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PERSPECTIVE
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Introduction

The increasing rate at which species are invading new

ranges is fundamentally linked to the expansion of inter-

national trade (Carlton and Geller 1993; Cohen and

Carlton 1998; Levine and D’Antonio 2003; Pysek et al.

2010). Policies have been implemented to minimize new

introductions via trade (McAusland and Costello 2004;

Olson and Roy 2010), yet rates of invasion continue to

increase, suggesting that other additional processes might

play a role. We propose that human alteration of habi-

tats within the native range induce evolutionary changes

that could promote invasion into novel ranges. We

employ a broad definition of invasion, encompassing

successful establishment and spread in a new range

with or without particular environmental or economic

impacts.

The facilitating role of evolution in invasions, particu-

larly rapid adaptive evolution during invasions, has

recently become a major subject of research (e.g., Carroll

and Dingle 1996; Reznick and Ghalambor 2001; Lee 2002;

Lambrinos 2004; Wares et al. 2005; Facon et al. 2006;

Prentis et al. 2008). Much of this research has a temporal

and geographic focus on evolutionary shifts that occur

following introduction into a (usually remote) new loca-

tion, rather than a focus on evolution within the native
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Abstract

Adaptive evolution is currently accepted as playing a significant role in bio-

logical invasions. Adaptations relevant to invasions are typically thought to

occur either recently within the introduced range, as an evolutionary response

to novel selection regimes, or within the native range, because of long-term

adaptation to the local environment. We propose that recent adaptation within

the native range, in particular adaptations to human-altered habitat, could also

contribute to the evolution of invasive populations. Populations adapted to

human-altered habitats in the native range are likely to increase in abundance

within areas frequented by humans and associated with human transport

mechanisms, thus enhancing the likelihood of transport to a novel range. Given

that habitats are altered by humans in similar ways worldwide, as evidenced by

global environmental homogenization, propagules from populations adapted to

human-altered habitats in the native range should perform well within similarly

human-altered habitats in the novel range. We label this scenario ‘Anthropo-

genically Induced Adaptation to Invade’. We illustrate how it differs from other

evolutionary processes that may occur during invasions, and how it can help

explain accelerating rates of invasions.
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range. This perspective is logical, given that introduction

into a new environment is likely to impose a novel selec-

tion regime, making rapid evolution probable. Striking

examples of evolution following introduction include

reduced size at reproduction in fish (Bohn et al. 2004),

increased size or reproductive capacity of invasive plants

(e.g., Blair and Wolfe 2004), rapid evolution of physio-

logic tolerance to fresh water (Lee et al. 2003, 2011), and

increased dispersal distance in toads (Phillips et al. 2006;

Phillips et al. 2010).

However, evolution within the native range, prior to

introduction to a remote and novel range, can also pro-

mote biological invasions (Di Castri 1989; Lee and Gel-

embiuk 2008). This process has been referred to as

‘preadaptation’, in the invasion literature. However, the

term preadaptation already has a widely recognized and

well-established meaning in the evolutionary literature,

that of exaptation (Bock 1959; Gould and Vrba 1982). In

Box 1, we discuss the two different meanings of preadap-

tation and how they each might contribute to invasion.

To differentiate between the two meanings, we use the

terms ‘exaptation’ and ‘prior adaptation’ (Box 1), where

prior adaptation is simply evolution of traits in the

native range, prior to introduction to a new range, that

enhance success of introduced populations without a

change in function. Both exaptation and prior adaptation

have the potential to promote successful invasion, but

prior adaptation is likely to be more important.

Box 1: Preadaptation: exapatation and prior adaptation

Evolution within the native range can lead to traits that confer higher fitness, i.e., are adaptive, within a novel habitat.

Generally, this has been called ‘preadaptation’. The term encompasses two distinct processes, however: exaptation and

what we call here prior adaptation. Exaptation occurs when a trait that has evolved under one selection regime is co-

opted by chance for a different function (Bock 1959; Gould and Vrba 1982; see also Grant 1977; Futuyma 2005). This

is the original meaning of the term preadaptation, from the evolutionary biology literature. The classic example of ex-

aptation is feathers in dinosaurs. Their original function is thought to have been thermoregulation, and then they

were co-opted for use in movement and eventual flight. While we know of no clear example from invasion biology

whereby a trait acquired a truly new adaptive function that enhanced its invasiveness in the new range, theoretically

it is possible. Thus, exaptation constitutes one mechanism by which traits could evolve in the native range that would

facilitate invasion of a novel environment.

