sessions, a moderate collinearity 

in 1 session and a strong collinearity in 1 session (Supplementary Figure S9), thus excluding the 

possibility that these results could be an artifact of collinearity between model variables. 

 

Figure 5A shows an example dACC post-target activity negatively correlated with the action 

value associated to choosing target #4 (Fig. 5A-top). The raster plot and peristimulus histogram for 

this activity show lower firing rate in trials where the animal chose target #4 than in trials where he 

chose one of the other targets (Fig. 5A-middle). Plotting the trial-by-trial evolution of the post-target 

firing rate of the neuron reveals sharp variations following action value update and distinct from the 

time series of the other model variables δ and U (Fig. 5A-bottom). The firing rate dropped below 

baseline during trials where target #4 was chosen. Strikingly, the firing rate sharply increased above 

baseline in trials following non-rewarded choices of target #4. Thus this single unit not only 

responded when the animal selected the associated target but also kept track of the stored value 

associated with that target. Figure 5B shows a LPFC unit whose activity in the post-target epoch is 

positively correlated with the action value associated to choosing target #2. The raster plot illustrates 

a higher firing rate for trials where target #2 was chosen (grey histogram and raster, fig. 5B-middle). 

Similarly to the previous example, the trial-by-trial evolution of the post-target firing rate reveals 

sharp variations from trial to trial (Fig. 5B-bottom), consistent with sharp changes of action values in 

the model that best described behavior adaptation in this task (Fig. 2A).  

We found 126/145 (87%) LPFC and 227/397 (57%) dACC Q-value encoding cells. The proportion 

was significantly greater in LPFC (Pearson χ2 test, 1 df, T = 41.30, p < 0.001; Fig. 6A). We next verified 

whether the activity of these cells carried Q value information only during trials where the neuron's 

preferred target was selected by the monkey, or also during other trials. To do so, we performed a 

new multiple regression analysis on the activity of each cell after excluding trials where the cell's 

preferred target was chosen. The activity of respectively 18% (23/126) and 13% (29/227) of LPFC and 

dACC Q value encoding cells were still significantly correlated with a Q value in the same epoch after 

excluding trials where the cell's preferred target was selected by the animal (multiple regression 

analysis with Bonferroni correction). Importantly, the difference in proportion of Q cells between LPFC 
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and dACC was still significant after restricting to Q cells showing a significant correlation while 

excluding trials with their preferred target (LPFC: 23/145, 16%; dACC: 29/397, 7%; Pearson χ2 test, 1 

df, T = 8.97, p < 0.01).  

Given the deterministic nature of the task, and thus the limited sampling of options, a question 

remains of whether these neurons really encode Q values or whether they participate to action 

selection. The control analysis above excluding trials with each cells' preferred target showed that at 

least a certain proportion of these cells carried information about action values outside trials where 

the corresponding action is selected. But how much information about choice do these neurons carry 

and is there a quantitative difference between LPFC and dACC? Interestingly, 43% (54/126) of LPFC Q 

cells had high mutual information with monkey choice (I > 0.1) whereas only 33% (75/227) of dACC Q 

cells verified such condition. The difference in proportion was marginally significant (Pearson χ2 

proportion test, 1df, T = 3.37, p = 0.07). Moreover, LPFC Q cells activity contained more information 

about monkey choice (mean I = 0.12) than dACC Q cells (mean I = 0.09; Kruskal-Wallis test, 1df, χ2 = 

3.88, p < 0.05; Posthoc test with Bonferroni correction found that LPFC-Q > dACC-Q) and more than 

LPFC non-Q cells (average = 0.09; Kruskal-Wallis test, χ2 = 6.65, 1df, p < 0.01; Posthoc test with 

Bonferroni correction found that LPFC-Q > LPFC-nonQ). dACC Q cells activity did not contain more 

information about monkey choice than LPFC non-Q cells (Kruskal, 1df, χ2 = 1.57, p > 0.05). Although 

the observed difference in Q-encoding between dACC and LPFC are weak, these results are in line 

with the hypothesized dACC role in action value encoding and with the transfer of such information to 

LPFC for action selection – the LPFC would encode a probability distribution over possible actions. 

 

Feedback-related activities in dACC and LPFC. A large proportion of neurons had activity 

correlated with  during post-feedback epochs (Fig. 6, referred to as -cells, see examples of such cells 

during late-feedback and inter-trial interval in Fig. 7A and 7B; raster plots and correlation with 

variable can be found in Supplementary Fig. S7 for the first cell and in Fig. 9A for the second cell). 

Significantly more cells correlated with  in the dACC than in the LPFC: 252/397 (63%) versus 69/145 

(48%; Pearson χ2 test, 1 df, T = 11.10, p < 0.001; Fig. 6B and 6C), which confirmed previous 

comparisons (Kennerley and Wallis 2009). Consistent with the high learning rate suitable for the task 

(due to the deterministic reward schedule of the task), the information about the reward prediction 

error  from previous trials vanished quickly both in LPFC and dACC compared to other protocols (Seo 

and Lee 2007). Few dACC cells (31/285, 10.9%) and LPFC cells (9/116, 7.8%) retained a trace of  from 

the previous trial in any of the pre-feedback epochs (Fig. 6B-C). No significant difference was found 

between dACC and LPFC proportions (Pearson χ2 test, T = 0.89, p > 0.3). Interestingly, only few LPFC  

cells (13/69, 18.8%) revealed a positive correlation ( cells, i.e. neurons responding to unexpected 
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correct feedback; Fig. 6B). The great majority of  cells in LPFC had negative correlations (56/69, 

81.2%), that is, displayed increased activity after errors ( cells; Fig. 6C). In comparison, dACC had a 

higher proportion of cells (101/252 cells, 40.1%, and 151/202 cells, 74.8%; see example of 

such cell in Fig. 7E; raster and correlation plots are shown in Supplementary Fig. S8). The difference in 

proportion of cells between LPFC and dACC was significant (Pearson χ2 test, 1 df, T = 10.67, p < 

0.01). Thus LPFC activity is much more reactive to negative feedback compared to dACC which 

responds equally to positive and negative feedback. 

