TEM study of defects versus growth orientations in heavily boron-doped diamond - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue physica status solidi (a) Année : 2015

TEM study of defects versus growth orientations in heavily boron-doped diamond

Résumé

Heavy boron-doping layer in diamond can be responsible for the generation of extended defects during the growth processes (Blank et al., Diam. Relat. Mater. 17, 1840 (2008) [1]). As claimed recently (Alegre et al., Appl. Phys. Lett. 105, 173103 (2014) [2]), boron pair interactions rather than strain-related misfit seems to be responsible for such dislocation generation. In the present work, electron microscopy observations are used to study the defects induced by heavy boron doping in different growth plane orientations. Facets of pyramidal Hillocks (PHs) and pits provide access to non-conventional growth orientations where boron atoms incorporation is different during growth. TEM analysis on FIB prepared lamellas confirm that also for those growth orientations, the generation of dislocations occurs within the heavily boron-doped diamond layers. Stacking faults (SFs) have been also observed by high resolution transmission electron microscopy (HREM). From the invisibility criteria, using weak beam (WB) observation, ½ [1-10] and 1/6 [11-2], Burger vectors have been identified. Their generation behavior confirms the mechanism reported by Alegre et al. where local in-plane strain effects induced at the growing surface of the diamond lattice by the neighboring of several boron atoms cause the generation of such extended defects.
Fichier principal
Vignette du fichier
FLloret_TEM study of defects_FinalSubmission.pdf (759.1 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01218969 , version 1 (23-10-2015)

Identifiants

Citer

F Lloret, D Araujo, M.P. Alegre, J.M. Gonzalez-Leal, M.P. Villar, et al.. TEM study of defects versus growth orientations in heavily boron-doped diamond. physica status solidi (a), 2015, 212 (11), pp.2468-2473. ⟨10.1002/pssa.201532175⟩. ⟨hal-01218969⟩

Collections

UGA CNRS NEEL
90 Consultations
229 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More