To avoid confusion with exaptation, we prefer to distinguish this second meaning of preadaptation as ‘prior

adaptation’. Prior adaptation denotes the case in which adaptation to one or more facets of the environment within

the native range facilitates invasions to similar environments in the novel range (Parker and Gilbert 2004; Dietz

and Edwards 2006; Bossdorf et al. 2008; Fausch 2008; Treier et al. 2009). Thus, with prior adaptation, there is not

a change in function as there is with exaptation. Prior adaptations can be associated with an evolutionary history

in fluctuating environments in the native range (Lee and Gelembiuk 2008), which might select for organismal flexi-

bility or evolvability, both of which could facilitate invasion into a wide range of habitats. This appears to be the

case in the copepod Eurytemora affinis Lee et al. (2003).

Alternatively, prior adaptation can occur via local adaptation, which can facilitate the founding and spread of new

populations if those populations happen to be introduced to a region with a similar environment, and thus, traits

that conferred high fitness in the native environment do so in the novel environment as well (Sax and Brown 2000;

Blumenthal 2006; Dietz and Edwards 2006). One example of this mechanism appears to be found in Senecio inaequi-

dens (Bossdorf et al. 2008; Lachmuth et al. 2010). Within its native southern African range, it is able to use a variety

of habitats, while in parts of the introduced range in Europe this species invades rocky railroad tracks and motor-

ways. Common garden comparisons reveal that invasive populations are phenotypically most similar to native popu-

lations originating from rocky slopes and dry riverbeds of mountainous regions in Southern Africa. Bossdorf et al.

(2008) thus hypothesize that populations in the native range found on (and presumably adapted to) rocky slopes

are the source of the populations in Europe invading, which have prior adaptations to similarly disturbed and open

environments of the introduced range.

We introduce here another mechanism leading to prior adaptation called Anthropogenically Induced Adaptation to

Invade (AIAI), which we detail in the main text. Fundamentally, AIAI begins with local adaptation, but rather than

adaptation being to the native habitat, it is to new human-altered habitat. Thus, other forms of prior adaptation facil-

itate invasion when traits that are adaptive in the native range are, essentially by chance, adaptive in the introduced

range as well. In contrast, because AIAI starts with adaptation to human-altered environments, it directly facilitates

invasions into human-altered environments. As such, it may contribute to ever increasing rates of invasion.
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Either local adaptation to a stable environment or partic-

ular disturbance regime and an evolutionary history in fluc-

tuating environments (Lee and Gelembiuk 2008) can lead

to prior adaptation to a novel environment (Box 1). The

evolutionary processes leading to local adaptation to native

environments can span many generations and often act over

the long-term evolutionary history of the species within its

native range and continue up to the present day. These

longstanding evolutionary processes in the native range

cannot fully help us understand the ever-increasing rate of

biological invasions, because contemporary invasive popu-

lations are increasingly facing anthropogenic change within

their native ranges, often marked by sudden, dramatic, and

episodic impacts. Such impacts impose selection for new

adaptative states that may create populations within the

native ranges that are primed to become invasive. Thus, we

argue here that anthropogenic change introduces a unique

set of circumstances that warrants a separate category.

We propose that contemporary adaptation to human-

altered environments within the native range is a central

means by which prior adaptations to invasion evolve.

Because the rate at which humans alter environments is

increasing, the process we outline might aid in understand-

ing mechanisms underlying the ever-increasing rate of

invasions. We call this process Anthopogenically Induced

Adaptation to Invade (AIAI). AIAI is summarized in

Fig. 1. Briefly, species are exposed to human-altered habi-

tats in their native range, and commonly become adapted

to those habitats. This process leads to an increase in abun-

dance within close proximity to human transportation sys-

tems, increasing the likelihood that they will be transported

to a new range. Furthermore, the very adaptations that

confer advantages within the human-altered habitat in the

native range will also confer advantages in remote, simi-

larly-altered habitats, facilitating successful establishment

of new populations and subsequent invasions.