Previous studies have reported quantitative discrimination of positive reward prediction errors in 

dACC unit activity (Matsumoto et al. 2007; Kennerley and Walton 2011). dACC feedback-related 

activity might also represent categorical information (i.e. correct, choice error, execution error) 

rather than quantitative reward prediction errors (Quilodran et al., 2008; see discussion). The 

present model-based analysis confirms this and also extends it to LPFC feedback-related activity by 

finding that only very few cells were still correlated with  when analyzing correct and incorrect trials 

separately. 10/159 (6.3%) dACC and 2/57 (3.5%) LPFC  cells where still significantly correlated with 

 when considering incorrect trials only (multiple regression analysis with bootstrap). These 

proportions were not significantly different (Pearson χ2 test, T = 0.62, p > 0.4). Figures 7A and 7B 

illustrate examples of dACC and LPFC neurons which respond to errors without significantly 

distinguishing between different amplitudes of modeled negative reward prediction errors. 23/101 

(22.8%) dACC and 2/13 (15.4%) LPFC  cells where still significantly correlated with on COR trials 

only. These proportions were not significantly different (Pearson χ2 test, T = 0.37, p > 0.5). Figure 7E 

illustrates the activity of such a cell. In summary, the most striking result regarding feedback-related 

activity was the differential properties of dACC and LPFC in coding both positive and negative 

outcomes, LPFC activity being clearly biased toward responding after negative outcomes. 

 

Correlates of outcome uncertainty. Hypotheses on the neural bases of cognitive regulation have 

been largely inspired by the dynamics of activity variations in dACC and LPFC during behavioral 

adaptations (Kerns et al. 2004; Brown and Braver 2005). Functions of the dACC are considered to 

enable monitoring of variations in the history of reinforcements (Seo and Lee 2007, 2008), of the 

error-likelihood (Brown and Braver 2005), to accordingly adjust behavior. Thus we looked for 

correlations between single unit activities and the outcome uncertainty U (which progressively 

increases after elimination of possible targets during search and drops to zero after the first correct 

trial; see Methods). We observed both positive and negative correlations between dACC neural 

activity and U (U-cells): 71.8% were positive correlations – higher firing rate during search periods – 

and 28.2% were negative correlations – higher firing rate during repetition. These proportions are 
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different from an expected 50%-50% proportion (χ2 goodness of fit - one sample test, 1 df, χ2 = 39.32, 

p < 0.001). The population activity of these units correlated with U showed gradual trial-by-trial 

changes during search, and sharp variations from search to repetition, after the first correct feedback 

of the problem (see examples of such cells during the post-start epoch in Fig. 7C, D; see raster and 

correlation plots in Supplementary Fig. S7B, C). These patterns of activity were in opposite direction 

from changes in reaction times (Fig. 2B). They belonged to a larger group of cells that globally 

discriminated between search and repetition (see a different profile of such type of neurons in the 

post-target epoch in Fig. 7F; see raster and correlation plots in Supplementary Fig. S8B). Neural data 

revealed that U cells were more frequent in dACC (206/397, 52%) than in LPFC (48/145, 33%; 

Pearson χ2 test, T = 15.05, p < 0.001; Fig. 6D). Importantly, Figure 6 shows that, during trials, U was 

decoded from dACC activity mostly just before and after feedback occurrence. By contrast, U was 

better decoded during delay (i.e., pre-target epoch) in LPFC. These different dynamics reinforce the 

idea of an intimate link between U updating and the information provided by feedback for 

performance monitoring in dACC and, in contrast, of an implication of LPFC in incorporation of U into 

the decision function in LPFC.  

 

Multiplexed reinforcement-related information. We found that both dACC and LPFC single units 

multiplexed information about different model variables, with LPFC activity reflecting more 

integration of information than dACC activity. First, in LPFC the great majority of U-cells (81%, 39/48) 

were also correlated with one of the model action values while this was true for only 52% (107/206) 

of dACC U-cells (Pearson χ2 test, 1 df, T = 13.68, p < 0.001). Stronger integration was also reflected 

through higher correlation strengths with multiple variables of the model, as found by a Principal 

Component Analysis (PCA) on regression coefficients for all dACC and LPFC neurons (Fig. 8). The first 

principal component (PC1) obtained with dACC neurons corresponds in all trial epochs to activity 

variations mainly related to the outcome uncertainty U and reveals weak links with Q and (Fig. 8A). 

In contrast, the two first components (PC1 and PC2) obtained with LPFC neurons both were 

expressed as a combination of Q and U during pre-feedback epochs (Fig. 8A). The PCA also revealed 

a strong change in the principal components between pre- and post-feedback epochs both in dACC 

and LPFC and reliably in the two monkeys (Fig. 8A), consistent with the post-feedback activity 

changes and correlations between model variables reported in the previous analyses. 

To quantify differences in multiplexing at the single-unit level, we computed an entropy-like index 

(ELI) of sharpness of encoding of different model variables based on the distributions of correlation 

strengths between individual cell activities and model variables (see Methods): e.g. a neuron with 

activity correlated with different model variables with similar strengths will have a high ELI; a neuron 
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with activity highly correlated with only one model variable will have a low ELI (see illustration of 

different ELI obtained with artificial data illustrating these cases in Supplementary Fig. S1). We found 

a higher ELI in LPFC neurons than in dACC neurons in the pre-touch and pre-feedback epochs 

(Kruskal-Wallis test, p < 0.05) and the opposite effect (i.e. dACC > LPFC) in the early-feedback epoch 

(Kruskal-Wallis test, p < 0.05; Fig. 8B). These pre- and post-feedback variations in ELI may reflect 

different processes: action selection and value updating respectively. Overall, these results reveal 

higher information integration in LPFC before the feedback, and higher integration in dACC after the 

feedback. 

We then measured the contribution of each model variable to each principal component in each 

epoch, and combined it with the contribution of each principal component to the global variance in 

neural activity in each epoch. We deduced a normalized contribution of each model variable to 

neural activity variance in each epoch (see Methods). Strikingly, in dACC the model variable U 

dominated (contribution > 50%) in all pre-feedback epochs, while the contribution of started 

increasing in the early-feedback epoch (Fig. 8C). In contrast, in LPFC the model variables Q and U had 

nearly equal contributions to variance during pre-feedback epochs, while the contribution of 

started increasing in the late-feedback epoch, thus later than in dACC. The global entropy in the 

normalized contributions of model variables to neural activity variance revealed marginally higher in 

LPFC than in dACC (Kruskal-Wallis test, p < 0.06) when analyzed with Model GQLSB2β’s variables. 

