An Intrinsically Universal Family of Causal Graph Dynamics

Abstract : Causal Graph Dynamics generalize Cellular Automata, extending them to bounded degree, time varying graphs. The dynamics rewrites the graph in discrete time-steps, with respect to two physics-like symmetries: causality (there exists a bounded speed of information prop- agation) and shift-invariance (the rewriting acts everywhere the same). Intrinsic universality is the ability of the instance of a model to simulate all other instances, while preserving the structure of the computation. We present here an intrinsically universal family of Causal Graph Dynamics, and give insight on why it seems impossible to improve this result to the existence of a unique intrinsically universal instance.
Type de document :
Communication dans un congrès
Machines, Computations, and Universality, Sep 2015, Famagusta, Cyprus. Springer Verlag, 9288, pp.129-148, Machines, Computations, and Universality. <http://link.springer.com/book/10.1007%2F978-3-319-23111-2>. <10.1007/978-3-319-23111-2_9>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01218448
Contributeur : Bruno Martin <>
Soumis le : mercredi 21 octobre 2015 - 11:13:52
Dernière modification le : jeudi 22 octobre 2015 - 01:07:48

Identifiants

Collections

Citation

Simon Martiel, Bruno Martin. An Intrinsically Universal Family of Causal Graph Dynamics. Machines, Computations, and Universality, Sep 2015, Famagusta, Cyprus. Springer Verlag, 9288, pp.129-148, Machines, Computations, and Universality. <http://link.springer.com/book/10.1007%2F978-3-319-23111-2>. <10.1007/978-3-319-23111-2_9>. <hal-01218448>

Partager

Métriques

Consultations de la notice

68