Intrinsic Universality of Causal Graph Dynamics

Abstract : Causal graph dynamics are transformations over graphs that capture two important symmetries of physics, namely causality and homogeneity. They can be equivalently defined as continuous and translation invariant transformations or functions induced by a local rule applied simultaneously on every vertex of the graph. Intrinsic universality is the ability of an instance of a model to simulate every other instance of the model while preserving the structure of the computation at every step of the simulation. In this work we present the construction of a family of intrinsically universal instances of causal graphs dynamics, each instance being able to simulate a subset of instances.
Type de document :
Communication dans un congrès
EPTCS. Machines, Computations and Universality, Sep 2013, Zürich, Switzerland. 128, pp.137-149, 2013, Machines, Computations and Universality 2013 (MCU 2013). <http://eptcs.web.cse.unsw.edu.au/paper.cgi?MCU2013.19>. <10.4204/EPTCS.128.19>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01218359
Contributeur : Bruno Martin <>
Soumis le : mercredi 21 octobre 2015 - 09:05:34
Dernière modification le : jeudi 22 octobre 2015 - 01:07:48

Identifiants

Collections

Citation

Bruno Martin, Simon Martiel. Intrinsic Universality of Causal Graph Dynamics. EPTCS. Machines, Computations and Universality, Sep 2013, Zürich, Switzerland. 128, pp.137-149, 2013, Machines, Computations and Universality 2013 (MCU 2013). <http://eptcs.web.cse.unsw.edu.au/paper.cgi?MCU2013.19>. <10.4204/EPTCS.128.19>. <hal-01218359>

Partager

Métriques

Consultations de la notice

36