These properties of PCA analyses were also true with Model SBnoA2β (Suppl. Fig. S10), and the 

latter effect was found to be even stronger with the latter model (Kruskal-Wallis test, p < 0.01; Suppl. 

Fig. S10C), thus confirming the higher information integration in LPFC than in dACC. 

Finally, single unit activity could encode different information at different moments in time, 

corresponding to dynamic coding. More than half LPFC -cells (55%, 38/69) – that is, neurons 

responding to feedback – showed an increase in choice selectivity at the beginning of each new trial 

in repetition, thus reflecting information about the subsequent choice (see a single cell example in 

Fig. 9A, and a population activity in Fig. 9C). In contrast, only 33% (84/252) of dACC -cells showed 

such effect. The difference in proportion between LPFC and dACC was statistically different (Pearson 

χ2 test, 1 df, T = 10.86, p < 0.001; Fig. 9B). Thus, while dACC post-feedback activity may mostly be 

dedicated to feedback monitoring, LPFC activity in response to feedback might reflect the onset of 

the decision-making process triggered by the outcome.  

 

 

DISCUSSION  
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Interaction between performance monitoring and cognitive control hypothetically relies on 

interactions between dACC and LPFC (e.g. Cohen J.D. et al. 2004). Here we described how the 

functional link between the two areas might contribute to the regulation of decisions.  

In summary, we found that LPFC early-delay activity was more tightly related to monkeys’ 

behavior than dACC activity, displaying higher mutual information with animals’ choices than dACC, 

supporting LPFC's role in action selection. Also, the high choice selectivity in LPFC co-varied with the 

control level measured from behavior: decreased choice selectivity during the search period, 

putatively promoting exploration; increased choice selectivity during the repetition period, putatively 

promoting exploitation. In contrast, this effect was not consistent in dACC. dACC activity correlated 

with various model variables, keeping track of pertinent information concerning the animal’s 

performance. A calculation of outcome uncertainty (U) correlated with activity changes between 

exploration and exploitation mostly in dACC, and dominated the contribution to neural activity 

variance in pre-feedback epochs. Moreover, dACC post-feedback activity appeared earlier than in 

LPFC and represented positive and negative outcomes with similar proportions while LPFC post-

feedback activity mostly tracked negative outcomes. 

Reinforcement-related (Q and  and task monitoring-related (U) information was multiplexed 

both in dACC and LPFC, but with higher integration of information before the feedback in LPFC and 

after the feedback in dACC. LPFC unit activity responding to feedback was also choice selective 

during early-delay, possibly contributing to decision making, while dACC feedback-related activity – 

possibly categorizing feedback per se – showed less significant choice selectivity variations. Taken 

together, these elements suggest that reinforcement-based information and performance 

monitoring in dACC might participate in regulating decision functions in LPFC. 

 

Mixed information and coordination between areas 

Correlations with variables related to reinforcement and actions were found in both structures in 

accordance with previous studies showing redundancy in information content, although with some 

quantitative biases (Seo and Lee 2008; Luk and Wallis 2009). However, compared to LPFC, dACC 

neuronal activity was more selective for outcome uncertainty that could be used to regulate 

exploration (Fig. 8). The PCA analysis showed that multiplexing of reinforcement-related information 

is stronger in LPFC activity suggesting that this structure receives and integrates these information. In 

this hypothesis dACC would influence LPFC computations by modulating an action selection process. 

Such interaction have been interpreted as a motivational or energizing function (from dACC) onto 

selection mechanisms (in LPFC) (Kouneiher et al. 2009). More specifically, our results support a 

recently proposed model in which dACC monitors task-relevant signals to compute action values and 
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keep track of the agent’s performance necessary for adjusting behavioral meta-parameters 

(Khamassi et al. 2011; Khamassi et al. 2013). In this model, values are transmitted to the LPFC which 

selects the action to perform. But the selection process (stochastic) is regulated online based on 

dACC's computations to enable dynamic variations of the control level. 

This view preserves the schematic regulatory loop by which performance monitoring acts on 

cognitive control as proposed by others (Botvinick et al. 2001; Cohen J.D. et al. 2004). We further 

suggest a functional structure that reconciles data related to regulatory mechanisms, reinforcement 

learning, and cognitive control. In particular we point to the potential role of dACC in using 

reinforcement-related information (such as reward prediction error), relayed through the reward 

system (Satoh et al. 2003; Enomoto et al. 2011), to regulate global tendencies (formalized by meta-

parameters) of adaptation. Interestingly, human dACC (i.e., mid-cingulate cortex) activation co-varies 

with volatility or variance in rewards and could thereby also participate in regulating learning rates for 

social or reward-guided behaviors (Behrens et al. 2007; Behrens et al. 2009). Kolling and colleagues 

(Kolling et al. 2012) have recently found that dACC encodes the average value of the foraging 

environment. This suggests a general involvement of dACC in translating results of performance 

monitoring and task monitoring into a regulatory level. 

The fact that dACC activity correlated with changes in modeled meta-parameters would suggest a 

general function in the global setting of behavioral strategies. It has been proposed that dACC can be 

regarded as a filter involved in orienting motor or behavioral commands (Holroyd and Coles 2002), in 

regulating action decision (Domenech and Dreher 2010), and that it is part of a core network 

instantiating task-sets (Dosenbach et al. 2006). Interestingly, dACC neural activity encodes specific 

events that are behaviorally relevant in the context of a task, events that – like the Signal to Change 

in our task – can contribute to trigger selected adaptive mechanisms (Amiez et al. 2005; Quilodran et 

al. 2008). In line with this, Alexander and Brown recently proposed that dACC signals unexpected 

non-occurrences of predicted outcomes, i.e. negative surprise signals, which in their model consist of 

context-specific predictions and evaluations (Alexander W. H. and Brown 2011). Their model 

elegantly explains a large amount of reported dACC post-feedback activity. But dACC signals related 

to positive surprise (Matsumoto et al. 2007; Quilodran et al. 2008), and to other behaviorally salient 

events (Amiez et al. 2005), suggest an even more general role in processing information useful to 

guide selected behavioral adaptations. 