Within the native range Transport Within the introduced
range

Native range

Introduced range

(A) (B) (C)

Figure 1 Schematic representation of the AIAI scenario. (A) Within the natural habitats (in green) of the native range, local populations (blue

hexagons) are exposed to human-altered habitat (in light orange). Some populations adapt to this new type of habitat becoming either generalists

able to use both habitat types, or specialists on the human-altered habitat (orange and brown hexagon, respectively; see Box 2). Generalist popu-

lations are more likely to have substantial flow of movement and genes across habitat boundaries (dashed arrow). (B) Most long-distance trans-

port happens between two human-altered habitats (hence the large arrows). The presence of adapted populations in the human-altered habitat

of the native range results in increased transport probability and a diminished need for further adaptation in the human-altered habitat of the

introduction range. In contrast, populations from natural habitats of the native range are expected to suffer both from rare introduction events

and lack of necessary adaptations to start a population in the introduced range (red cross). C. The introduced populations are expected to invade

rapidly, because of previous adaptation to a similar habitat. Generalist phenotypes may also further cross human-altered habitat boundaries

(dashed arrow) without the additional adaptations needed by specialist phenotypes.
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Accounting for the effects of anthropogenic change on

invasive success is critical because anthropogenic changes

can fundamentally alter the rate of invasions and the type

of species that are likely to invade. AIAI represents a

unique series of ecological and evolutionary processes in

the native and then introduced range. First, the adapta-

tion is to human-altered habitats in particular, rather

than to natural environments. Second, anthropogenic

change fundamentally alters the landscape nearly instanta-

neously, such that the evolutionary response that

enhances subsequent invasion is strictly concurrent with

the anthropogenic change rather than a longstanding

response occurring over historic and contemporary time

scales. Third, an increase in prevalence of human-altered

habitat increases the likelihood of adaptation and trans-

port to a new range. As such, we argue that the concep-

tual framework of AIAI is important to distinguish from

other types of evolutionary change in the native range

because it fills in an important gap in our understanding

of factors that promote invasive success and helps us rec-

ognize and understand the rapidity and increasing pace of

biological invasions. It also highlights that contemporary

adaptation facilitating invasions is not restricted to the

introduced ranges of invasive species.

In support of our ideas, it has long been noted that

adaptation to human-altered habitats occurs (Wet and

Harlan 1975). Additionally, Crosby (1986) and Di Castri

(1989) suggested that the dominance of European species

among invaders might be due to their longstanding asso-

ciation with human disturbances. Jeschke and Strayer

(2006) found that affiliation with humans per se (not just

the increased propagule pressure that comes with such an

affiliation) is associated with increased success of inva-

sion. Additionally, in a recent study, Foucaud et al.

(2009) introduced a process similar to AIAI, calling it a

‘two-step’ invasion, without detailing the evolutionary

factors at play, the expected phenotypic outcomes and the

general implications for biological invasions. To fill in

these gaps and develop this idea more fully, we (i)

describe the AIAI process in detail and review some basic

evolutionary principles underlying it, (ii) outline the evi-

dence necessary to illustrate it and present several systems

that are candidates for AIAI, and (iii) conclude by further

discussing its importance.

Anthropogenically induced adaptation to invade

As is well documented, humans are altering the environ-

ment at an increasing pace, driven by many factors (Sala

et al. 2000; Daily et al. 2001; Pereira et al. 2004; Scharle-

mann et al. 2004; Jetz et al. 2007). Indeed, the most

common and widespread environmental perturbations

today are those caused by humans. Similar types of

alterations can be found on different continents. Many

of the same agricultural crops grown in the same funda-

mental ways are found essentially worldwide. For exam-

ple, maize culture and other cropping systems offer a

relatively homogeneous habitat throughout the world,

from Africa to Asia, North and South America and Eur-

ope (Anonymous 1993). Likewise, forests are harvested,

forest edges are created, roadsides are mown, and nutri-

ents and other pollutants are added to terrestrial and

aquatic ecosystems in a similar manner on different con-

tinents. Indeed, there is general agreement that habitats

and biota are becoming more homogeneous worldwide

(McKinney and Lockwood 1999; Tilman et al. 2001;

Olden et al. 2004).

These newly altered habitats represent novel environ-

ments that impose strongly altered selection regimes. They

might select for a wide variety of traits including an

increased or altered host range of parasites (sensu Price

1980), increased tolerance to physiologic stressors (such as

reduced humidity associated with edge effects) or a faster

‘r-selected’ life history. The potential for adaptive evolu-

tion in response to the novel selection regime is likely to

be high within the native range because of greater effective

population sizes, genetic variation, and propagule pressure

than might be expected in the introduced range. Box 2

provides additional theoretic background for these pro-

cesses. In particular, it details when an outcome of adapta-

tion to human-altered habitats within the native range is

likely, and under what conditions local adaptation to only

the novel human-altered habitat is expected (the evolution

of habitat specialists), and under what conditions adapta-

tion of high performance in both the natural and the

human-altered habitat is expected (the evolution of habi-

tat generalists). Populations that adapt, either as specialists

or generalists, to human-altered habitats within the native

range, may increase in size or become more abundant in

those habitats (Kawecki 2008). Human alteration of habi-

tat is typically associated with human transportation sys-

tems. Thus, when a species becomes abundant in human-

altered habitats, the likelihood that propagules will be

taken up by various modes of long-distance transportation

will increase (Lockwood et al. 2007). This will favor the

species reaching a new range in numbers substantial

enough to establish a new (invasive) population. It is well

known that many introduced species are associated with

agriculture (including both cropping systems and range-

land) and urbanization, both because they increase

resource availability (or fluctuation in resource ability;

