A BLIND DEBLURRING AND IMAGE DECOMPOSITION APPROACH FOR ASTRONOMICAL IMAGE RESTORATION
Rahul Mourya, Loïc Denis, Jean-Marie Becker, Éric Thiébaut

To cite this version:
Rahul Mourya, Loïc Denis, Jean-Marie Becker, Éric Thiébaut. A BLIND DEBLURRING AND IMAGE DECOMPOSITION APPROACH FOR ASTRONOMICAL IMAGE RESTORATION. European Conference on Signal Processing 2015, Aug 2015, Nice, France. hal-01219248

HAL Id: hal-01219248
https://hal.archives-ouvertes.fr/hal-01219248
Submitted on 22 Oct 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A BLIND DEBLURRING AND IMAGE DECOMPOSITION APPROACH
FOR ASTRONOMICAL IMAGE RESTORATION

Rahul Mourya *, Loïc Denis, Jean-Marie Becker
Université Jean Monnet, CNRS, UMR 5516, Laboratoire Hubert Curien,
F-42000, Saint-Étienne, France

Eric Thiébaut
Université de Lyon 1, CNRS, UMR 5574, Observatoire de Lyon,
F-69561, Saint Genis Laval Cedex, France

ABSTRACT
With the progress of adaptive optics systems, ground-based telescopes acquire images with improved resolutions. However, compensation for atmospheric turbulence is still partial, which leaves good scope for digital restoration techniques to recover fine details in the images. A blind image deblurring algorithm for a single long-exposure image is proposed, which is an instance of maximum-a-posteriori estimation posed as constrained non-convex optimization problem. A view of sky contains mainly two types of sources: point-like and smooth extended sources. The algorithm takes into account this fact explicitly by imposing different priors on these components, and recovers two separate maps for them. Moreover, an appropriate prior on the blur kernel is also considered. The resulting optimization problem is solved by alternating minimization. The initial experimental results on synthetically corrupted images are promising, the algorithm is able to restore the fine details in the image, and recover the point spread function.

Index Terms— Astronomical imaging, blind image deblurring, non-convex optimization, alternate minimization, Huber function, ADMM.

1. INTRODUCTION
Acquiring photometrically precise and high resolution images from a ground-based imaging system is highly desirable and remains a long-standing problem in astronomy. The atmospheric turbulence is the major culprit for the distortions in the acquired images. Adaptive optics (AO) [1] partially compensates the turbulence in real-time and brings the effective point-spread-function (PSF) closer to the diffraction limit. However, some amount of blur remains in long-exposure images, and the finest details in the images, which are very important for the astrophysical interpretations, are lost. It is therefore necessary to use image restoration techniques to enhance the quality of the images [2–4].

* The author is supported by a PhD grant funded by the ARC6, Région Rhône-Alpes.
the PSF, and thus, when the algorithm progresses to recover precisely the PS, the PSF estimation gets refined, which then ultimately refines the structural details in ES.

2. BLIND IMAGE DEBLURRING

2.1. BID as MAP estimation

Since BID is fundamentally an ill-conditioned and ill-posed problem, strong priors on both the unknown sharp image and the PSF are required to regularize the problem. This naturally leads to maximum-a-posteriori (MAP) estimation framework:

\[\{ x, h \}_{\text{MAP}} := \arg \max_{x, h} \{ p(y|x, h) p(x) p(h) \} \]

which jointly estimates the unknown image and the blur. The likelihood \(p(y|x, h) \) of observed data depends upon the noise statistics, and the prior distributions \(p(x) \) and \(p(h) \) impose the prior knowledge about the sought unknowns. Recently, [16] pointed out that MAP approach may completely fail for BID in the absence of a prior on the PSF \(h \) favoring some amount of spreading. The authors advocate to use a marginalization approach within a variational Bayesian approximation to estimate more reliably the PSF \(h \). In the case of astronomical images, the presence of PS provides both the good starting guess of the PSF and the explicit detection of all point sources of the image during the blind deconvolution procedure helps the MAP approach to succeed, as shown below.

The MAP estimation can equivalently be cast as a minimization problem:

\[\{ x, h \}_{\text{MAP}} := \arg \min_{x, h} - \log \{ p(y|x, h) p(x) p(h) \} \]

by taking negative \(\log \) of equation (2). In the following sections, we specify in detail the each term of equation (3).