 

 

 

Exploration 
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Following a standard reinforcement learning framework, exploratory behavior was here 

associated to low β values, which flatten the probability distribution of competing actions in models 

and simulations (Khamassi et al. 2011). Although the precise molecular and cellular mechanisms 

underlying shifts between exploration and exploitation are not yet known, accumulating evidence 

suggest that differential levels of activation of D1 and D2 dopamine receptors in the prefrontal cortex 

may produce distinct states of activity: a first state allowing multiple network representations nearly 

simultaneously and thus permitting “an exploration of the input space”; a second state where the 

influence of weak inputs on PFC networks is shut off so as to stabilize one or a limited set of 

representations, which would then have complete control on PFC output and thus promote 

exploitation (Durstewitz and Seamans 2008). The consistent variations of LPFC choice selectivity 

between search and repetition periods suggest that such mechanism could also underlie exploration 

during behavioral adaptation. 

However, this should not be interpreted as an assumption that monkeys’ behavior is purely 

random during search periods of the task (see model-based analysis of behavior). In fact, animals 

often display structured and organized exploratory behaviors as also revealed by our behavioral 

analyses. For instance, when facing a new open arena, rodents display sequential stages of 

exploration, first remaining around the nest position, second moving along walls and third visiting 

the center of the arena (Fonio et al. 2009). Non-human primates also use exploration strategies, such 

as optimized search trajectories adapted to the search space configuration (De Lillo et al. 1997), 

trajectories that can evolve based on reinforcement history along repeated exposure to the same 

environment (Desrochers et al. 2010). In ecological large scale environments search strategies are 

best described by correlated random or Levy walks and are modulated by various environmental 

parameters (Bartumeus et al. 2005). 

One possible interpretation of our results is that decreases of choice selectivity in LPFC during 

search could reduce the amount of information about choice and ergo release biases in the influence 

on downstream structures such as the basal ganglia. In this way, efferent structures could express 

their own exploratory decisions. Consistent with this, it has been recently suggested that variations 

of tonic dopamine in the basal ganglia could also affect the exploration-exploitation trade off in 

decision-making (Humphries et al. 2012). 

The prefrontal cortex might also contribute to the regulation of exploration based on current 

uncertainty (Daw N. D. et al. 2006; Frank et al. 2009). Uncertainty-based control could bias decision 

towards actions that provide very variable quantities of reward so as to gain novel information and 

reduce uncertainty. In our task, outcome uncertainty variations – progressive increase during search 

and drop to zero during repetition – can be confounded with other similar performance monitoring 
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measures such as the feedback history (Khamassi et al. 2011) or variations of attentional level. 

Nevertheless, they co-varied with the animal’s reaction times and were mostly encoded by dACC 

neurons, thus revealing a possible relevance of this information for behavioral control in our task. It 

should be noted that outcome uncertainty is distinct from action uncertainty which would be 

confounded in our task with other task monitoring variables such as conflict (Botvinick et al. 2001) 

and error-likelihood (Brown and Braver 2005). All of them gradually and monotonically decrease 

along a typical problem of the PS task and remain low during repetition. We found neurons with such 

activity profile (e.g. Fig. 7F), however in about half the proportion of U-cells. More work is required 

to understand whether these different task monitoring measures are distributed and coordinated 

within the dACC-LPFC system. 

 

Reinforcement learning or working memory? 

It has been recently suggested that model-based investigations of adaptive mechanisms often mix 

and confound reinforcement learning mechanisms and working memory updating (Collins and Frank, 

2012). In particular, rapid improvements in behavioral performance during decision-making tasks can 

be best explained by gating mechanisms in computational models of the prefrontal cortex rather 

than by slow adaptation usually associated with dopamine-dependent plasticity in the basal ganglia. 

In the present study, the fact that Models SBnoA and SBnoA2β (with a high learning rate α fixed to 1) 

and Models GQLSB and GQLSB2β (where α is a free-metaparameter between 0 and 1) produce a 

non-different fitting score on monkey behavior suggests that behavior in this task might fall into such 

a case. Under this interpretation, rapid behavioral adaptations would rely on gating appropriate 

flows of information between dACC and LPFC. In fact, the increase of LPFC activity mostly after 

negative and not positive outcomes, and the interaction with spatial selectivity, might reflect gating 

working memory or planning processes at the time of adaptation, rather than direct outcome-related 

responses. An alternative hypothesis that cannot be excluded is that in this type of deterministic task 

animals still partly rely on reinforcement learning mechanisms, but would progressively learn to 

employ a high learning rate during the long pretraining phase. The fact that a group of behavioral 

sessions were better fitted with α between 0.3 and 0.9 when α was not fixed to 1 (i.e. in Model 

GQLSB; Supplementary Fig. S2C) reveals a continuum in the range of optimized α values which could 

be the result of a progressive but incomplete increase of the learning rate during pretraining. Such 

adaptation in rate might have also contributed to the weak quantitative coding of reward prediction 

errors. Further investigations will be required to answer this question, in particular by precisely 

characterizing monkey behavioral performance during the pretraining phase and the associated 

changes in information coding in prefrontal cortical regions. 
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Network regulation and decisions in LPFC 

We reported new data on the possible functional link between LPFC and dACC. However, we have 

no evaluation of putative dynamical and direct interactions between neurons of the two regions. 

Functional coordination of local field potentials between LPFC and dACC has been described but 

evidence for direct interactions is scarce (Rothe et al. 2011). The schematized modulatory function 

from dACC performance monitoring into LPFC decision process could in fact be indirect. For instance, 

it has been proposed that norepinephrine instantiates gain (excitability) variations in LPFC, and that 

this mechanism would be regulated by dACC afferences to the locus coeruleus (Aston-Jones and 

Cohen 2005; Cohen J. D. et al. 2007). Average activity variations in dACC and LPFC observed in our 

recordings could be a consequence of such activity gain changes. Gain modulation and biased 

competition are two mechanisms by which attentional signals can operate (Wang 2010). Increased 

working memory load, higher cognitive control, or attentional selection are concepts widely used to 

interpret prefrontal activity modulations dependent on task requirements (Miller and Cohen 2001; 

Leung et al. 2002; Kerns et al. 2004). Note that these concepts are closely related and have similar 

operational definitions (Barkley 2001; Miller and Cohen 2001; Cohen J.D. et al. 2004).  

Recently, Kaping and colleagues have shown that spatial attentional and reward valuation signals 

are observed in different subdivisions of the fronto-cingulate region (Kaping et al. 2011). Correlates 

of spatial attention selectivity were found in both dACC and LPFC, together with correlates of 

valuation, and independently of action plans. These signals would contribute to top-down 

attentional control of information (Kaping et al. 2011). Here we also verified that values were coded 

independently of choices by showing significant correlation with Q-values even after exclusion of 

trials selecting the neuron's preferred target.  