Davis et al. 2000) and are associated with high propagule

pressure (Lockwood et al. 2007). We argue that, in addi-

tion, many of these species may have adapted to anthro-

pogenic modifications in the native range prior to

introduction to a novel range. Given the global nature of

Anthropogenically induced adaptation to invade Hufbauer et al.
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human–habitat alterations, the likelihood that similar

human-altered habitat will be found in the region of

introduction is increased and the adaptations from the

human-altered native range should be advantageous in

similarly altered habitats in the introduced range. These

newly introduced species themselves will then contribute

to the increased homogenization of habitats worldwide

(Mack et al. 2000), which can then further facilitate addi-

tional invasions (Simberloff and Von Holle 1999).

Trade-offs in the ability to locally adapt are central to

the theory of adaptation to heterogeneous environments.

Trade-offs are constraints on the set of possible fitness

values (also called fitness sets, Levins 1968) such that

when at the optimum in the natural habitat, better adap-

tation to human-altered conditions translates to a loss of

adaptation to natural conditions. Figure 1 of Box 2 pre-

sents the local fitness sets for the natural (black curves)

Box 2: Factors affecting the potential for adaptation to human-altered habitats within the native
range and outcomes expected in term of life-history strategies

Anthropogenically induced adaptation to invade occurs in a transition zone between natural and human-altered habi-

tats within the native range; thus, ample genetic variation can be maintained more easily than in populations intro-

duced to a new range. In such a setting, adaptation to human-altered habitats is not always possible. When

adaptation does occur, it can lead to habitat generalists or habitat specialists (or both, Abrams 2006). Here, we pro-

vide readers with the fundamental theory underlying which outcome is expected.

From a management perspective, whether a generalist or specialist evolves can be important. Generalists may be

slow to establish initially, but might readily invade habitats within their new range that are not human-altered.

Specialists on the human-altered habitat, in contrasts, may immediately exhibit high population growth rates upon

introduction to comparable human-altered habitats in a new range, but their spread from those habitats may be con-

strained.

Adaptation to human-altered habitats not possible

A population might fail to adapt to the newly available human-altered habitat for three main reasons. The first reason

is lack of adequate genetic variation. For instance, habitat alteration might be so drastic that the variation required to

adapt is simply not available. Second, adaptation may not occur if there is too much migration from the natural hab-

itat to the new human-altered one, hindering adaptation to the new conditions (underlying this pattern are gene

swamping, as well as hard selection leading to differences in the number of individuals produced and subsequent

migrational meltdown; Dempster 1955; Kawecki 2000; Ronce and Kirkpatrick 2001; Lenormand 2002; Travis et al.

2005; Bridle and Vines 2007; Kawecki 2008; Ravigné et al. 2009).

The third reason for failure to adapt to human-altered habitat is because of selective processes, that lead the popu-

lation to remain ‘trapped’ around the source optimum (i.e., that of the natural habitat). This can happen if the traits

under selection evolve through small mutation steps (as expected when such traits are determined by many loci of

small effect) and the trade-off between adaptation to both habitats is very strong (Holt and Gaines 1992; Kawecki

2000; Ronce and Kirkpatrick 2001; Rueffler et al. 2004; Ravigné et al. 2009). Technically, the trade-off curve is said to

be convex (Fig. 1A). In this case, the adaptive valley that separates both optima is so steep that intermediate evolu-

tionary steps are strongly selected against.