2.2. The data fitting term

We consider the non-stationary white Gaussian noise model proposed in [4], which is a pretty accurate approximation for the mix of Poissonian and Gaussian noise while keeping the complexity arising in the optimization problem at a moderate level. We believe that sufficiently precise and simple noise model with strict a priori constraints on the solution can result into better behavior of the BID algorithm than a more complex noise model which can hinder in strict enforcement of the constraints. Dropping out the constant terms, the likelihood for the noise model is written as:

\[- \log p(y|x, h) = \sum_i \frac{1}{2 \sigma_i}(y - h \ast x)^2 = \frac{1}{2} \| y - Hx \|_W^2 \]

where \(\sigma_i = \sigma_i^{\text{ph}} + \sigma_i^{\text{det}} \), and \(\sigma_i^{\text{ph}} \) and \(\sigma_i^{\text{det}} \) are photon (Poisson) and detector (Gaussian) noise variances at the \(i \)-th pixel in the image. \(W \) is diagonal and is the inverse of the covariance matrix, i.e. \(W_{i,i} = 1/\sigma_i \). The covariance matrix depends on \(x \) and \(h \), thus one could improve its estimate at each iteration of the Algorithm 1 as proposed in [17], but in paper we keep it fixed, and estimate it initially from the observed image as suggested in [4]. For unknown measurements, such as dead or saturated or boundary pixels, \(W_{i,i} = 0 \), as done for example in [18] for handling boundaries correctly.

2.3. The image regularizer

An astronomical image can be described as the superimposition of point (i.e., unresolved) sources (PS) and extended (i.e., resolved) sources (ES). From a statistical point of view, the PS can be modeled as sparse uncorrelated pixels, and the ES as smoothly varying correlated pixels. Thus, a sparsity inducing \(\ell_1 \)-norm is imposed on the PS, and smoothness-inducing edge-preserving Huber prior is imposed on the ES, and two separate maps: \(x_P \) and \(x_E \), are estimated. An important physical constraint, the positivity of these maps, is also imposed, and the \textit{a priori} on PS and ES are written as:

\[- \log p(x_P) = \lambda \| x_P \|_1, \quad x_P \geq 0 \]

\[- \log p(x_E) = \mu \sum_i \phi_\delta(\nabla_i x_E), \quad x_E \geq 0 \]

where \(\phi_\delta(t) = \left\{ \begin{array}{ll} \frac{1}{2} \| t \|^2_2 & \| t \|^2_2 \leq \delta \\ \delta \| t \|_2 - \frac{\delta}{2} & \| t \|^2_2 > \delta \end{array} \right. \), and \(\nabla_i x \in \mathbb{R}^2 \) represents the gradient vector at the \(i \)-th pixel of the image. \(\{ \lambda, \mu \} > 0 \) are tunable hyperparameters, and \(\delta \geq 0 \) is a threshold. The prior on ES is an intermediate between Total Variation and Sobolev regularization, and its behavior is adjusted by the \(\delta \).

2.4. The PSF regularizer

For ground-based large telescopes, there are mainly two regimes of imaging: long and short (less than \(\approx 1/4 \) second) exposures. Short exposure images take the form of speckle patterns, consisting of multiple distorted and overlaid copies of the diffraction-limited PSF. In order to increase the signal-to-noise ratio, almost all astronomical imaging is performed with long exposures, unless conditions (such as high sky brightness in the infrared) prevent it. Because the short-exposure PSFs are highly variable, both in structure and centroid position, the summed long-exposure PSF is highly blurred compared to the diffraction-limit, even with a good seeing conditions. Thanks to the real-time correction of the AO system, the long-exposure PSF is maintained closer to diffraction-limit, but because of some remaining perturbations in the imaging system, the effective PSF still has some uncorrected parts. Several measurements of PSF done at Gemini north and Keck observatory [6] reveal that the uncorrected part of the PSF are approximately Lorentzian or Gaussian shape or both atop the Airy pattern. The PSF of the AO corrected imaging system is quite smooth with small aberrations, thus a smoothness inducing Sobolev-norm on the sought PSF is chosen as \textit{a priori} on PSF. The PSF of the considered imaging system is always positive, upper bounded by the peak value of the diffraction-limited PSF, and normalized, thus the \textit{a priori} on PSF is written as:

\[- \log p(h) = \frac{\mu}{2} \| \nabla h \|_2^2, \quad 0 \leq h \leq \alpha, \quad 1^T h = 1. \]
where α is the peak value of Airy pattern for a given aperture, and $\gamma > 0$ is hyperparameter.

2.5. BID as a constrained optimization problem

With all prior terms described in preceding sections, BID is expressed as a constrained minimization problem:

$$\{\hat{x}_P, \hat{x}_E, \hat{h}\}_{\text{MAP}} := \arg \min_{x_P, x_E, h} \frac{1}{2} \|y - H x\|_W^2 + \lambda \|x_P\|_1 + \mu \sum_i \phi((\nabla_i x_E))_i + \frac{\nu}{2} \|\nabla h\|_2^2$$

subject to $x_P + x_E = x$, $x_P \geq 0$, $x_E \geq 0$, $0 \leq h \leq \alpha$, $1^T h = 1$.