The present study revealed two effects of task periods on frontal activity that would reflect 

variations in control and decision: an increased average firing rate and changes in recruited neural 

populations during exploration in both dACC and LPFC, and an increased spatial selectivity in LPFC 

during repetition. The latter would argue against a reduction of control implemented by LPFC during 

repetition. This however suggests that transitions between exploration and repetition involve a 

complex interplay between global unselective regulations and refined selection functions, and that 

qualitative changes in control occurred between search and repetition. 

Finally, studies in rodents suggest that adaptive changes in behavioral strategies are also 

accompanied by global dynamical state transitions of prefrontal activity (Durstewitz et al. 2010). Our 

analyses showed that for both LPFC and dACC the neural populations participating in exploratory 

versus exploitative periods of the task differ significantly. We have also previously shown that the 
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oscillatory coordination between the two areas changes from one period to the other (Rothe et al. 

2011). Hence, a dynamical system perspective might be imperative to explain cognitive flexibility and 

its neurobiological substrate with more precision. 
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Table 1 
Score obtained by each tested theoretical model, models’ characteristics, and model 
performances to fit monkey choices for Optimization (Opt) and Test sessions. 

 
Models r

1 
RL2 NP

3 
Opt 
-LL4 

Opt 
NL5 

Opt 
%6 

Opt 
-LPP7 

Opt 
BIC/28 

Opt 
AIC/29 

Test 
-LL4 

Test 
NL5 

Test 
%6 

GQLSB2β Y Y 4 3290 .5921 83.47 3459 3360 3298 29732 .5830 74.17 
SBnoA2β Y N 3 3385 .5831 84.13 3422 3438 3391 30901 .5708 73.11 
GQLSB Y Y 3 3355 .5859 83.80 3502 3408 3361 29539 .5850 73.43 
SBnoA Y N 2 3454 .5768 84.29 3480 3489 3458 30613 .5738 72.59 
SBnoF Y N 1 3586 .5648 84.43 3604 3604 3588 32169 .5578 71.61 
GQLBnoS Y Y 3 3721 .5528 78.59 3847 3773 3727 33274 .5467 69.47 
GQLSnoB Y Y 3 3712 .5536 76.66 3843 3764 3718 31501 .5646 70.12 
GQLnoSnoB Y Y 3 4253 .5079 69.14 4292 4305 4259 35376 .5262 66.60 
GQL N Y 3 5590 .4104 65.10 5994 5643 5596 49282 .4089 53.20 
QL N Y 2 5960 .3869 44.92 7755 5995 5964 59734 .3382 48.78 
ClockS Y N 2 5249 .4333 70.92 5841 5284 5253 47504 .4223 58.71 
RandS Y N 1 4607 .4800 69.43 4621 4624 4609 39488 .4884 63.73 
 
 

 
 

  

                                                
1 Resetting action values at the beginning of each new problem (Yes or No) 
2 Reinforcement Learning (RL) mechanisms or not 
3 Number of free meta-parameters 
4 Negative Log Likelihood 
5 Normalized Likelihood over all trials 
6 Percentage of trials where the model correctly predicted monkey choice 
7 Log of Posterior Probability 
8 Bayesian Information Criterion 
9 Akaike Information Criterion 
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FIGURE LEGENDS 

 
Figure 1. Task, recording sites, and trial epochs for analyses. (A) Problem Solving task. Monkeys had 

to find by trial and error which target, presented in a set of four, was rewarded. Trial: description of 

events in a trial (see methods). A juice reward is delivered if the trial was correct while only a blank 

screen is presented for errors. Problem: In each trial the animal could select a target until the solution 

was discovered (search period). Each block of trials (or problem) contained a search period and a 

repetition period during which the correct response was repeated at least three times. A Signal to 

Change (SC) is presented on the screen to indicate the beginning of a new problem. (B) Recording 

sites for LPFC (grey spots) and dACC (black spots) for the two monkeys. dACC recordings covered a 

region in the dorsal bank of the anterior cingulate sulcus, at stereotaxic levels superior to A+30, i.e. 

rostral levels of the mid-cingulate cortex. Recording sites in LPFC were located on the posterior third 

of the principal sulcus. (C) Target identifications and definition of epochs used for single unit analyses. 

 

Figure 2. Model-based behavioral analyses. (A-left) Illustration of the trial by trial evolution of action 

values after meta-parameters optimization so that the model behaves similarly to the monkey. 

Sample data presented for 100 successive trials. The barcode on the top indicates the current correct 

target. Each of the 4 targets is associated to one grey level. Head arrows represent the Signal to 

Change (SC) presented at the beginning of each new problem. The second barcode indicates the 

target selected by the animal in each trial. The third barcode indicates the target selected by the 

model based on the feedback obtained by the animal. Variation of action values for each of the 4 

targets are represented by curves.  The high learning rate (α=0.9) that resulted from the optimization 

produced sharp variations of action values. The data are presented for two models (SBnoA and 

GQLSB). (A-middle) Proportion of shifts after SC for monkeys M and P. (A-right) Proportion of 

selection of each target in the first trial of each problem across sessions of recordings. Each line 

represents one target position. (B) Reaction times (RT) measured in two monkeys averaged for typical 

optimal problems: those where the monkey made 2 errors (INC1 and INC2) during the search period, 

found the correct target (CO1) in the third trial, and repeated the correct choice from 3 to 7 times 

(CO2 to CO8), depending on the problem's length, during repetition trials. **: p<0.005, ***:p<0.001. 

(C) Percentage of errors made by the animal during the repetition periods against the exploration rate 

βR of the repetition periods. One data point per session. (D) Scores obtained by each tested model 

during the model comparison analysis (see methods).  Opt -LL = negative log-likelihood on the 

optimization dataset. -LPP = negative log of posterior probability. BIC = Bayesian Information Criterion. 

AIC = Akaike Information Criterion. Test -LL = negative log-likelihood on the test dataset. (E) 
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Distribution of exploration meta-parameters obtained after optimization of the model on monkey's 

behavior using distinct degrees of freedom during the search period (βS) and the repetition period 

(βR).  