Adaptation to human-altered habitats possible producing either generalists or specialists

Generalist phenotype

A generalist phenotype is expected to evolve when the trade-off between adaptation to both habitats is weak, so that

the fitness of the intermediate phenotype is greater than the mean fitness of any mixture of specialists (e.g., Levins

1968; Brown 1990; van Tienderen 1991, 1997; Wilson and Yoshimura 1994; Egas et al. 2004; Rueffler et al. 2004; Rav-

igné et al. 2009). Technically, the trade-off curve is said to be concave (Fig. 1B). This outcome is favored by a combi-

nation of high migration rate and small mutational effects, two conditions that tend to hamper the differentiation

between habitats (Kawecki 2000, 2004, 2008; Ronce and Kirkpatrick 2001). In many instances, generalist species,

although less fit than habitat specialists within their preferred habitats, may be fit enough to be invasive [e.g., poten-

tially exhibiting ‘jack-of-all-trades’ phenotypic plasticity sensu Richards et al. (2006)]. This is expected when trade-offs

Hufbauer et al. Anthropogenically induced adaptation to invade
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are weak or when habitats are subject to important temporal variability under which a generalist strategy may be

advantageous.

Specialist phenotype

A true specialist of the human-altered habitat, with high fitness (and thus particularly high potential for invasiveness

upon introduction to similarly human-altered habitats) will tend to emerge more readily when migration is low and

the traits under selection evolve through large mutation steps (few loci with large effects) (e.g., Levene 1953; Demp-

ster 1955; Maynard Smith 1966; Hedrick 1990; Kawecki 2008). In contrast, if the traits under selection evolve through

small mutation steps (many loci with small effects), then adapting to the human-altered habitat additionally requires

a moderate trade-off in adaptation to both habitats (slightly convex trade-off curve) as well as some independent den-

sity-regulation in both habitats (i.e., soft selection; e.g., van Tienderen 1997; Kisdi and Geritz 1999; Ronce and Kirk-

patrick 2001; Ravigné et al. 2009).

Complex theory and missing data

From a theoretical perspective, the effects of all factors cited earlier on the outcome of adaptation to a new habitat

are now widely documented in a vast number of models, only a small subset of which was cited here. It has now

become quite clear that no single factor by itself can determine the outcome. For instance, a weak trade-off may select

for either specialization or generalization depending on the level of migration and the genetic architecture of traits

underlying adaptation. Understanding these factors as deeply as possible will aid in predicting the risk that invasive

populations emerge through adaptation to human-altered habitats. Although some factors may be very tricky to doc-

ument (e.g., trade-off strength or the mode of density-regulation), others, though not trivial, may be feasible to esti-

mate (e.g., habitat frequencies, the existence of a strong dissymmetry in habitat productivities, sexual vs. asexual

mating system, whether adaptation is likely to evolve through small or large mutation steps). To improve our ability

to forecast and to prevent biological invasions, better integration of empirical and theoretical research is hence much

needed. Future models should explore more thoroughly the relative importance of the various factors at play, and

how they interact (e.g., Kawecki 1994, 1996 for another view on trade-offs), while empirical studies should explicitly

measure those factors already agreed to be critical in determining outcomes.

(A)  Strong local adaptation trade-off
native human-altered
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Box Figure 1. Local adaptation trade-offs (See Box 2 text for details)

Low stringency habitats

(B)
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and human-altered (gray curves) habitats. Narrow fitness

curves lead to highly stringent habitats (gray horizontal

arrow) in which only a narrow range of trait values pro-

duces individuals with high relative fitness. Wide fitness

curves produce less stringent habitats in which a wide

range of trait values can produce individuals with high

relative fitness. (i) Strong trade-offs in the ability to

locally adapt. The generalist phenotype, which is interme-

diate between both specialist phenotypes, has low fitness

in both habitats. A strong trade-off (also called a convex

trade-off) tends to hamper adaptation to the conditions

in human-altered habitats if mutation effects are small. In

contrast, moderately strong trade-offs may favor the

emergence of specialists. (ii) Weak trade-offs with the

ability to locally adapt. Weak trade-offs (also called con-

cave trade-offs) may exist if the optimum trait values for

both natural and human-altered habitat are close or if

habitat stringencies are low (or any combination of the

two). Weak trade-offs enable the generalist phenotype to

achieve good fitness in both habitats. Weak trade-offs

may favor the evolution of a generalist population when

migration is high or specialists when migration is low

enough for differentiation to occur.

Thus, the combination of high evolutionary potential

and strong selection in human-altered habitats within

the native range is likely to lead to rapid adaptation

prior to introduction elsewhere, and furthermore to

increase the probability of successful introduction into a

novel location. Upon introduction to a new location,

such altered populations are indeed likely to perform

well, particularly when introduced to habitats affected

by the environmental homogenization occurring globally.