(4)

This is a difficult large-scale non-convex optimization problem with non-differentiable terms, and still may have several local minima even though we restrict its solution space with the possible penalties and constraints. Few authors [12] propose to solve BID by a joint estimation approach (estimating simultaneously both x and h), but their formulations of BID are comparatively simpler, and do not contain any non-differentiable terms. Solving this problem by joint estimation approach is a very difficult task, however, the problem is convex with respect to each of the unknown when considering the other fixed, thus, a much simpler and widespread approach is to perform Alternating Minimization [19], as presented in Algorithm 1. One can reach to the expected local minimum using Algorithm 1, provided that one starts with a good initial guess of the PSF. Luckily, in case of astronomical imaging, finding a good initial guess of the PSF is not a tedious task, one can extract it from the observed image itself by selecting few blurry point-like sources (reference stars), otherwise one could ask for calibrated PSF from the astronomers: they always have model fitted PSF to characterize their imaging system. The calibrated PSF of an imaging system with AO are quite close to the true PSF. The optimization problems (5) and (6) in Algorithm 1 are solved by the variable splitting trick, and transforming the resulting constrained optimization problem into an unconstrained problem by forming the augmented Lagrangian. The solution is then found by minimizing the augmented Lagrangian by the convex optimization framework recently proposed in [20]. We introduce the variables splittings: $x_P - z_P = 0$ and $\nabla x_E - z_E = 0$, and transform the problem (5) into following unconstrained form:

$$\min_{x_P, x_E, u_P, u_E} \left\{ \frac{1}{2} \|y - H x\|_W^2 + g(x_P) + \lambda \|z_P\|_1 + \frac{\rho_1}{2} \|x_P - z_P + u_P\|_2^2 + \mu \sum_i \phi((\nabla_i x_E)) + g(x_E) + \frac{\rho_2}{2} \|\nabla x_E - z_E + u_E\|_2^2 \right\}$$

where g is an indicator function for positivity, $\{u_P, u_E\}$ are scaled Lagrangian multipliers, and $\{\rho_1, \rho_2\} > 0$ are called penalty parameters.

Similarly, we introduce the variable splitting: $h - z = 0$, and transform the problem (6) into the unconstrained form:

$$\min_{h, z, u} \left\{ \frac{1}{2} \|y - X h\|_W^2 + f_1(h) + f_2(z) + \frac{\rho_2}{2} \|h - z + u\|_2^2 \right\}$$

where X is the discrete convolution matrix formed from the

Algorithm 1: Blind Deblurring Algorithm

Data: y, W, and $\{\lambda, \mu, \delta, \gamma\}$.
Result: $\{\hat{x}, \hat{h}\}$
Initialization: $h = h^{(0)}$; $t = 1$;
while convergence not reached do

Image Estimation:

$$\{\hat{x}_P^{(t+1)}, \hat{x}_E^{(t+1)}\} := \arg \min_{x_P, x_E} \frac{1}{2} \|y - H x\|_W^2 + \lambda \|x_P\|_1 + \mu \sum_i \phi((\nabla_i x_E))_i + \frac{\nu}{2} \|\nabla h\|_2^2$$

subject to $x_P + x_E = x$, $x_P \geq 0$, $x_E \geq 0$.

(5)

PSF Estimation:

$$\hat{h}^{(t+1)} := \arg \min_h \left\{ \frac{1}{2} \|y - X h\|_W^2 + \frac{\nu}{2} \|\nabla h\|_2^2 \right\}$$

subject to $1^T h = 1$, $0 \leq h \leq \alpha$.

(6)

return \hat{x}, \hat{h}.
image \(x \), and \(f_1, f_2 \) are the indicator functions for the bound and the probability simplex constraints, respectively. Again, \(\rho_3 > 0 \) is the penalty parameter, and \(u \) is scaled Lagrangian multiplier. The penalty parameters are selected by hand to achieve fast convergence speed, however a very large range of values offer satisfactory convergence speed, as shown in [20]. The iterations for each of the problems are terminated once the relative change in the cost function is sufficiently low, and similarly, the outer iteration in Algorithm 1 is terminated once the relative change in cost function (4) is sufficiently low.