 

Figure 3. Variations of early-delay activity and choice selectivity. (A-top) Proportions of dACC and 

LPFC cells with a higher activity during search or repetition. (A-bottom) Proportions of dACC and LPFC 

cells with a higher choice selectivity during Sea or Rep. (B) Number of cells with significant changes (in 

grey) in average unit activity between search (Sea) and repetition (Rep). The histograms represent the 

distribution of indices of variation of activity from search to repetition computed in the early-delay 

epoch with equation (9) in dACC and LPFC neurons. Grey bars represent neurons with significantly 

different activity between search and repetition trials (Kruskal-Wallis test, p < 0.05).  White bars 

represent neurons with non-significantly different activity in search and repetition. (C) Increase of 

choice selectivity from search to repetition in the two structures. Stars indicate statistically significant 

comparisons *: p<0.05, **: p<0.01.  (D) Compared to dACC neurons (grey bars), a higher proportion of 

LPFC neurons showed significant mutual information between the early-delay average firing rate and 

the animal's choice. Dashed grey and black lines represent the medians for dACC and LPFC 

respectively. 

 

Figure 4.  Early-delay choice selectivity varies with exploration level. (A). The average choice 

selectivity index is presented for units recorded in dACC (top) and LPFC (bottom), in sessions grouped 

according to the fitted model's exploration meta-parameters for repetition (βR). The average 

population index is measured for search (grey bars) and repetition (white bars) trials in the early-delay 

epoch, separately for sessions where βR was inferior or superior to 5. Stars indicate statistically 

significant comparisons. *: p<0.05. (B). Proportion of dACC and LPFC early-delay choice selective 

neurons during repetition periods of sessions where βR was small (<5) or large (>5). Only LPFC 

revealed a significant change in proportion. 

 

Figure 5. Two examples of action value neurons. (A)  dACC unit negatively correlated with the value 

of target #4. (Top) plot of single trial activity (black dots) measured in the post-target epoch against 

the Q-value, for trials where the animal chose target 4. Large grey dots represent the average for one 

decile of the value distribution and are just used for illustration. The dashed line represents the linear 

regression computed from single trial data. (Middle) peri-stimulus histograms aligned on target onset 

(Target ON) and the corresponding raster plots for trials in which the animal chose target 4 (in black) 

and for the other trials (in grey). The post-target epoch is represented in grey on the time line. 



Khamassi et al.                                                      Adaptive control in prefrontal cortex 

40 
 

(Bottom) trial by trial evolution of the average activity measured in the post-target epoch during 

successive trials in a session. The upper grey barcode represents the correct target to be chosen (4 

greys for 4 target positions; corresponding target number is indicated above the bar code). The 

second barcode represents the target chosen by the animal in each trial. Below, the graph represents 

the average activity for each trial and, the trial by trial evolution of key model variables.  Grey areas 

represent trials where the animal selected target #4. See main text for details. (B) LPFC neuron with a 

positive correlation with the value of target #2 during the post-target epoch. Conventions as in A. 

 

 

Figure 6. Proportions of dACC and LPFC cells with activity correlated with one of the model 

variables (Q, δ, and U) in one of the 9 trial epochs (bars from left to right: pre-start, delay, pre-

target, post-target, pre-touch, pre-feedback, early-feedback, late-feedback, ITI). The white and black 

arrow heads indicate touch and feedback respectively. There were more LPFC cells correlated with 

one of the action-values (Q, in A). In B and C, δ+ or δ- represent respectively positive and negative 

correlations with δ. A higher proportion of dACC cells were either positively or negatively correlated 

with δ (δ+ or δ-) compared to LPFC. These cells mostly responded during post-feedback epochs, and 

very few cells retained a trace of the previous δ during the beginning of the next trial (pre-feedback 

epochs). There were more U cells in dACC than in LPFC (in D). See text for details. E. Proportion of 

cells, for each epoch, showing a significant correlation with at least one model variable. 

 

Figure 7. Six examples (A-F) of unit activity correlated with some of the model's variables. Line 

graphs represent average activity aligned on feedback (FB), trial start, or target onset. The grey 

intensity of lines corresponds to the different trial types as described in the bar graphs below. The 

grey zone on each time axis represents the epoch used for average measures displayed in the bar 

graph. Bar graphs represent, for each unit, the average activity measured in the time epoch for the 6 

trial types of a typical problem. The trial types in search are: sea1 (first error trial, black), sea2 (second 

error trial, dark grey), sea3 (third trial in search for activity measured before feedback, grey), and CO1 

(first correct trial for activity measured after the feedback, grey in A, B, and E). Trial types in repetition 

are CO2, CO3, and CO4 (light grey). (A) example of dACC activity negatively correlated with RPE (δ-). 

(B) example of LPFC activity negatively correlated with RPE (δ-). (C) example of LPFC activity 

correlated with U. (D) example of dACC activity negatively correlated with U. (E) example of dACC 

activity positively correlated with RPE (δ+). (F) example of activity discriminating search and repetition 

but with a different profile than U. 
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Figure 8. Multiplexing of information and variations during epochs in dACC and LPFC. (A) A principal 

component analysis was performed on the regression coefficients found for each neuron and for each 

model variable (Q: the action value of the animal's preferred target, δ, and U; Model GQLSB2β). The 

absolute value of the eigen values for each principal component computed during the early-feedback 

epoch are shown in each matrix for one trial epoch. Black denotes strong weights. Data are presented 

for each monkey M and P. (B) Evolution of the entropy-like factor on regression coefficients computed 

for 2 variables Q and U, and Q and δ. A * indicates a statistically significant difference between dACC 

(in grey) and LPFC (in black). (C) Proportion of total variance explained by each model variable over 

the 3 PCs for dACC and LPFC data along trial epochs. See main text for details. 

 

Figure 9. Variations of choice selectivity in δ-cells. (A) Example of a LPFC cell responding after errors 

(activity negatively correlated with δ in the late-feedback epoch) and showing an increase in choice 

selectivity at the beginning of trials. Left: error trials are illustrated in grey, correct trials in black. 