It is worth pointing out that the AIAI scenario is evolu-

tionarily parsimonious because rather than requiring

that rapid adaptive evolution occur multiple times when

organisms are introduced to multiple different places

around the globe, the critical adaptations need to evolve

only once. At the same time, however, given that

human-altered habitats are often created in multiple

places within one species’ range, there is the opportunity

for different populations of a species to adapt separately

to those habitats. Finally, the AIAI process by no means

precludes either continued adaptive evolution in the

new range (e.g., Blair and Wolfe 2004) or a role for

hybridization and outcrossing in the new range (Kolbe

et al. 2004; Lavergne and Molofsky 2007; Facon et al.

2008).

The necessary evidence

Documenting the AIAI scenario is not a trivial task

and requires both ecological and genetic approaches.

Briefly, it should be demonstrated that contemporary

adaptive evolution has occurred within the native range,

and that it leads to native populations with higher fit-

ness in a new, human-altered habitat relative to a naı̈ve

native population that has not experienced that habitat.

This adaptive evolution would also need to confer

higher fitness than a naı̈ve native population would

have upon introduction to the new range. Additionally,

data from neutral genetic markers, appropriately ana-

lyzed (Keller and Taylor 2008; Estoup and Guillemaud

2010), should provide evidence that the populations

from human-altered habitat within the native range

were the actual source for populations found in

human-altered habitat in the introduced range. Table 1

outlines in detail evidence required for unambiguous

support for this process.

Table 1. Evidence required to support conclusively the anthropogenically induced adaptation to invade scenario.

Evidence needed

Native range

Habitat Documentation that the species is in a habitat that is human-altered relative to historical habitat of species

Altered habitat presents a known and measurable challenge (e.g., change in salinity)

Organism Quantitative genetic evidence that the population within the altered habitat has adapted in response to

anthropogenic change

Population genetic

structure

Populations are structured at neutral loci within the native range, making it possible to identify areas of origin

of the invasive populations

Introduced range

Habitat Habitat documented to be similar to the altered habitat within the native range (e.g. comparable salinity)

Organism Evidence that introduced populations grew to large size in the human-altered habitat similar to native-range

human-altered habitat.

Quantitative genetic evidence that the introduced populations show similar adaptations to those found for

native populations within the altered habitat.

Population genetic

structure

Evidence that introduced populations originated directly (primary introduction) or indirectly (secondary intro

duction) from population(s) located in the human altered habitat within the native range.
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Candidate systems

We are not aware of any study system for which robust

and complete data sets supporting each separate point

from Table 1 are available. At this point in time, some of

the most clear-cut examples of adaptation to human-

altered habitat occurring prior to invasion come from

crop pests. One likely example is Leptinotarsa decemlineata,

the Colorado potato beetle, which is a pest of many sola-

naceous crops. Its original geographic distribution

includes Mexico and parts of the western and central

USA, and its original host range is thought to span only

three species of the genus Solanum, Solanum rostratum,

S. angustifolium, and S. elaeagnifolium (Forister et al.

2007). The human alteration of habitat comes in the form

of potato farming. The potato, Solanum tuberosum, was

introduced from South America into North America and

Europe for intensive cropping in the 18th century (Glen-

dinning 1983) and the beetle L. decemlineata started to

use it as a host in the 1830s and 1840s within its native

range (the central US). Subsequently, the beetle spread

throughout both North America and Europe as a major

pest. Evidence suggests that adaptation was involved in

the use of potato as a host plant. Studies illustrate that

potato, rather than the native hosts, is the most suitable

host for US pest populations of Leptinotarsa decelimneata

(Hare 1990). In contrast, potato elicits only weak oviposi-

tion and feeding in populations associated with the origi-

nal hosts S. angustifolium and S. elaeagnifolium (Hsiao

1978, 1985; Harrison and Mitchell 1988; Lu and Logan

1994a,b,c). Furthermore, Forister et al. (2007) conducted

quantitative genetic experiments showing genetic variation

in many traits associated with host use, suggesting that a

dietary shift itself might have evolved as a distinct trait in

L. decelimneata. After the inclusion of potato in its diet,

the beetle was hence able to spread far beyond its original

geographic range, both to contiguous areas and to other

continents where potatoes are grown, notably Europe, via

human-aided long-distance dispersal.