2.6. The hyperparameters

The proposed BID includes three tunable hyperparameters: \(\{ \lambda, \mu, \nu \} \geq 0 \), and a tunable threshold: \(\delta \geq 0 \). The hyperparameters balance between the likelihood term and the priors, and their values are proportional to noise variance in the observed image. Hyperparameter \(\lambda \) controls the sparsity in the PS map, \(\mu \) and \(\delta \) control the smoothness and sharp edges in the ES map, and \(\nu \) controls the smoothness of the PSF. A good balance among the hyperparameters is essential to obtain satisfactory decomposition into PS and ES maps, and the final result, however finding optimal values for them is a non-trivial task, but at same time it makes the BID flexible. If one believes that the observed image contains only PS, then one can mask out the ES setting \(\mu \to \infty \) (and conversly \(\lambda \to \infty \) to suppress point sources), or by trivially modifying the algorithm. In our experimental results, we chose the hyperparameters heuristically after few trials.

3. EXPERIMENTAL RESULTS

We evaluate the proposed BID algorithm on numerical simulations of a simplified astronomical scene and of an observed scene obtained from a space telescope. The top row in Figure 3 shows BID results on the synthetic scene consisting of numerous point-like sources made of single pixels, and extended sources made of few small Lorentzian discs and large bivariate-Gaussians in different orientations, all on a dark background. The bottom row in Figure 3 shows BID results on the simulation involving a real image captured by Spitzer space telescope. We consider an image captured by a space telescope because it is distorted only due to imperfections in the imaging system, but not by the atmospheric turbulence. Both the synthetic and the astronomical images have high dynamic ranges, but have been scaled to the [0, 1] range. The PSF considered here is a typical example of Gemini north 8.1 m telescope, which has been generated here by the convolution between an Airy pattern of radius 1.5 pixels and a Gaussian with FWHM = [3.5, 4] pixels [6]. The simulated blurred images are created by synthetically blurring the two images with this PSF, and then corrupting them with a mixture of Poisson and white Gaussian noise. The blurred images are scaled to the range 0 to \(10^8 \) photons before adding Poisson noise, and rescaled back to the range 0 and 1 before adding white Gaussian noise of variance \(10^{-3} \).

To apply the proposed BID method on the simulated data, few (4 to 5) blurry point-like looking sources in the observed image are extracted, aligned, stacked, and averaged to get the initial guess of the PSF. The inner iterations and outer iterations in Algorithm 1 are terminated when the relative change in function cost reaches \(10^{-6} \). The three hyperparameters in the proposed BID are tuned by hand after few trials to reach a satisfying image quality.

Improvement in PSNR for the estimated image and estimated PSF for the image in top row of Figure 3 is 8.5dB and 4.5dB, and for the image in bottom row is 8.47dB and 12.44dB respectively.

To check the viability/advantage of the map decomposition in the proposed BID, we applied BID on the image shown in top row in Figure 3 with only the a priori for the ES (keeping \(\lambda \) very large, and tuning \(\mu \) and \(\delta \) to achieve the best deblurring quality), as expected the improvement in PSNR for the estimated image and PSF reach only up to 5.45dB and 6.58dB respectively, which is significantly below the values obtained when the decomposition is applied. To have a single component, if we tune the hyperparameters to achieve good resolution of the point sources then the smooth extended source are deteriorated, and vice-versa is also observed.

4. CONCLUSION

This paper described a blind deconvolution method well fitted to astronomical image restoration. The presence of unresolved point sources are very helpful to estimate the blur in an astronomical image. The proposed method, thus, jointly performs the detection of point-like objects and the reconstruction of extended objects. This is achieved by decomposing the sought image into two components using different regularization terms on each component. By alternating between estimation of the PSF and deblurring, and decomposition into the two components, the method progressively reaches a satisfactory result. We showed on some numerical simulations that the method can successfully perform the decomposition into point-source and extended object, and recover correctly the PSF. Performing the decomposition clearly helps in correctly modeling astronomical scenes, as observed when comparing the restoration quality obtained with and without the decomposition. Ongoing works are carried on the application of the method to ground-based blurry images.

REFERENCES

Fig. 3: Illustration of the proposed BID. On the top row for synthetic scene, and the bottom row for the galaxy NGC6744 (the image obtained from Spitzer Heritage Archive). Parameters used for the restoration: for top row: \(\lambda = 1 \times 10^{-4}, \mu = 5 \times 10^{-2}, \delta = 2.5 \times 10^{-3}, \nu = 5 \times 10^{-1}, \) and 35 outer iterations; for bottom row: \(\lambda = 4 \times 10^{-5}, \mu = 7 \times 10^{-3}, \delta = 5 \times 10^{-3}, \nu = 2.5 \times 10^{0}, \) and 25 outer iterations.