Right: trials are grouped by chosen targets. 4 grey curves for 4 target locations. (B) Percentage of 

dACC and LPFC δ-cells showing a significant increase in choice selectivity from search to repetition. (C) 

Averaged population activity (50 ms bins) of all dACC (left) and LPFC (right) units negatively correlated 

with δ. For each cell, the activity was averaged separately for trials in which the animal selected the 

cell's preferred target (black plain line), the second preferred target (black dashed line), the third (gray 

dashed line) or the least preferred target (gray plain line). The activity is represented in 3s windows 

centered on the feedback time (FB, Left) and on the next trial start (ST, Right), for search trials (Top) 

and repetition trials (Bottom). In LPFC, negative δ cells showed an increase in choice selectivity in the 

post-start epoch of repetition trials. 
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Figure 3. Variations of early-delay activity and choice selectivity. (A-top) Proportions of dACC and LPFC cells with a higher activity 

during search or repetition. (A-bottom) Proportions of dACC and LPFC cells with a higher choice selectivity during Sea or Rep. (B) 

Number of cells with significant changes (in grey) in average unit activity between search (Sea) and repetition (Rep). The histograms 

represent the distribution of indices of variation of activity from search to repetition computed in the early-delay epoch with equation 

(9) in dACC and LPFC neurons. Grey bars represent neurons with significantly different activity in between search and repetition trials 

(Kruskal-Wallis test, p < 0.05).  White bars represent neurons with non-significantly different activity in search and repetition. (C) 

Increase of choice selectivity from search to repetition in the two structures. Stars indicate statistically significant comparisons *: 

p<0.05, **: p<0.01.  (D) Compared to dACC neurons (grey bars), a higher proportion of LPFC neurons showed significant mutual 

information between the early-delay average firing rate and the animal's choice. Dashed grey and black lines represent the medians for 

dACC and LPFC respectively.
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dACC LPFC 

  

Q cells 227 (39%) 126 (54%) 

RPE cells 252 (44%) 69 (30%) 

U cells  206 (36%) 48 (21%) 

  

Cells w. multiple correlates 218 (38%) 75 (32%) 

Cells w. single correlates 179 (31%) 70 (20%) 

Cells without correlation 179 (31%) 87 (37.5%) 

Cells w. correlates without other effect 78 (14%) 20 (9 %)  

  

  

Excluded cells (not enough trials) 461 (80%) 159 (69%) 

Included cells with M.I. < 0.1 111 (19%) 56 (24%) 

Included cells with M.I. > 0.1 4 (1%) 17 (7%) 

M.I. cells without other effect 0 (0%) 0 (0%) 
  

   

SEA<REP cells 96 (17%) 20 (9%) 

SEA>REP cells 116 (20%) 39 (17%) 

Non signif. variation cells 364 (63%) 173 (75%) 

SEA<>REP cells without other effect 22 (4%) 4 (2%)

  

SEA-REP choice selectivity analysis  

SEA only selective cells 60 (10%) 12 (5%)

REP only selectivecells 162 (28%) 83 (36%)

Both SEA and REP selective cells 64 (11%) 60 (26%)

Non selective cells 290 (50%) 77 (33%)

Choice selective cells without other effect 27 (5%) 13 (6%)

  

Non task-related cells 61 (11%)  38 (16%) 

  

TOTAL number single units analysed 576 (100%) 232 (100%) 

 

Multiple regression analysis

Mutual Info analysis

REP activity variation analysis-SEA

SUMMARY TABLE

Analysis on all cells

Cells with M.I. < 0.1 409 (71%) 145 (62.5%)

Cells
 
with M.I. > 0.1

 
167 (29%)

 
87 (37.5%)

 

 

 

 

 

 

 

 

 

 

 

Restrictive analysis (requiring a large number of samples)
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Figure S1. Simulations testing the effect of covarying variables.  6 ensembles of virtual data were created with covariations of coefficients of 

regressions  (found with the multiple regression analysis cell x model variables) associated to Q and d, and for which the coefficients associated 
to U are independant and represent a uniform noise (across the entire Z axis). The 6 data sets illustrate (from left to right, and from top to 
bottom) :

- case of strong covariation between coefficients for Q and d, and weak reg coefficients associated to U (between 0 and 1)

- case of strong covariation between coefficients for Q and d, and medium reg coefficients associated to U (between 0 et 100)

- case of strong covariation between coefficients for Q and d, and strong reg coefficients associated to (between 0 et 1000)

- case of weak covariation between coefficients for Q and d, and weak reg coefficients associated to U (between 0 and 1)

- case of weak covariation between coefficients for Q and d, and medium reg coefficients associated to U (between 0 et 100)

- case of weak covariation between coefficients for Q and d, and strong reg coefficients associated to (between 0 et 1000)
 For each of the 6 cases 3 graphs are shown from top to bottom: - distribution of coefficients of regression for each of the 576 simulated 
cell data (one point per cell), - a matrix of the Principal Components (PC) for the three model variables (as in figure 8A), - the ELI (entropy-like 

index) measured on the absolute value of the Z-scores of the coefficients of regression associated to d and Q.

 These analyses show that the strength of correlation with model variables is reflected in the order of the principal components. They 
also show that strong covariation between regression coefficients for two different model variables results in principal components expressed 
as a function of both variables with nearly equal strength. These are the characteristics that are expected from the Principal Component 
Analysis applied to real neural data in dACC and LPFC.
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 Figure S2. Distributions of Beta with model SBNoA and comparisons betwen GQLSB and SBnoA. A. Distribution of exploration 

meta-parameters obtained after optimization of the model on monkey's behavior using distinct degrees of freedom during the 

search period (β ) and the repetition period (β ). B. Comparisons of optimal bs obtained with SBnoA and GQLSB for one b versions, S R

and 2 b versions. C. Distributions of meta-parameters (a,�b,�k) over sesssions as obtained with the two models SBnoA and GQLSB, 

with one or 2 b as indicated on the figures. Green is for SBnoA, orange for GQLSB. Overall the figures shows the high similarity 

between the two models in their capacity to describe behaviour.
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Figure S3. Variations of early-delay activity and choice selectivity - data for each monkey (M and P). (A-top) Proportions of dACC and 

LPFC cells with a higher activity during search (Sea) or repetition (Rep). (A-bottom) Proportions of dACC and LPFC cells with a higher 

choice selectivity during Sea or Rep. (B) Number of cells with significant changes (in grey) in average unit activity between search (Sea) 

and repetition (Rep).  (C) Increase of choice selectivity from search to repetition in the two structures. Stars indicate statistically 

significant comparisons *: p<0.05, **: p<0.01.  (D) Mutual information between the early-delay average firing rate and the animal's 

choice. Dashed grey and black lines represent the medians for dACC and LPFC respectively.