As biological invasions are generally considered a con-

temporary phenomenon, most candidate systems have

spread recently (e.g., neophytes and neozoa introduced to

a new range within the last 2000 years). However, there

were human-altered habitats much earlier than that, and

thus, older examples also may fit this pattern. One possi-

bility is the ascomycete Mycosphaerella graminicola, one of

the most damaging fungal pathogens of wheat. Phylogeo-

graphic studies located at the center of origin of M. gra-

minicola in the Middle East (Banke et al. 2004). In

addition, using Bayesian inference on DNA sequence data,

Stukenbrock et al. (2007) have provided evidence that the

divergence between M. graminicola and its congeners

(sampled on noncultivated grasses in the Middle East)

occurred approximately 10 500 years ago, coincident with

the beginning of agriculture and the domestication of wild

grasses in the Fertile Crescent. The timing of divergence

strongly suggests that M. graminicola originated from pop-

ulations of pathogens associated with wild grasses that

then adapted to wheat during its domestication. The inva-

sive populations of M. graminicola are specific to wheat

(Eyal et al. 1973, 1985; van Ginkel and Scharen 1987;

Saadaoui 1987), and following their divergence, spread

throughout the world on cultivated wheat crops.

The AIAI process is not restricted to agricultural pests.

The little fire ant, Wasmannia auropunctata, is a species

originating from Central and South America that has been

successfully spreading over the World tropics and parts of

the Mediterranean zone since the beginning of the last cen-

tury (Wetterer and Porter 2003; Vonshak et al. 2009). As

yet, the precise geographic origin of the introduced popu-

lations within the native range is still unknown, but one

possibility is that introductions occurred in association

with food products shipped from plantations to markets

worldwide. In natural areas of its native range (primary

forests), low density, mostly sexually reproducing popula-

tions are found. The human-altered habitat consists of for-

est edges and plantations. In these areas, the little fire ant

occurs at high density and has become ecologically domi-

nant (Orivel et al. 2009). A clear shift toward clonal repro-

duction is associated with the human-altered habitat

(Foucaud et al. 2009), and that shift appears to be geneti-

cally based (Foucaud et al. 2010a). Additionally, popula-

tions in the human-altered habitat exhibit greater

tolerance to stressful temperature and humidity conditions

than populations from the natural forest habitats (J. Fou-

caud, O. Rey, A. Estoup, B. Facon, unpublished data).

These life-history and physiologic changes appear likely to

be adaptations to the human-altered habitat within the

native range. Populations in the introduced range are most

common in human-altered habitats, and are most similar

with respect to life-history and physiology traits to popula-

tions in human-altered habitats in the native range; that is

to say, they are clonal, and characterized by a high toler-

ance of stressful temperature and humidity conditions. Mi-

kheyev and Mueller (2007) and Foucaud et al. (2010b)

show that the main vector of W. auropunctata long-dis-

tance dispersal is human trade.

Animal and human diseases may also follow an AIAI

scenario. Take, for example, AIDS, one of the most fatal

infectious diseases facing humankind. Human immunode-

ficiency virus-type 1 (HIV-1) group M is responsible for

the great majority of all HIV infections in humans and has

infected more than 50 million individuals worldwide

(Hahn et al. 2000). Current evidence indicates that HIV-1

moved to human hosts in west equatorial Africa, and

arose via transmission from a simian lentivirus (SIVcpz)
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infecting chimpanzees (Pan troglodytes troglodytes) (Keele

et al. 2006). A fundamental part of most human-altered

habitats is an increased density of humans themselves,

which represents a large unused pool of potential hosts.

Increased human population density may also have

increased opportunities for contact with the original host

and hence the likelihood of the initial transmission event.

Molecular data show that the introduction of SIVcpz into

humans, giving rise to HIV-1 group M, most likely

occurred in the early part of the 20th century. It is thought

that differences in selection pressures in the two hosts have

led to differentiation of the viruses (Hahn et al. 2000), and

that viral adaptation to the new human host contributed

to the outbreak of AIDS as an epidemic by the 1980s

(Worobey et al. 2008). In association with dense and

highly mobile human populations (e.g., migrant workers)

transmission rates would be high, favoring further adapta-

tion leading to the evolution of increased virulence.

Conclusion and implications

We describe a mechanism promoting biological invasion

that we label as AIAI. We argue that the combination of

high evolutionary potential provided by high effective

population size and strong novel selection imposed by

human-altered habitats within the native range is likely to

lead to rapid adaptation prior to introduction elsewhere,

and simultaneously increased probability of introduction.

Upon introduction to a new location, propagules adapted

to human-altered habitats are likely to perform well, par-

ticularly when they are introduced into habitats that have

been modified in a manner similar to that of their native

range. This phenomenon is likely, given the environmen-

tal homogenization that is occurring globally. We argue

that AIAI is fundamentally distinct from other mecha-

nisms leading to prior adaptation primarily because the

evolution is strictly contemporary rather than longstand-

ing, and because the AIAI scenario emphasizes the central

role of humans in imposing selective pressures within the

native range and in enhancing dispersal via global trade.