Figure S4. A. Choice selectivity and exploration level. Data computed using the SBNoA2b model (Left), and proportion of dACC and 

LPFC early-delay choice selective neurons during repetition periods of sessions where β  was small (<5) or large (>5) (obtained with R

model SBNoA - Right). B. Choice selectivity depending on exploration level using model GQLSB 2 Beta for each monkey (M and 2b   

P). The average choice selectivity index is presented for units recorded in dACC (top) and LPFC (bottom), in sessions grouped 

according to the fitted model's exploration parameters for search (β ) and repetition (β ). The average population index is measured S R

for search (grey bars) and repetition (white bars) trials in the early-delay epoch, separately for sessions where β  was inferior or S

superior to 5, and for sessions where β  was inferior or superior to 5. Stars indicate statistically significant comparisons. *: p<0.05.  R

When separating the data for the two monkeys, no significant effect was found in dACC for neither monkeys (Kruskal-Wallis test with 

Bonferroni correction, p > 0.05), a significant effect of β  was found in Monkey M LPFC (Kruskal-Wallis test with Bonferroni correction, R

p < 0.05), and a tendency, although non-significant, was found in Monkey P LPFC.
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 Figure S5. Proportions of dACC and LPFC cells with activity correlated with one of the model variables (Q, δ, and U) using 4 different 

models. The GQLSB model (A), and the SBNoA model (B) with 1 or 2 b parameter. (top and bottom). The GQLSB 2b is the model used for 

further analyses and presented in main figure 6.
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 Figure S6. Proportions of dACC and LPFC cells with activity correlated with one of the model variables (Q, δ, and U) using the GQLSB 2 b 

model for each monkey (Left).  On the Right, Proportion of cells, for each epoch, showing a significant correlation with at least one model 

variable. See figure 6 for average data and figure S5 for comparisons with other models.



start HIGH�U TRIALS, red dots : targetON

-3000 -2000 -1000 0 1000 2000 3000
0

10

20

CH3
T
1

9f
  start SMALL U TRIALS, red dots : targetON

10

20

30

-3000 -2000 -1000 0 1000 2000 3000

20

40

60

80

100

120

140

start 

start 

  
S

M
A

L
L

 U
 T

R
IA

L
S

H
IG

H
 U

 T
R

IA
L

S

C  (figure 7D)

Figure S7. Three examples of unit activity from figures 7A (A), 7C (B) and 7D (C) correlated with some of the model's variables. (A) example 
of dACC activity negatively correlated with RPE (δ-). (B) example of LPFC activity correlated with U. (C) example of dACC activity negatively 
correlated with U.  (Top) plot of single trial activity (black dots) measured in the late feedback (A) and post-Sart (B, C) epochs against RPE and U
values respectively. Large grey dots represent the average for one decile of the value distribution and are just used for illustration. The red line 
represents the linear regression computed from single trial data. (Middle) peri-stimulus histograms aligned on feedback (A), Target Onset (B), 
and Start (C) and the corresponding raster plots for trial types indicated on the figures. (Bottom) trial by trial evolution of the average activity 
measured in the relevant epoch during successive trials in the session. The upper grey barcode represents the correct target to be chosen (4 
greys for 4 target positions). The second barcode represents the target chosen by the animal in each trial. Below, the graphs represent the 
average activity for each trial and the trial by trial evolution of key model variables. 
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Figure S8. The two exemples from figures 7E (A) and 7F (B) correlated with some of the model's variables. (A) example of 
dACC activity positively correlated with RPE (δ+). (B) example of activity discriminating search and repetition but with a different 
profile than U; profile labelled EL for Error Likelihood. (Top) plot of single trial activity (black dots) measured in the early feedback 
(A) and post-target (B) epochs against RPE and EL values respectively. Large grey dots represent the average for one decile of the 
value distribution and are just used for illustration. The red line represents the linear regression computed from single trial data. 
(Bottom) peri-stimulus histograms aligned on feedback (A) and Target Onset (B) and the corresponding raster plots for trial types 
indicated on the figures. Other conventions as in Fig S7.
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Figure S9. Analyses of colinearity. Evaluation of the degree of collinearity between regressors used in the multiple regression analysis of single-

unit activities as a function of model variables. (Left) Model GQLSB2b with the reward function used throughout the paper (1 in case of 

success, -1 in case of failure); (Middle) Control model with randomly generated regressors; (Right) Model GQLSB2b with a different reward 
function (1 in case of success, 0 in case of failure). For each recording session (308 in total) and for each regressors (7 in total), the figure shows 
the degree of collinearity measured when expressing the regressor as a function of the 6 other regressors for that session. 
The histograms on top show the variation inflation factors (VIF) computed with the coefficient of determination obtained when each regressor 
was expressed as a function of the other regressors. The middle figure shows the condition indexes (CONDIND) obtained in the same analysis. 
The bottom figure shows the number of variance decomposition factors (VDF) superior or equal to 0.5 obtained for each recording session.

The figure shows that the GQLSB2b model used throughout the paper (Left) displayed a strong collinearity between regressors only for 1/308 
session (condind>=30 and more than two VDPs > 0.5) and a moderate collinearity only for 1/308 session (condind>=10 and more than two 
VDPs > 0.5). All other sessions showed a weak collinearity between regressors. In contrast, when the same model is used with a reward 
function equal to 1 for correct trials and 0 for error trials, collinearity is strong fo . As a r 5/308 sessions and moderate for 284/308 sessions
control, a model with randomly generated regressors shows weak collinearity in 100% simulated sessions.
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Figure S10. Multiplexing of information and variations during trials in dACC and LPFC - Data given for model SBNoA2b. 

(A) A principal component analysis was performed on the regression coefficients found for each neuron and for each 

model variable (Q: the action value of the animal's preferred target, δ, and U). The absolute value of the eigen values for 

each principal component computed during the early-feedback epoch are shown in each matrix for one trial epoch. (B) 

Top. Proportion of total variance explained by each model variable over the 3 PCs for dACC and LPFC data along trial 

epochs. Bottom. Comparison between models GQLSB2b and SBnoA2b of an entropy-like index computed on the set of % 

variance explained by each model variable in each trial epoch (data from part A). A kruskal-Wallis test indicated a higher 

entropy in LPFC than in dACC (marginal significance for model GQLSB2b; strong significance for model SBnoA2b).  See 

main text for details.
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