Anthropogenically induced adaptation to invade is thus

a contemporary phenomenon that is occurring at acceler-

ated rates and is homogenizing the globe. As such, the

AIAI paradigm sheds new insights into causes of bio-

logical invasions, as well as their ever-increasing pace. As

noted, this scenario is evolutionarily parsimonious

because rather than requiring rapid adaptive evolution

with each introduction into a new location, the critical

adaptations need only evolve once. With the AIAI sce-

nario, the adaptive challenges are shifted to the native

range where populations are less likely to have passed

through bottlenecks, and variation in traits under selec-

tion is less likely to be limiting.

It is worth emphasizing, however, that once a popula-

tion’s invasion is facilitated by adaptation to human-

altered habitats in the native range, including establish-

ment within similar habitats in the novel range, contin-

ued ecological and evolutionary change might enable it to

invade further into environments that are not strongly

human-altered. As Box 2 illustrates, the outcome of evo-

lutionary processes in the native range can either lead to

habitat specialists or to habitat generalists. Upon intro-

duction to a new range, specialists could evolve to use

different habitats in the introduced range (either through

evolution of a new specialist phenotype or a generalist

phenotype). However, if a generalist phenotype invades,

then it is likely to be immediately able to colonize further

into the introduced range in environments that are not

strongly human-altered, provided that there is not strong

resistance from locally adapted species.

The AIAI scenario improves our understanding of

some fundamental issues in invasion biology. First, it sup-

ports the idea that populations with ‘invasive’ behaviors

(e.g. high densities or reproductive rates) can be found

within native ranges (Valery et al. 2009) when they evolve

to ‘invade’ human-altered habitats. Thus, exceptions to a

strictly geographic (i.e. native/introduced) (Wilson et al.

2009) understanding of invasions may exist.

Second, AIAI may further elucidate the degree to which

the Imperialist Dogma, the idea that there is a European

bias to invasions (Crosby 1986; Di Castri 1989), might be

true and when and why it might not be (Jeschke and

Strayer 2006; Fridley 2008).

Third, the AIAI scenario provides yet an additional

argument against the presumed paradox of invasion (Sax

and Brown 2000; Frankham 2005; Hufbauer 2008) which

suggests that adaptive evolution during invasion is con-

strained by low genetic variation, inbreeding and inbreed-

ing depression. While bottlenecks can constrain evolution

(e.g., Pujol and Pannell 2008), the opposite can also occur.

It is now clear that reduction of variation at putatively

neutral loci may not reflect variance available in quantita-

tive genetic traits, and thus, sufficient variation may be

available for adaptation even following bottlenecks (Van

Buskirk and Willi 2006; Olivieri 2009). Also, even if indi-

vidual groups of propagules have passed through bottle-

necks, often multiple introductions can occur, which can

maintain, or even increase, genetic variability in the intro-

duced populations (Kolbe et al. 2004; Lavergne and Mol-

ofsky 2007; Roman and Darling 2007; Dlugosch and Hays

2008; Dlugosch and Parker 2008; Facon et al. 2008; Hu-

fbauer 2008, Olivieri 2009). Bottlenecks may even be of a

size that can actually purge genetic load leading to

inbreeding depression (Facon et al. 2011). With the AIAI

scenario, the adaptive challenges are shifted to the native

range where populations are less likely to have passed
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through bottlenecks, and variation in traits under selection

is less likely to limit the rate and magnitude of adaptive

evolution. Thus, the AIAI contributes to further resolving

the initial paradox of biological invasion.

Finally, given the increase in human alteration of habi-

tats worldwide, the AIAI scenario also may help explain

why it is that rates of invasion continue to increase despite

intensive efforts to prevent them. The ever-increasing alter-

ation of natural habitats by human activities, which leads

to contemporary adaptation of native populations to such

altered habitats, should increase the likelihood both of

being transported, and of being able to establish into simi-

lar human-altered habitats within a new geographic range.

Many species appear to conform to the AIAI scenario,

requiring only a little additional evidence for verification.

We hope that bringing this explicitly evolutionary per-

spective to how species adapt to human-altered environ-

ments in their native ranges, and how that can help us

understand the increasing rates of invasion into human-

altered environments in their introduced ranges, will

motivate further studies to test for it.
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